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The severe acute respiratory coronavirus 2 (SARS-CoV-2) has become a life-threatening
pandemic. Clinical evidence suggests that kidney involvement is common and might lead
to mild proteinuria and even advanced acute kidney injury (AKI). Moreover, AKI caused by
coronavirus disease 2019 (COVID-19) has been reported in several countries and regions,
resulting in high patient mortality. COVID-19‐induced kidney injury is affected by several
factors including direct kidney injury mediated by the combination of virus and
angiotensin-converting enzyme 2, immune response dysregulation, cytokine storm
driven by SARS-CoV-2 infection, organ interactions, hypercoagulable state, and
endothelial dysfunction. In this review, we summarized the mechanism of AKI caused
by SARS-CoV-2 infection through literature search and analysis.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) infection, has rapidly developed into a global pandemic. By February 18, 2022,
420 million confirmed cases and 5,884,120 deaths have been recorded worldwide (https://www.
worldometers.info/coronavirus/). The clinical manifestations of the disease range from mild
respiratory disease to severe progressive pneumonia and multiple organ dysfunction (Naicker
et al., 2020). SARS-CoV-2 binds to angiotensin-converting enzyme 2 (ACE2) and then its spike
protein is hydrolyzed and cleaved by type II transmembrane serine protease (TMPRSS2), thereby
fusing the virus and cell membrane and invading the cells (Hoffmann et al., 2020; Matsuyama
et al., 2020). The Human Protein Atlas database shows that the expression of ACE2 and
TMPRSS2 genes was comparable in kidney and lung tissue (Pan et al., 2020). Recent studies
have shown that SARS-CoV-2 mainly invades podocytes and proximal tubule cells of the kidney
(Diao et al., 2021a) and the presence of intracellular viral arrays in proximal tubular epithelial
cells has been discovered by electron microscopy. Moreover, clinical evidence suggests that kidney
involvement is common and can lead to acute kidney injury (AKI) and even high mortality
(Ronco et al., 2020). We performed a systematic search in PubMed to identify recently published
large cohort studies related to AKI in patients with COVID-19. We used the search terms
“Coronavirus”, “COVID-19”, “SARS-CoV-2”, “acute kidney damage”, “acute kidney injury”,
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“AKI” and found that the incidence of AKI was higher in severe
COVID-19 patients and AKI was strongly associated with high
mortality (Table 1) (Bell et al., 2021; Chen et al., 2021; Jewell
et al., 2021; Kilis‐pstrusinska et al., 2021; Marques et al., 2021;
Procaccini et al., 2021; Rahimzadeh et al., 2021; Scarpioni et al.,
2021; Sullivan et al., 2021; Strohbehn et al., 2021; Wan et al.,
2021; Hung et al., 2022; Hsu et al., 2022; Sindhu et al., 2022).
Many possible mechanisms for COVID-19-induced kidney
injury have been proposed, including the direct kidney injury
mediated by the combination of virus and ACE2. The immune
response dysregulation driven by SARS-CoV-2, including
cytokine storm and lymphopenia, may indirectly affect the
kidneys and organ interactions, such as between the lungs,
heart, and kidneys, result in hypoxic delivery to the kidneys and
may lead to ischemic injury. In addition, the hypercoagulable
state caused by SARS-CoV-2 infection and the application of
nephrotoxic drugs are potential causes of kidney injury
(Ahmadian et al., 2021; Akilesh et al., 2021). This review
summarizes the mechanism by which kidney injury is
induced in patients with COVID-19 and it helps to elucidate
the pathogenic mechanisms of kidney injury caused by SARS-
CoV-2, so as to design better therapeutic strategies.
SARS-COV-2 DIRECTLY INVADES KIDNEY
HOST CELLS

COVID-19 is a respiratory infectious disease caused by SARS-
CoV-2 infection. With more than 420 million confirmed
COVID-19 cases worldwide since its onset in February 2020
(https://www.worldometers.info/coronavirus/). The lungs and
immune system are the most common and most critical organs
that are damaged but other organs, including the kidneys, heart,
liver, digestive tract, and male reproductive system (He et al.,
2020a), are also damaged to varying degrees (He et al., 2020b).
Coronavirus has caused three pandemics in human history,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
including SARS-CoV-2, SARS-CoV, and the Middle East
respiratory syndrome coronavirus (MERS-CoV), all of which
belong to the b-coronavirus family. Also, the genome sequences
of SARS-CoV-2 and SARS-CoV have nearly 80% similarity (Al-
Qahtani, 2020). The spike proteins of these coronaviruses have
a similar 3D structure which has a strong binding affinity to the
cell receptor ACE2. After binding to ACE2, the spike protein of
the virus is activated and cleaved by the cell TMPRSS2 and then
the virus releases fusion peptides to enter cells (Shang et al.,
2020). In addition, SARS-CoV-2 has its own furin cleavage
sequence, which may enhance the affinity of the virus to host
cells (Walls et al., 2020; Coutard et al., 2020). Previous studies
showed that infection with SARS-CoV and MERS-CoV can
cause kidney injury. Chu et al. reported that among 536
patients with SARS, 36 (6.7%) had AKI, and 33 (91.7%) of
them eventually died. The autopsy report revealed that different
degrees of acute tubular necrosis were observed under the
microscope (Chu et al., 2005). The identification and
isolation of SARS-CoV in renal epithelial Vero E6 cells also
provides a reasonable explanation for the invasion of SARS-
CoV into kidney host cells. Different from SARS, renal failure is
the main manifestation of renal damage in MERS. (Al Ghamdi
et al., 2016; Arabi et al., 2019). In a study of 30 patients with
MERS-CoV infection, up to half of the patients had proteinuria,
and 8 (26.7%) had AKI (Cha et al., 2015). Autopsy results
showed that MERS-CoV particles were localized in the
pneumocytes, pulmonary macrophages, and renal proximal
tubular epithelial cells (Alsaad et al., 2018), indicating that
viral kidney tropism is a potential AKI mechanism. The
similarities in the genomes and invasion methods of SARS-
CoV-2, SARS-CoV, and MERS-CoV provide the possibility for
SARS-CoV-2 to invade kidney host cells directly.

In terms of virus invasion mechanism, the expression of
ACE2, TMPRSS2, and furin, which are required for SARS-
CoV-2 to invade cells, has been detected in lung macrophages,
kidney, and adrenal stromal cells strongly suggesting that these
organs are susceptible to COVID-19 (Zhou et al., 2020a). A
TABLE 1 | Data were extracted from 14 large cohort studies of patients with COVID-19, including total number of patients included, incidence of AKI, and mortality
from AKI.

Author (year) Country Sample
size

Male
sex (%)

Mean/median
age (years)

ICU
admission
rate (%)

AKI (%) AKI
Stage 1

(%)

AKI
Stage 2

(%)

AKI
Stage 3

(%)

AKI patient
deaths (%)

Sindhu et al. (2022) India 2650 81.6% 62.6 4.4% 190 (72.0%) 71.0% 15.3% 13.7% 42 (22.1%)
Bell et al. (2021) England 448 54.8% 69.4 13.8% 118 (26.3 %) 55.1% 18.6 % 26.3 % 64 (54.3%)
Scarpioni et al. (2021) Italy 1701 64.3% 72.8 – 233 (13.7%) 65.0% 15.0% 17.0% 132 (56.7%)
Chen et al. (2021) China 1851 48.0% 62.0 29% 115 (6.7%) 61.4% 22.8% 15.8% 37 (32.2%)
Sullivan et al. (2021) UK 41294 62.6% 68.0 – 13000 (31.5%) 65.9% 20.1% 14.1% 5252 (40.4%)
Rahimzadeh et al. (2021) Iran 516 62.8% 57.6 15.3% 194 (37.6%) 61.9% 18.0% 20.1% 77 (39.7%)
Hung et al. (2022) African 990 92.1% 68.0 – 392 (39.6%) 64.0% 15.1% 20.9% 102 (26.0%)
Marques et al. (2021) Portugal 544 56.3% 66.2 – 339 (62.3%)) 32.2% 13.6% 54.3% 61 (18.0%)
Kilis‐pstrusinska et al. (2021) Poland 1958 52.1% 62.3 11.5% 237 (12.1%) – – – 146 (61.6%)
Strohbehn et al. (2021) USA 1091 49.5% 67.0 – 251 (23.0%) 44.2% 25.9% 29.9% 81 (32.0%)
Hsu et al. (2022) USA 4221 63.5% 61.0 – 2361 (56.0%) 22.3% 19.8% 57.9% 1458 (61.8%)
Jewell et al. (2021) UK 1248 58.8% 69.0 18.2% 487 (39.0%) 51.0% 13.0% 36.0% 216 (44.4%)
Procaccini et al. (2021) Spain 3182 – 72.0 – 548 (17.22%) 70.1% 19.3% 10.6% 211 (38.5%)
Wan et al. (2021) UK 1855 60.5% 65.0 18.2% 455 (24.5%) 44.0% 19.8% 36.3% 242 (53.2%)
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study further determined the expression levels of ACE2 and
TMPRSS2 in the kidneys through the violin and scatter plots
generated with reduction of UMAP, and revealed that ACE2
and TMPRSS2 intersected and were expressed in proximal
convoluted tubule cells, proximal straight tubule cells, and
podocytes (He et al., 2020b). It provides a theoretical basis
for the potential entry pathway of SARS-CoV-2 to invade
proximal renal tubular cells and podocytes. SARS-CoV-2 first
infects the respiratory tract and it needs to be transported
through the blood to reach the kidneys. According to reports,
10%-15% of patients with COVID-19, especially critically ill
patients, suffer from SARS-CoV-2 RNAemia (Chen et al.,
2020b; Huang et al., 2020). Moreover, Wichmann et al.
reported autopsy results of 12 patients with COVID-19, six of
whom had SARS-CoV-2 RNAemia and viral RNA was detected
in their kidney tissue (Wichmann et al., 2020). Finally, the
presence of SARS-CoV-2 in urine indicates that the renal
tubules are directly exposed to the virus and may directly
interact with the virus (Chu et al., 2005; Diao et al., 2021b).
Therefore, the virus may enter the glomerular capillaries
through the blood circulation and then invade podocytes or
enter the renal tubule fluid to contact the receptors in the
proximal tubules (Figure 1) (Ahmadian et al., 2021). Although
the expression of ACE2 in the proximal tubules’ brush border
apical membrane in the kidney is higher than that in the lung
cells, the expression of TMPRSS2 is lower in the proximal
tubule cells of the kidney (Ye et al., 2006). A recent study
reported the discovery of a potential substitute for TMPRSS2 in
proximal tubule cells. This study found that SARS-CoV-2
attacks target cells through the transmembrane glycoprotein
CD147 (Su et al., 2020; Wang et al., 2020a). In addition, other
proteases are expressed in kidney cells, including glutamyl
aminopeptidase, cathepsin B/L, cysteine, and serine protease
dipeptidyl peptidase 4 (DPP4). These proteases may
promote SARS -CoV-2 and ACE2 binding and virus entry
(Soleimani, 2020).

Clinical evidence also suggests that kidney involvement is
common. In a large-scale prospective study, 701 patients with
COVID-19 experienced increased serum creatinine, blood
urea nitrogen, hematuria, and proteinuria (Cheng et al.,
2020). However, the incidence of AKI varies greatly
between different studies. Yang et al. reported that severe
COVID-19 patients are more susceptible to AKI. In their
study, 29% of severely ill patients with COVID-19 progressed
to AKI (Yang et al., 2020). Data from over 5,000 patients with
COVID-19 from a large medical network in the New York
metropolitan area show that 37% of hospitalized patients had
AKI and 14% of them required renal replacement therapy
(Hirsch et al., 2020). Conversely, two large clinical studies
indicate that the prevalence of AKI among hospitalized
patients with COVID-19 is relatively low (0.5-5%) (Cheng
et al., 2020; Guan et al., 2020). There is no doubt that AKI is a
significant non-respiratory clinical manifestation of patients
with COVID-19 in different clinical studies. According to the
conclusion drawn from single-cell transcriptome analysis, the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
cytopathic effect of SARS-CoV-2 on podocytes and proximal
tubule cells may be the cause of AKI (Pan et al., 2020).
Farkash et al. found that the virus particles in the renal
tubular epithelium are morphologically identical to SARS-
CoV-2 (Farkash et al., 2020). In addition, Su et al. reported
the detection of SARS-CoV-2 particles in renal tubular cells
and podocytes, showing that the virus first invades podocytes
and then enters the tubular fluid to bind to ACE2 in the
proximal tubules to invade the renal parenchyma (Su et al.,
2020). However, not all reports of COVID-19-related kidney
pathological changes are consistent. Akilesh et al. performed
a biopsy study of severely ill COVID-19 patients, which
showed that although the patients had manifestations of
acute tubular injury, immunohistochemistry for SARS-
CoV-2 nucleocapsid and RNA in situ hybridization (ISH)
for viral genomes of all four patient samples were negative,
and direct viral invasion of the kidney could not be
determined (Akilesh et al., 2021). Therefore, to determine
whether SARS-CoV-2 directly invades kidney cells, cohort
studies including kidney biopsy results from large numbers of
COVID-19 patients are needed.
FIGURE 1 | ACE2 and TMPRSS2 are expressed in proximal convoluted
tubule cells, proximal straight tubule cells and podocytes. SARS-CoV-2
enters glomerular capillaries through the blood circulation, and then invades
podocytes or enters renal tubular fluid to contact receptors in proximal
tubules. This results in podocyte dysfunction, tubular injury, endothelial injury
and collapsing glomerular disease. ACE2, angiotensin-converting enzyme 2;
TMPRSS2, type II transmembrane serine protease; SARS-CoV-2, Severe
Acute Respiratory Syndrome Coronavirus 2.
June 2022 | Volume 12 | Article 838213
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INDIRECT KIDNEY INJURY CAUSED BY
SARS-COV-2 INFECTION
Dysregulated Immune Responses and
Cytokine Storm
The immune system is also a common and important organ
affected by SARS-CoV-2 infection. During SARS-CoV-2
infection, neutrophils, leukocytes, and neutrophil-lymphocyte
ratios were significantly increased in patients with severe
COVID-19 compared with patients with mild COVID-19 (Qin
et al., 2020). Kidney biopsy of patients with COVID-19 presents
high levels of CD4+ T cells, CD56+ natural killer cells, and
CD68+ macrophages infiltrated into the tubulo-interstitium.
This condition indicates that T cells are activated and
subsequently migrate to the site of infection to function.
However, SARS-CoV-2 affects tissues under an ineffective
immune response and promotes the necrosis or apoptosis of T
cells by releasing cytokine storms, thereby reducing T cells and
impairing virus clearance (Chen et al., 2020a; Huang et al., 2020).
Decreased lymphocyte counts in COVID-19 patients are known
to often lead to poor prognosis (Tan et al., 2020). According to
clinical data, lymphopenia was found in 40% of patients with
COVID-19 (Zheng et al., 2020). Liu et al. observed an inverse
correlation between T-cell counts and kinetic changes in
cytokine levels in patients with severe COVID-19 (Liu et al.,
2020). After 4-6 days of onset, the serum interleukin-10 (IL-10),
IL-2, IL-4, tumor necrosis factor-alpha (TNF-a), and interferon-
gamma (IFN-g) levels increased significantly along with the
decline in T cell counts. While the number of T cells was
restored, the levels of IL-6, IL-10, IL-2, IL-4, TNF-a and IFN-g
in serum decreased (Liu et al., 2020). In order to understand the
dynamics of the immune response in COVID-19 patients and its
association with clinical outcomes, Lucas et al. analyzed
peripheral blood mononuclear cell and plasma samples from
patients with moderate or severe COVID-19 and healthy donors
by flow cytometry and enzyme linked immunosorbent assay
(Lucas et al., 2020). They observed a “key COVID-19 feature”
shared by the moderate and severe disease groups, which they
defined as the following inflammatory cytokines: IL-1a, IL-1b,
IL-17A, IL-12 p70, and IFNa. And this study found that after day
10 of infection, these markers began to decline in patients with
moderate disease, while levels of these key markers remained
elevated in patients with severe COVID-19 (Lucas et al., 2020). In
addition, Lucas et al. reported early cytokines that may predict
disease outcome, including eotaxin 3, IL-33, Thymic Stromal
Lymphopoietin, IL-21, IL-23, IL-17F, IFN-g, IL- 12 p70, IL-15,
IL-2, TNF, IL-4, IL-5, IL-13, IL-1a, IL-1b, IL-17A, IL-17E, IL-22
and many chemokines involved in leukocyte trafficking, these
markers are associated with coagulation dysfunction and higher
mortality in COVID-19 patients (Lucas et al., 2020).

Recently, the presence of autoantibodies to ACE2 was
confirmed in the sera of individuals with severe COVID-19,
leading to the emergence of the doctrine of autoimmunity in
COVID-19 patients (Casciola-Rosen et al., 2020). Binding of
soluble ACE2 to SARS-CoV-2 underlies ACE2 autoimmunity.
Soluble ACE2, also known as serum or plasma ACE2, is
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
commonly found in the serum of patients with hypertension
and heart disease (Epelman et al., 2008). McMillan et al. observed
that a complex of SARS-CoV-2 and soluble ACE2 forms and
enters the blood circulation of infected patients (McMillan et al.,
2021). Binding of ACE2 to the SARS-CoV-2 spike protein
induces a conformational change in both proteins, providing a
target for the formation of autoantibodies (Zhang et al., 2005)
resulting in the production of antibodies against ACE2.
Antibodies trigger type 2 and type 3 hypersensitivity reactions,
as well as type 4 hypersensitivity reactions after complexes of
SARS-CoV-2 and soluble ACE2 are processed by antigen-
presenting cells. During SARS-CoV-2 infection, triggering of
type 2 hypersensitivity reactions produces immunoglobulin M
(IgM) against and ACE2, which targets ACE2 in kidney cells,
resulting in renal impairment. Multiple studies of renal biopsies
from patients with COVID-19 have confirmed the impact of
autoimmunity on renal function. Winkler et al. observed IgG,
IgM and C3 deposition in the glomerular basement membrane of
patients with COVID-19 (Winkler et al., 2021). Macor et al.
found IgG and C deposits around the tubules and glomeruli after
detailed analysis of kidney sections from patients with COVID-
19 (Macor et al., 2021). In addition, a study found IgA granular
deposition in the renal mesangium of patients with COVID-19
by immunofluorescence and the disappearance of podocytes
under electron microscopy, and the study proposed that these
pathological changes were associated with type 3 hypersensitivity
reactions triggered by antigen-antibody complexes (Jedlowski
and Jedlowski, 2022). Since ACE2 is widely expressed in different
organs of the human body, it is very necessary to further study
the role of anti-ACE2 autoantibodies in the pathogenesis of
COVID-19. In particular, anti-ACE2 autoantibodies may
unbalance the ratio of ACE to ACE2, leading to renin-
angiotensin system (RAS) disorders, promoting tissue damage
and worsening inflammation. The pathogenesis of AKI in
COVID-19 also involves the complement system (Noris et al.,
2020). Earlier studies have shown that after accumulating in the
lumen of the renal tubules, complement C5b-9 accumulates at
the brush borders of the apical tubules through an alternative
pathway, leading to tubulointerstitial damage (David et al., 1997;
Cybulsky et al., 2002). One study performed renal biopsies from
six severely ill COVID-19 patients and observed extensive
complement deposition on renal tubules, suggesting that
SARS-CoV-2 infection can activate complement deposition
and play a role in renal injury (Noris et al., 2020).

In some cases, persistent influence of viral antigens, high
levels of pro-inflammatory factors, and cellular damage-
associated molecular patterns (DAMPS) can exacerbate an
immune response that progresses from a localized immune
response to a systemic inflammatory response known as
“cytokine storm”. which subsequently causes systemic
inflammatory response syndrome, leading to multi-organ
dysfunction (Tay et al., 2020). Karki et al. described links
between the cytokine storm and the programmed cell death
(PCD) process, a PCD activated by a virus (such as influenza A
virus) and triggered by cytokines (Karki and Kanneganti, 2021).
They pointed out that cytokines are intricately related to cell
June 2022 | Volume 12 | Article 838213
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death mechanisms and are involved in a positive feedback loop.
Among the numerous pro-inflammatory cytokines that are
elevated during the cytokine storm, IL-1, IL-6, TNF, and IFN-g
are crucial. Of these, TNF and IFN-g have been extensively
studied and they independently induce apoptosis or necroptosis
(Karki and Kanneganti, 2021). The up-regulated pro-
inflammatory genes in patients with severe COVID-19 are
mainly located in the NF-kB and type I IFN signaling
pathways. In vitro experiments have shown that healthy
peripheral blood mononuclear cells infected with SARS-CoV-2
have increased pro-inflammatory cytokines, including TNF, IL-
6, IFN-g and IL-1b. Of these, TNF and IFN-g are highly
upregulated in the serum of patients with severe COVID-19
and TNF- and IFN-g-induced cell death can lead to systemic
inflammation, tissue damage, multiple organ failure, and death
of COVID-19 patients (Karki and Kanneganti, 2021). In
addition, elevated cytokines mediate inflammatory cells that
adhere to the endothelial cells of the kidney, which can cause
kidney damage (He et al., 2005). The formation of a cytokine
storm is related to the imbalance of the RAS (Figure 2). As a key
receptor recognized by SARS-CoV-2 and a key enzyme in the
renin-angiotensin system (Hoffmann et al., 2020), ACE2
inactivates angiotensin II (Ang II) to Ang (1-7) and converts
angiotensin I (Ang I) to Ang (1-9). Conversely, ACE inactivates
Ang I to Ang II and converts Ang (1-9) to Ang (1-7) (Vickers
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
et al., 2002). Ang II plays an important role in RAS by acting on
the angiotensin type 1 receptors (AT1R) and AT2R. Of the two,
AT1R is activated by Ang II to regulate aldosterone release in the
adrenal cortex and plays a key role in fluid balance. In addition to
this, AT1R activation can promote thrombosis, inflammation,
and fibrosis (Karnik et al., 2015). By contrast, Ang (1-7) exerts
anti-inflammatory effects through Mas receptor (MAS-R) and G
proteins (Dilauro et al., 2010).

Once ACE2 is occupied by SARS-CoV-2, free Ang II will
accumulate due to the lack of degradation by ACE2. This
phenomenon may lead to the activation of AT1R and the
reduction of angiotensin production (1-7), thereby triggering a
cytokine storm (Iwasaki et al., 2021). Furthermore, Ang II
interacts with kidney resident cells to promote the production
of pro-inflammatory factors, including prostaglandins, vascular
endial cell growth factor, nuclear factor kappa B, TNFa, IL-1b,
IL-6, and IFN-g (Williams et al., 1995; Fyhrquist and Saijonmaa,
2008). It also stimulates the production of cytokines/chemokines
to cause immune cells (neutrophils, mononuclear cells, T cells,
and B cells) to infiltrate the injury site and enhance the
inflammatory response (Nataraj et al., 1999). These factors
contribute to the AKI in COVID-19 cases by promoting
tubular and endothelial dysfunction. Dealing with RAS
imbalances will be the key to the problem. Currently, the
conventional drugs acting on the RAS are ACE inhibitors
FIGURE 2 | In normal conditions with a balanced RAS, renin cleaves angiotensinogen to produce Ang I, and then Ang I is cleaved by ACE1 to Ang II. The
combination of Ang II and AT1R activates the NF-kB signaling pathway, modulates the gene expression of inflammatory cytokines, and induces harmful effects such
as fibrosis, inflammation and tissue damage. ACE2 induces the cleavage of Ang II into Ang 1-7. Subsequently, Ang 1-7 activates MAS-R and induces anti-
inflammatory and anti-fibrosis effects. SARS-CoV-2 identifies ACE2 as a receptor to invade host cells. The endocytosis of the virus reduces the expression of ACE2
on the cell membrane, thereby impairing the protective effect of the ACE2/Ang 1-7/MAS-R axis. Accumulated Ang II leads to the excessive activation of AT1R,
induces the release of a variety of inflammatory cytokines, and even causes a cytokine storm. SARS-CoV-2 can also invade immune cells (CD4+ T cells and CD8+ T
cells) by binding with ACE2, causing immune response dysregulation. The intensified cytokine storm and immune response dysregulation may have indirect impacts
on multi‐organ failure, especially the kidneys. AKI, acute kidney injury; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; ACE2, angiotensin-
converting enzyme 2; RAS, renin-angiotensin system; Ang II, angiotensin II; AT1R, angiotensin receptor type 1; MAS-R, MAS receptor.
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(ACEI) and angiotensin receptor blockers (ARB). ACEI and
ARB block the various biological effects of Ang II by reducing the
production of Ang II and blocking the activation of AT1R,
respectively, thereby reducing the risk of inflammation and
thrombosis. However, In vitro and animal studies have shown
that the use of ACEI and ARB causes an increase in the
expression and activity levels of ACE1 and ACE2 (Ferrario
et al., 2005). The increased expression of ACE2 facilitates the
recognition of target receptors by SARS-CoV-2 to invade cells
and adversely affects the progression of COVID-19. Tetlow et al.
analyzed data from COVID-19 patients at an inner London
Hospital to determine whether ACEI or ARB use was associated
with AKI, incidents of thrombosis, and in-hospital mortality.
Results showed no association between ACEI/ARB use and in-
hospital mortality in patients, and there was no evidence that the
use of these drugs led to the development of AKI or the
formation of microvascular thrombosis (Tetlow et al., 2021).
Conversely, due to the anti-inflammatory effects of Ang (1-7),
increased ACE2 expression might also induce beneficial effects in
COVID-19 (Dilauro et al., 2010). While the impact of
RAS inhibitor-induced ACE2 upregulation on clinical
outcomes in COVID-19 remains unclear, there has emerged an
overwhelming consensus that despite possible ACE2
upregulation, the use of ACEIs and ARBs did not lead to poor
prognostic outcomes (Cook and Ausiello, 2021).

Organ Crosstalk
Acute respiratory distress syndrome (ARDS) is one of the serious
complications of COVID-19. ARDS in COVID-19 patients
involves two pathological mechanisms, first, as a receptor
recognized by SARS-COV-2, ACE2 is located in pneumocyte
type II (Tian et al., 2020). Therefore, direct virus invasion
destroys alveolar cells and reduces pulmonary surfactant,
leading to ARDS. The second mechanism is a cytokine storm,
in which the SARS-COV-2 infection produces large amounts of
pro-inflammatory cytokines and an excessive inflammatory
response, leading to multiple organ failures, including the
kidneys and ARDS (Elrobaa and New, 2021). Crosstalk
between the lungs and kidneys was observed in ARDS
(Panitchote et al., 2019). A retrospective study showed that of
375 ARDS patients without a history of CKD and/or AKI,
approximately 70% developed AKI (Panitchote et al., 2019).
The reason may be that ARDS leads to hypoxia in the renal
medulla, which consequently leads to acute tubular necrosis. In
addition, the impairment of lung function caused by COVID-19
can lead to hypercapnic acidosis. Bratel et al. pointed out that
hypercapnia due to pulmonary dysfunction leads to renal failure
by alleviating glomerular filtration rate (GFR) (Bratel et al.,
2003). Finally, ARDS patients require a ventilator for breathing
and the artificial positive pressure generated by the ventilator
affects intrathoracic pressure, which reduces cardiac output and
reduces GFR, thereby affecting renal function. The lungs and
kidneys work together to maintain electrolyte balance and acid-
base balance in the body. Therefore, impairment of renal
function will disturb the balance and also affect lung function.
In addition to lung function, the kidneys also have crosstalk with
the heart and brain (Figure 3).
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The crosstalk between the heart and the kidneys may also be
related to AKI in patients with COVID-19 (Ronco and Reis, 2020).
In the early stages of COVID-19, cardiovascular system
dysfunctions such as acute myocarditis, myocardial infarction,
and heart failure often occur. Myocarditis caused by SARS-CoV-2
infection reduces cardiac output and end-organ perfusion and the
accompanying right ventricular dysfunction can lead to venous
congestion, causing kidney congestion and further impairing its
perfusion. Renal vein congestion, hypotension, and subsequent
hypoperfusion decrease the glomerular filtration rate (Ronco and
Reis, 2020). In addition, the response of the kidneys to myocardial
dysfunction may cause hypovolemic shock, which can exert
detrimental effects on heart and lung functions (Scrascia et al.,
2017; Gautier-Vargas et al., 2020).

Neurological manifestations have also been reported recently
in patients with COVID-19. Mild cases are characterized by
headache, dizziness, smell, and taste dysfunction and severe cases
are accompanied by ischemic stroke, seizures, motor, and
sensory deficits (Liotta et al., 2020). Several studies have
reported viral encephalitis in patients with COVID-19 and
found SARS-CoV-2 in their cerebrospinal fluid (Wang et al.,
2020b). It is known that ACE2 is expressed in the human brain
(Hamming et al., 2004). The mechanism of the nervous system
manifestations of COVID-19 may be that SARS-CoV-2-related
cytokines such as IL-1b, IL-17, IL-6, and TNF alter the
permeability of the blood-brain barrier, which makes SARS-
CoV-2 can reach the brain and recognize ACE2 directly affects
brain cells (Iadecola et al., 2020). The hypercoagulable state
caused by SARS-CoV-2 infection can lead to ischemic stroke
in patients with COVID-19 (Khismatullin et al., 2021).
Accumulating studies have observed an association between
ischemic stroke and renal dysfunction. Cai et al.’s study of
ischemic stroke patients showed that cerebral cortical
infarction is an independent risk factor for AKI. Focal cerebral
ischemia leads to sympathetic hyperactivity that contributes to
the progression of renal injury (Cai et al., 2021).

Endothelial Dysfunction and
Hypercoagulation and Other Mechanisms
The expression of ACE2 in vascular endothelial cells provides a
pathophysiological basis for virus invasion. Emerging evidence
also suggests that endothelial dysfunction plays a contributing
role in the development of renal dysfunction in patients with
COVID-19. Severe COVID-19 cases are frequently characterized
by microvascular damage (Tang et al., 2020; Zhou et al., 2020b).
The histopathology of three patients with COVID-19 revealed
that SARS-CoV-2 directly infects endothelial cells, causing
diffuse endothelial inflammation (Varga et al., 2020).
Therefore, microvascular inflammation and dysfunction are
likely to cause multiple organ failure (including kidneys) in
patients with COVID-19.

Furthermore, activation of complement cascades and a
hypercoagulable state have a potential impact on the
development of AKI in patients with COVID‐19 (Taverna et al.,
2021). The increased coagulation activity of most patients with
severe COVID-19 leads to microvascular thrombosis (Terpos
et al., 2020). From the onset of cytokine storm, the activation of
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DAMPS and coagulation factors promote the hypercoagulable
state (Delvaeye and Conway, 2009). The endothelial damage
caused by the virus may also be exposed to tissue factor, thereby
stimulating the extrinsic coagulatory pathway. In addition,
damaged endothelial cells recruit neutrophils, release neutrophil
extracellular traps, and stimulate the coagulation contact pathway
by activating platelets (Merad and Martin, 2020). Finally, hypoxia
caused by COVID-19 can lead to thrombosis (Khismatullin et al.,
2021). In a hypercoagulable state, acute tubular necrosis may
progress to cortical necrosis and cause irreversible kidney injury.
The state of microthrombosis and microangiopathy can also
increase the risk of microinfarction in other organs, leading to
multiple tissue damage.

Sepsis is also an indirect cause of AKI in COVID-19 patients.
It is caused by the cytokine storm cascade after viral infection
(Jin et al., 2020). A retrospective study, conducted in Wuhan,
China, showed that the incidence of sepsis among 191 COVID-
19 patients was 59% (Zhou et al., 2020b). Another study revealed
that 6.4% of 113 severe COVID-19 patients had septic shock and
these patients may develop septic AKI and trigger kidney damage
(Jin et al., 2020; Ronco and Reis, 2020).

An increasing number of studies are starting to note the
effects of drugs applied during COVID-19 treatment on kidney
function. The use of nephrotoxic drugs, such as vancomycin, is
also a potential factor in AKI (Na et al., 2020). Fontana et al.
pointed out that the side effects caused by vitamin C application
during COVID-19 treatment may be underestimated (Fontana
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et al., 2020). Fontana et al. performed renal biopsies in two
patients with renal insufficiency with COVID-19 and found
diffuse calcium oxalate monohydrate crystals in the renal
tubules of these two patients, which led to tubular damage.
The authors then diagnosed these two patients with oxalate
nephropathy associated with vitamin C use (Fontana et al.,
2020). Previous studies demonstrated that high doses of
vitamin C significantly reduced proinflammatory cytokines, C-
reactive protein, and procalcitonin in patients with sepsis
(Fowler et al., 2014). The potential inhibitory role of vitamin C
in the cytokine storm induced by SARS-Cov-2 infection has
received increasing attention. Unfortunately, vitamin C causes
hyperoxaluria through endogenous conversion of ascorbic acid
to oxalate (Cossey et al., 2013). Under normal physiological
conditions, crystals pass rapidly through the renal tubules.
However, renal tubular damage caused by COVID-19 leads to
retention of crystals in the tubes and may induce calcium oxalate
calculi. In addition to the effects of vitamin C, some antibiotics,
such as ceftriaxone, can form crystals in the urine (Daudon et al.,
2017). The altered gut microbial milieu and overabsorption of
oxalate caused by COVID-19-associated enteritis can also cause
hyperoxaluria (Wan et al., 2020). Therefore, for COVID-19
patients with renal insufficiency, medication should be used
with caution according to the specific situation.

There are many indirect factors in AKI caused by SARS-CoV-
2 infection and these factors are summarized in the figure for
ease of understanding (Figure 4).
FIGURE 3 | SARS-COV-2 infection leads to ARDS, and insufficiency of lung function leads to hypoxia of the renal medulla, causing acute tubular necrosis. Also,
impaired lung function can lead to hypercapnic acidosis, which leads to renal failure by reducing GFR. Myocarditis caused by SARS-CoV-2 infection reduces cardiac
output, causing renal congestion and further impairing its perfusion. The renal response to myocardial dysfunction may lead to hypovolemic shock, which can
adversely affect cardiorespiratory function. Ischemic stroke events in COVID-19 patients are not uncommon and have been associated with the hypercoagulable
state effect caused by SARS-CoV-2. Focal cerebral ischemia leads to sympathetic hyperactivity, which leads to the progression of kidney damage. SARS-COV-2,
Severe Acute Respiratory Syndrome Coronavirus 2; ARDS, Acute respiratory distress syndrome; GFR, glomerular filtration rate; SARS-CoV-2, Severe Acute
Respiratory Syndrome Coronavirus 2; COVID-19, coronavirus disease 2019.
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POSSIBLE TREATMENT AND
MANAGEMENT OF PATIENTS WITH AKI
DURING SARS-COV-2 INFECTION

Throughout the COVID-19 pandemic, the onset of AKI portends
a poor prognosis. Wang et al. observed that remdesivir, previously
used against SARS-CoV and MERS-CoV, had no apparent effect
on clinical outcomes in COVID-19 (Wang et al., 2020c). Non-
invasive ventilation, high-flow nasal cannula, and corticosteroids
are the main methods of support. Currently, many treatments and
management measures for COVID-AKI are in clinical trials. ACEI
and ARB treat many cardiovascular and renal diseases by reducing
AT1R activation and upregulating ACE2 expression (Carey,
2015). However, there are concerns about whether upregulation
of ACE2 increases the chance of SARS-CoV-2 to recognize its
invading cells. In fact, several studies have reported that the use of
RAS inhibitors is associated with a lower risk of infection and
mortality in COVID-19 patients (Baral et al., 2021). Rahmani et al.
reported that the application of losartan did not upregulate total
ACE2 levels in human renal tubular cells. Interestingly, Rahmani
et al. found that losartan upregulated interferon-stimulated genes
in podocytes and renal tubular cells to limit SARS-CoV-2
infection. The authors show that losartan prevents ACE2
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
internalization and mitigates SARS-CoV-2 infection in renal
tubular cells. Therefore, losartan represents a potential
adjunctive therapy (Rahmani et al., 2022). In severe cases,
“cytokine storm” can be observed in the serum of COVID-19
patients. A variety of treatments, including antibody therapy and
plasma exchange, can directly remove cytokines and relieve
“cytokine storm” (Swol and Lorusso, 2020). In addition, plasma
exchange therapy can relieve sepsis caused by viral superimposed
bacterial infection. As previously mentioned, both the
hyperinflammatory state and sepsis are indirect contributors to
AKI. Therefore, therapeutic plasma exchange can be one of the
treatment options in the case of severe disease.
CONCLUSION

COVID-19 has now constituted a global pandemic and the
number of confirmed cases is still increasing. As a common
comorbidity of COVID-19, AKI is an indicator of negative
prognosis and disease severity (Nadim et al., 2020; Richardson
et al., 2020; Varga et al., 2020). AKI caused by SARS-CoV-2
infection results from both direct and indirect injury. Direct injury
is caused by the SARS-CoV-2 virus targeting and infecting kidney
FIGURE 4 | There are many indirect factors in AKI caused by SARS-CoV-2 infection. Viral infection and RAS imbalance induce the release of various inflammatory
cytokines and even trigger cytokine storm. SARS-CoV-2 can also invade immune cells (CD4+ T cells and CD8+ T cells) by binding to ACE2, resulting in a
dysregulated immune response. The exacerbation of cytokine storms and dysregulated immune responses may have indirect effects on multiple organ failure,
especially the kidneys. The virus-infected lungs, heart, and brain will have organ crosstalk with the kidneys, which will further aggravate kidney damage. Binding of
SARS-CoV-2 and soluble ACE2 induces a conformational change in both proteins, providing a target for the formation of autoantibodies that generate antibodies
against ACE2, resulting in kidney damage. In addition, endothelial dysfunction, complement dysregulation, and hypercoagulability have also been associated with AKI
caused by SARS-CoV-2 infection. AKI, acute kidney injury; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; RAS, renin-angiotensin system; ACE2,
angiotensin-converting enzyme 2.
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cells (such as proximal tubule cells and podocytes expressing
ACE2 and TMPRSS2). Indirect injury mainly results from an
immune response disorder, a cytokine storm, endothelial injury,
and organ crosstalk. COVID-19‐induced AKI is associated with
high mortality in hospitalized patients (Soleimani, 2020) and there
is currently no specific anti-SARS-CoV-2 treatment. Therefore,
understanding the pathogenesis of AKI in COVID-19 patients is
of great significance for improving the prognosis of COVID-19
patients. Keeping in mind the risk of AKI for COVID-19 patients
and reducing renal tubular damage will benefit COVID-19
patients. In addition, further research is needed to improve the
understanding of AKI secondary to COVID-19 in order to obtain
sufficient evidence to develop new preventive measures
and treatments.
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