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The development of targeted medicine has greatly expanded treatment options and

spurred new research avenues in cancer therapeutics, with monoclonal antibodies

(mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success,

mAbs still hold significant shortcomings, as they possess limited tumor penetration, high

manufacturing costs, and the potential to develop therapeutic resistance. However, the

recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has

demonstrated significant translational potential in preclinical and clinical studies. This

review highlights their various applications in cancer and analyzes their trajectory toward

their translation into the clinic.
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INTRODUCTION

Just under 50 years ago, the “first generation” of therapeutic antibodies consisted of
murine-derived, monoclonal antibodies (mAbs), with over 30mAbs now approved by the Food and
Drug Administration (FDA) for clinical use. Despite the clinical potential, their immunogenicity
and large size (∼150 kDa) became major detriments to their efficacy (1). This prompted the
improved “second generation” of utilizing antibody fragments such as the antigen-binding
fragment (Fab, ∼50kDa) and single-chain variable fragment (scFv, ∼30kDa); however, this
approach remained limited by a short serumhalf-life and aggregation-induced immunogenicity (2).

The serendipitous discovery of heavy-chain only antibodies (HcAbs) in camelids sparked
the most recent wave of “third generation” antibodies. Compared to conventional mAbs,
HcAbs consist of just two heavy chains, with a single variable domain (VHH, ∼15kDa) as
the antigen-binding region. These nanoscale VHHs were coined the name “nanobodies” and
could retain full antigen-binding potential upon isolation, establishing them as the smallest,
naturally-derived antigen-binding fragment (3). Nanobodies have spurred the development of
commercial companies and have been used in applications such as biosensing, affinity-capture,
and protein crystallization; however, their most significant potential lies in therapeutics, especially
for cancer. This review highlights how nanobodies have enhanced various cancer diagnostic tools
and therapies, both alone, and synergistically. To conclude, an overview of nanobodies in cancer
clinical trials is discussed, with an analysis on obstacles, and potential strategies to expedite their
implementation as a translational cancer therapy.
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NANOBODIES: TYPES, STRUCTURE, AND
MECHANISM OF ACTION

Unlike other antibody fragments, nanobodies do not require
extensive assembly or molecular optimization to create
complex constructs. Possessing such a highly modular nature
has propelled a wide array of nanobody-fusion molecules
(Figure 1B). Although lacking a VL domain may seem
detrimental to antigen binding, nanobodies have evolved to
compensate, developing features that also enhance stability,

FIGURE 1 | General nanobody structure and types of nanobodies. (A) Comparison of the monoclonal antibody (mAb) vs. heavy chain antibody (HcAb) to highlight the

structural differences of their respective antigen binding regions. The VHH/Nanobody has a much longer CDR3 loop compared to that of the VH-VL domains in mAbs,

providing antigen affinity and access to hidden epitopes. (B) A generalized overview of the types of engineered nanobodies to demonstrate how their high modularity

enables various modifications. For enhanced antigen avidity, bivalent nanobodies can be created by connecting two identical nanobodies with a linker peptide.

Biparatopic nanobodies are a fusion of two nanobodies targeting unique epitopes for the same antigen, with decreased dissociation from the target antigen. Bispecific

nanobodies are composed of two nanobodies targeting different antigens and are often utilized as T cell engagers. Nanobodies can also be conjugated to other

cancer therapies, nanoparticles, viral vectors, or to imaging agents for targeted tumor visualization. CDR3, complementarity-determining region 3; scFv, short-chain

variable fragment; IL-2, Interleukin-2.

diversity, and binding capacity. In general, antigen specificity
is determined at the exposed ends of each variable domain
through three peptide loops, or complementarity determining
regions (CDRs). The CDR3 loop provides the most significant
contribution to an antibody’s specificity and diversity, and on
average, nanobodies have a much greater CDR3 length compared
to that of human VH domains, which strengthens their
interactions with target antigens (4) (Figure 1A). Furthermore,
their CDR3 regions can form finger-like projections that enable
high-affinity binding to traditionally inaccessible cavity-like
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TABLE 1 | Advantages of nanobodies vs. current therapies.

Clinical application Improvements

Molecular imaging • High T/B

• Enhanced tumor penetration

• Minimal off-target retention

• Rapid renal clearance

Intrinsic therapeutics • Greater paratope diversity

• Access hidden epitopes

• Can cross BBB

• Low off-target accumulation

• May overcome mAb-associated resistance

Enhancing immune

response

• High degree of modularity

• Decreased immunosuppression

• Enhanced immune activation

• Low off-target accumulation

• Synergy with mAbs

Nanobody-secreting

SCs

• Enhanced tumor penetration

• Synergistic potential of SC-based delivery

Photodynamic therapy • Enhanced tumor penetration

• Rapid renal clearance

• Decreased photosensitivity in patients

Drug delivery • Enhanced drug efficacy

• Increased maximum dose tolerance

• Improved target specificity

• High degree of modularity

Viral vectors • Enhanced vaccine efficacy

• Improved target specificity

Intracellular targeting • Currently not possible with mAbs

• Targets traditionally inaccessible tumor markers

• Various delivery options

T/B, tumor-to-background ratio; BBB, blood brain barrier; mAb, monoclonal antibody;

SCs, stem cells.

epitopes (5). Their CDR1 and CDR2 regions also aid in antigen
binding, which enables greater paratope diversity than that of
mAbs (6).

The inherent properties of nanobodies make them
advantageous for cancer applications (Table 1). Their nanoscale
dimensions enable deep penetration of tumors, with certain
nanobodies able to cross the blood brain barrier (BBB) (7).
Nanobodies also retain high affinity and specificity for their
target antigens, with low off-target accumulation due to their
hydrophilic regions (8). They’re also unexpectedly robust due
to their high refolding capacity, recovering from chemical
denaturation with minimal damage to functionality, although
a recent study suggests that thermal denaturation may be
irreversible (9). Furthermore, they can tolerate high temperatures
(60–80◦C, several weeks at 37◦C), elevated pressures (500–750
MPa), non-physiological pHs (3.0–9.0), and even the strongest
of chemical denaturants (2–3M guanidinium chloride, 6–8M
urea) (10). From a manufacturing standpoint, nanobodies are
simple and inexpensive to produce. Lacking post-translational
modifications, nanobodies can be synthesized through microbial
systems, with the additional benefit of generating homogeneous
products (11).

NANOBODIES IN CANCER IMAGING

Much of the focus in cancer is placed on therapeutics, but
the diagnostics of tumor imaging are just as critical, as visual

TABLE 2 | Current cancer imaging techniques.

Modality Background

X-Rays ◦ Based on density-dependent X-ray absorption

differences

◦ Can be used for bone, lung, and breast cancer

detection

◦ Fast, inexpensive, but lower resolution than CT

CT ◦ 3D reconstruction of X-ray images

◦ Most commonly used technique for detecting abnormal

morphologies, can be combined with PET and SPECT

◦ Fast, high spatial resolution, inexpensive, but

soft-tissue sensitivity is limited by toxicity concerns

PET ◦ Nuclear imaging agent

◦ (e.g., 18F, 68Ga, 89Zr) emits positrons

◦ Superior sensitivity (10−11-10−12 mol/L) and spatial

resolution, but shorter imaging window, expensive

SPECT ◦ Nuclear imaging agent (e.g., 99mTc) emits gamma rays

◦ Cheaper than PET, but lacks spatial, and

temporal resolution

Optical ◦ Molecular probes are tagged with fluorescent dyes

◦ Fast, inexpensive, no radiation, but limited high

penetration range (700–900 nm)

MRI ◦ Utilizes strong magnetic fields

◦ DW MRI can reliably determine aggression of certain

tumors

◦ Very high spatial resolution, no radiation, but low

sensitivity (10−3 − 10−5 mol/L), expensive

Ultrasound ◦ Detects reflected sound waves from tissues

◦ Mainly used for imaging angiogenesis

◦ High spatial and temporal resolution, no radiation,

portable, inexpensive, but limited to

systemic vasculature

Quantum dots* ◦ Fluorescent semiconductor nanocrystals

◦ Adaptable, superior stability, multiplex detection, but

low biocompatibility

CT, computed tomography; PET, positron-emission-tomography; SPECT, single photon

emission computed tomography; nm, nanometer; MRI, magnetic resonance imaging; DW,

diffusion weighted.

*Still in pre-clinical phase.

knowledge of the tumor’s antigen profile is needed to maximize
therapeutic efficacy. A variety of imaging modalities are utilized
in cancer diagnostics, and molecular imaging techniques have
shown potential in improving existing techniques (Table 2).
Molecular imaging utilizes a molecular probe that binds to a
tumor antigen. Molecular imaging has been extensively explored
with mAbs; however, their weak tumor penetration and longer
serum half-life are significant obstacles in creating high-contrast
images. Thus, nanobodies form quite suitable candidates,
ensuring minimal non-target retention to create a high tumor-
to-background ratio (T/B) shortly after administration.

The nuclear techniques of position emission tomography
(PET) and single photon emission computed tomography
(SPECT) comprise the majority of molecular imaging studies
due to their quantitative output, high sensitivity, and clinical
relevance. PET proves superior in sensitivity and spatial
resolution; however, it’s limited by a shorter imaging window and
costly implementation. For tracking, nanobodies are tagged with
a positron-emitting nuclide (e.g., 18F, 68Ga, 89Zr) for PET, and
gamma-emitting nuclides (e.g., 99mTc) are used for SPECT.
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Optical imaging, ultrasound, magnetic resonance imaging
(MRI), and quantum dots have also been studied with
nanobodies. In optical imaging, nanobodies are tagged with
fluorescent dyes, and although the technique has weaker
penetration, it offers the advantages of flexibility, simplicity, cost-
effectiveness, and safety. Ultrasound imaging utilizes reflected
sound waves from tissues, and nanobodies have been tagged
to contrast agents, microbubbles, and nanobubbles. It is also a
comparatively safer technique, but its applications are currently
limited to systemic vasculature (12). MRI is a more expensive
technique that utilizes strong magnetic fields to generate higher
resolution images, and it has been paired with nanobody-
coated superparamagnetic nanoparticles (13), magnetoliposomes
(14), and fluorescent streptavidin (15) for detecting ovarian
tumors. Quantum dots are fluorescent nanocrystals that have
recently demonstrated tumor imaging potential for their
adaptable properties, superior stability, and multiplex detection;
however, their current implementation is limited by their low
biocompatibility. Nanobody-conjugated quantum dots targeting
carcinoembryonic antigen (CEA) (16), epidermal growth factor
receptor vIII (EGFRvIII) (17), and cytotoxic T lymphocyte
antigen-4 (CTLA-4) (18) have achieved enhanced targeting with
minimal toxicity in vivo (17, 18).

Tumor Identification
Currently, the most advanced of nanobody probes target human
epidermal growth factor receptor 2 (HER2) and are in clinical
testing. In 2014, a phase I clinical trial tested a 68Ga-HER2
nanobody that could detect primary and metastatic tumors
without adverse effects (19), leading to a phase II clinical
trial (20). Other studies have assessed carbonic anhydrase
IX (CAIX) and HER2-CAIX targeting for optical imaging
(21). Notably, the HER2-CAIX combination synergistically
enhanced the T/B ratio and could also detect lung metastases
(22). Additionally, 89Zr-HER3 (23), 18F-HER2 (24), and 68Ga-
NOTA-CD20 (25) nanobodies have demonstrated success in
various tumor models. Pant et al. (26) developed a novel
implementation of anti-EGFR-nanobody-dendritic polyglycerols
(dPGs), demonstrating enhanced accumulation in vivo. 99mTc-
EGFR (27), 99mTc-EGFR-cartilage oligomeric matrix protein
(COMP) (28), 99mTc-dipeptidyl-peptidase-like protein 6 (DPP6)
(29), 99mTc-mesothelin (30), and 131I-HER2 (31) nanobodies
nanobody probes have also demonstrated high T/B ratios.
Additionally, anti-EGFR nanobody probes have been utilized
in dual-isotope SPECT (32) and optical imaging (33), with an
enhanced T/B ratio vs. mAb-based probes (32, 33).

Tumor Stroma Visualization
Tumor treatment resistance is often due to its intimate
interactions with the surrounding tumor microenvironment
(TME), an amalgam of extracellular matrix (ECM), angiogenesis,
and infiltrating immune cells. This TME often accelerates
tumor growth while repressing therapeutic efficacy; thus, its
visualization is of paramount importance. Imaging tumor
angiogenesis has been explored through targeting vascular cell
adhesion molecule-1 (VCAM-1), a marker associated with

metastasis and immune evasion, and anti-VCAM-1 nanobody-
microbubbles have been used for ultrasound imaging of
murine carcinomas (12). Nanobody probes targeting immune
checkpoints (ICP) CTLA-4 and programmed death ligand 1 (PD-
L1) (34–38) have been implemented in nuclear imaging with
high T/B ratios (39, 40), and a phase I clinical study of the
99mTc–PD-L1 nanobody was recently completed (35). Notably,
Lecocq et al. (41) developed the first anti-LAG-3 nanobodies
for SPECT/CT imaging, demonstrating potential applications for
detecting tumor-infiltrating immune cells.

Immune Infiltration Monitoring
In addition to visualizing the tumor’s antigen profile, monitoring
its immune infiltration regarding density, cell type, and activation
levels, can be highly prognostic of a patient’s therapeutic
response. For monitoring T cell infiltration and activation, an
anti-ADP-ribosyltransferase-2 (ART-2) nanobody demonstrated
T cell tracking and unexpected therapeutic potential through
ART-2 inhibition (42). A PEGylated 89Zr-CD8+ nanobody could
track T cell response to ICP blockade, suggesting the utilization
of imaged T cell distributions in predicting ICP therapy response
(43). Another study revealed the myeloid compartment’s role
in PD-1 blockade response using PEGylated 89Zr-CD8+and
89Zr-CD11b+ nanobodies (44). Jailkhani et al. (45) developed
a novel anti-EIIIB nanobody (splice variant of fibronectin) that
enhanced detection of tumors, metastasis, and fibroses. The
balance between anti-tumor and pro-tumor macrophages is
another critical component that dictates the TME; thus, their
targeting would be useful in illuminating overall macrophage
polarization. The macrophage mannose receptor (MMR) is
highly expressed in pro-tumor macrophages (46), and 99mTc-
MMR (47), and 18F-MMRnanobodies (48) demonstrated specific
targeting of MMR+ tumor associated macrophages (TAMs), with
the 18F-MMR possessing a 20x lower kidney retention. Notably,
preclinical validation of a 68Ga-NOTA-MMR nanobody had no
observed toxicity, establishing its qualification for a phase I
clinical trial (49). Opposite to MMR, (major histocompatibility
complex class II) MHC-II expression is associated with anti-
tumor macrophages and indicates effective antigen presentation
to CD4+ T cells, with 64Cu-MHC-II (50), and 18F-MHC-II (40)
nanobodies demonstrating good T/B ratios. Nanobody-based
probes have also been designed to target antigen presenting cells
(APCs). De Groeve et al. (51) created 99mTc-labeled nanobodies
DC2.1 and DC1.8, mainly targeting myeloid and bone marrow-
derived dendritic cells, respectively.

NANOBODIES AS A CANCER
THERAPEUTICS

Targeting Tumor Antigens
In 2007, Roovers et al. (52) published the first successful
implementation of therapeutic nanobodies for solid tumors
in vivo. Their anti-EGFR nanobody effectively delayed tumor
growth (52), and they later developed a biparatopic version
that superiorly reduced EGFR activation, with comparable
potency to its mAb counterpart, cetuximab (53). Furthermore,
variations have been developed against EGFR’s dimer interface
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(54), EGFR-tyrosine kinase (55), and notably, nanobodies
targeting EGFR-ectodomains could overcome the therapeutic
resistance associated with mAbs (56). Notably, Rossotti et al.
(57) reported DNA immunization-raised EGFR nanobodies with
improved functionality compared to protein immunization-
raised nanobodies. Nanobodies targeting EGF (58), HER2 (59,
60), CAIX (61), death receptor 5 (DR5) (62, 63), c-Met
(64, 65), HGF (66), AgSK1 (67), mesothelin (68), proteasome
activator complex PA28 (69), ephrin receptor A4 (EphA4) (70),
CEA-cell adhesion molecule-6 (CEACAM6) (71), mitochondrial
translation elongation factor (TUFM) (72), protein C receptor
(73), Wnt receptors (LRP5/6) (74), and CD33 (75) have also
demonstrated delayed tumor growth.

Nanobody-Based Immune Checkpoint
Inhibitors
The inhibition of ICP pathways using mAbs as immune
checkpoint inhibitors (ICIs) created a revolutionary
breakthrough in the field of cancer therapeutics. Currently,
antibodies targeting the molecules PD-1/PD-L1 and CTLA-4
have been FDA approved (76); however, their potency remains
inconsistent, with minimal efficacy in most patients. Thus, the
structural advantages of nanobodies show promise in enhancing
ICIs. Various studies have created nanobody ICIs for PD-L1
(36, 77–81), enhancing anti-tumor efficacy when combined
with its mAb counterpart, avelumab in vivo (36). Anti-CTLA-4
nanobodies have also demonstrated anti-tumor effects (39, 82);
however, Ingram et al. (39) study suggest that an Fc domain may
be needed for clinically-relevant potency. Homayouni et al. (83)
developed the first nanobody targeting T-cell immunoglobulin
and mucin domain 3 (TIM-3), demonstrating anti-proliferative
effects in vitro. CD47 is another ICI target due to its involvement
in both adaptive and innate immunity. However, because CD47 is
also highly expressed in red blood cells, their clinical translation
is stunted due to the high risks of anemia and hemagglutination
(84). Anti-CD47 nanobodies have demonstrated improved
therapeutic efficacy and synergistic potential with other ICIs
(85, 86); furthermore, the fusion of an anti-CD47 nanobody with
an anti-CD20 mAb showed high in vivo potency (87).

Blocking Angiogenesis
Nanobodies have also demonstrated potential in fighting tumor
angiogenesis (Figure 2), a key accelerant of tumor growth and
metastasis. The vascular endothelial growth factor (VEGF) and
its receptors are well-established stimulants and thus ideal targets
for inhibition. Monovalent and bivalent nanobodies blocked
VEGF ligand binding (88, 89) while also inhibiting VEGF-
activated proliferation in vivo (89). Additionally, conjugation
to a proline-alanine-serine (PAS) sequence was reported to
improve in vivo functionality and pharmacokinetics (90). An
anti-VEGF receptor-2 (VEGFR2) nanobody demonstrated in
vitro inhibition of capillary-like formation (91). Furthermore,
nanobodies targeting delta-like ligand 4 (DLL4) (92) and CD3
(93) have demonstrated inhibition of neovascularization and
tumor proliferation in vitro (92) and in vivo (93).

NANOBODIES: SYNERGY WITH OTHER
CANCER THERAPEUTICS

In addition to intrinsically therapeutic behavior, nanobodies can
be utilized to augment the efficacy of other cancer therapies,
especially in targeting the TME (Figure 2).

T Cell Engagers
Antibodies targeting CD3, a receptor found in all T cells, were the
first FDA-approved mAbs for clinical use; however, their initial
systemic toxicity helped launch the development of bi-specific T-
cell engagers (BiTEs). Smaller thanmAbs, BiTEs are composed of
two scFvs (one activates T cells, the other binds tumor antigens),
and nanobody substitution has enabled more compact, enhanced
BiTEs. HER2-scFvCD3 (94) and HER2-EGFR (95) BiTEs have
been developed that can activate T cell-mediated, targeted tumor
lysis both in vitro and in vivo (94, 95). Li et al. (96) created a
BiTE composed of an anti-CEA nanobody and anti-CD3 Fab
(“S-Fab”), with significant T-cell mediated cytotoxicity in vitro
and in vivo. The S-Fab was PEGylated to extend its serum
half-life and reported uncompromised anti-tumor activity (97).
Various advancements have also been made in targeting CD3
(98), and anti-CD3 nanobodies have recently reported a targeted
anti-tumor response in vivo (93, 99).

Similarly, bispecific light T-cell engagers (LiTEs) targeting
EGFR and CD3 have demonstrated T cell-mediated tumor
lysis with minimal cytotoxicity (100). The same group
subsequently created the “ATTACK,” composed of three
anti-EGFR nanobodies and an anti-CD3 scFv, with a 15-fold
higher efficacy than their LiTEs (101). The group also developed
4-1BB-agonistic trimerbodies targeting EGFR (102) and CEA
(103), with minimal off-tumor cytotoxicity in vitro (103) and in
vivo (102).

Nanobody-Based CAR-T Cells
The efficacy of chimeric antigen receptor (CAR) T cells has
been established in blood-based malignancies; however, their
solid tumor implementation has been limited by their inherent
immunogenicity and large size of CARs. Various studies have
demonstrated the efficacy of utilizing MUC-1 (104), CD7 (105),
CD38 (106), VEGFR2 (107), prostate-specific membrane antigen
(PSMA) (108, 109), glypican-2 (GPC2) (110), and T cell receptor
(TCR)-like nanobody-CARs (111) in various tumor models.
Bispecific nanobody-CARs targeting CD20 and HER2 have also
been developed; however, experiments have yet to be performed
in vivo (112). Xie et al. (113) created TME-targeting CAR T
cells binding to PD-L1 or EIIIB, with significant tumor reduction
in vivo and suggested potential in combination therapies.
Additionally, anti-PD-L1/CTLA-4 nanobody-secreting CAR T
cells have demonstrated enhanced anti-tumor response in vivo
and indicate synergistic potential (114).

Targeting Modules (UniCAR)
Studies have also evaluated the integration of nanobodies
and the universal CAR (UniCAR) platform. Rather than
recognizing tumor antigens, the UniCAR is activated by
externally-administered “targeting modules” (TMs), which are
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FIGURE 2 | Nanobodies: targeting the tumor microenvironment. The synergistic potential of utilizing nanobodies to enhance tumor therapies targeting the tumor

microenvironment. TAA, tumor associated antigen; DC, dendritic cell; MMR, mannose macrophage receptor; MHC-II, major histocompatibility complex-II; VEGF,

vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor-2; IFN-γ, interferon- γ; IL-2, Interleukin-2; TNFα, tumor necrosis factor- α;

IL-23, Interleukin-23; GCSFR, granulocyte colony-stimulating factor receptor; BiTE, bispecific T cell engager; CD16, cluster of differentiation-16; NK, natural killer;

TRAIL, tumor necrosis factor- related apoptosis-inducing ligand; TCR, T-cell receptor; Treg, regulatory T cells; CAR, chimeric antigen receptor; UniCAR, universal

CAR; TM, targeting module.

UniCAR-activating epitopes linked to an antibody component
that recognizes the target antigen, creating a “safety switch”
that regulates an otherwise uncontrolled therapy (115). Albert
et al. (116) created a nanobody-based TM that effectively
retargets UniCAR T cells to induce EGFR+ tumor lysis, and they
subsequently developed a bivalent version that could target low
EGFR+ tumors in vivo (117).

γδ T Cell Activators
Gamma-delta (γδ) T cells comprise 0.5–5% of all T-lymphocytes,
and the Vγ9Vδ2 T subset has demonstrated therapeutic potential
in various tumor models. In the context of nanobodies, a BiTE

targeting the EGFR and Vγ9Vδ2 TCR stimulated T-cell mediated
cytotoxicity against EGFR+ tumor cells in vivo (118). Compared
to other anti-CD3-BiTEs, this removed the risk of activating
pro-tumor cells such as regulatory T cells (Tregs), which heavily
predominate the TME.

Natural Killer Cell Activators
Natural killer (NK) cells possess both cytolytic and
immunomodulatory abilities against tumor cells and have
demonstrated clinical efficacy in blood-based malignancies.
However, like T cell-based therapies, their potency remains
stunted in solid tumors, particularly from limited tissue
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penetration and immunosuppression. To address this, studies
have conjugated anti-CD16 nanobodies to nanobodies targeting
CEA (119–122), MUC-1 (123), HER2 (124), or to Fabs targeting
HER2 (125, 126) or GPC3 (127), with potent tumor growth
suppression in vivo.

Dendritic Cell Vaccines
Dendritic cells (DCs) are the most potent of APCs and are
promising targets for cancer vaccines, which build the anti-
tumor response by prematurely delivering tumor antigen-
mAb conjugates to APCs. Utilizing the penetration capacity
and structural simplicity of nanobodies, studies have explored
the implementation of nanobody-based antigen conjugates to
enhance DC-based immunity. Some target DC surface proteins
such as CD11b (128, 129), CD36 (128), and MHC-II (128, 130),
and others have been designed to block ICPs CTLA-4 (131),
and PD-L1 (132) to enhance DC-mediated T cell activation.
Kwon et al. (133) developed a novel anti-MHC-II nanobody
conjugated to cyclotides (cyclic, plant-derived peptides) that also
demonstrated cyclotide-scaffold potential against constrained
epitopes. Antigen delivery can also be achieved through viral
transduction. Adeno-associated viruses (AAVs), adenoviruses
(Ads), and lentiviruses (LVs) have been explored; however,
their main limitation is their broad tropism (134). Thus,
the surface fusion of nanobodies can increase their target
specificity. Nanobody-LVs have shown specific DC transduction
(135) in vitro, but a subsequent study suggested that broad
tropism LVs may be more effective in inducing an anti-tumor
response (136). Furthermore, Crowley et al. (137) developed
nanobody-conjugated peptide vaccines targeting MHC-II for
APC delivery, demonstrating enhanced vaccine-mediated CD8+

T cell activation in vivo.

Viral Vectors
Nanobody-AAVs have shown success in targeting antigens such
as CD38, ARTC2.2, and P2X7, but further in vivo studies
are needed (138). Viral vectors have also shown potential
for targeting tumor vasculature, and Ahani et al. (139)
developed anti-VEGFR2-LVs with comparable targeting to that
of VEGF. Additionally, recombinant lambda (λ) bacteriophages
have reported significant in vitro inhibition of HER2+ cell
proliferation (140).

Cytokine Targeting and Delivery
Despite the preclinical success of cytokine-based therapy, clinical
studies have been met with subpar efficacy due to their
narrow therapeutic window and short half-life. However, the
incorporation of nanobodies could impart a new wave of
improved cytokine therapies. An anti-PD-L1 nanobody fused to
either interleukin-2 (IL-2) or interferon-γ (IFNγ) demonstrated
in vivo efficacy in treatment-resistant pancreatic tumors (141).
Similarly, an anti-CEA nanobody fused to IL-12 demonstrated
amplified immune cell proliferation and antitumor activity in
vivo (142). Furthermore, nanobodies designed to neutralize
TNFα (143), IL-23 (144), granulocyte colony-stimulating factor
receptor (G-CSF-R) (145), and transforming growth factor beta
(TGF-β) (146) have demonstrated success in vitro (145), and

in vivo (143, 144). Nanobodies have also been created to target
chemokines, a class of chemotactic cytokines that directly impact
tumor proliferation, angiogenesis, and metastasis. Nanobodies
blocking protumor chemokines [CXCL10 (147)] or fused to
anti-tumor chemokines [CCL21 (148)] have demonstrated
functionality in microfluidic devices, but have yet to be tested
in vivo. Antagonistic nanobodies for chemokine receptors such
as ChemR23 (149), US28 (150), CCR7 (151), CXCR4 (152–154),
and CXCR7 (154, 155) have also been developed. Smolarek et al.
(156) developed the first nanobody inhibiting the Duffy antigen
receptor for chemokines (DARC), but it has yet to be applied
in tumor models. An anti-L-plastin nanobody was reported to
augment T cell proliferation and IL-2 secretion, but this has also
not been studied in tumors (157).

Immunotoxin and Drug Conjugates
Several studies have explored utilizing nanobodies to deliver
bacterial toxin pseudomonas exotoxin A (PE). PE and its
fragments have been fused to anti-GPC3 (158, 159), anti-GPC2
(110), anti-VEGFR2 (160), anti-CD7 (161, 162), anti-HER2
(163), and anti-CD38 (164) nanobodies, enhancing cytotoxic
effects in various tumor models. Notably, Cao et al. (165)
developed an enhanced anti-HER2-PE toxin that improved
both efficacy and the maximum tolerated dose. β-lactamases
from Enterobacter cloacae also have established anti-tumor
activity, and their enhanced potency after anti-CEA nanobody
conjugation reflects potential in improving directed enzyme
prodrug therapies (166). Massa et al. (167) conjugated anti-CD20
nanobodies to Salmonella bacteria carrying a drug-converting
enzyme, demonstrating significant in vivo efficacy. L-DOS47 is a
recently developed nanobody-urease enzyme conjugate targeting
CEACAM6 (168) and is currently in phase I/II clinical trials. A
similar anti-VEGFR2 nanobody conjugated to DOS-47 has been
developed for angiogenesis inhibition (169). Vlaeminck et al.
(170) developed an anti-MMR nanobody fused to an active form
of second mitochondria-derived activator of caspase (tSMAC)
to target TAMs, reporting upregulated macrophage caspase 3/7
activity in vitro. Fusion of anti-EGFR nanobodies have increased
therapeutic efficacy of platinum prodrugs (171) and cucurmosin
(172), and anti-MHC-II nanobodies fused to the drug DM1 have
also exhibited significant targeting and tumor cytotoxicity (173).

Targeting Moieties for Nanoparticles
Compared to nanobody-drug conjugation, using nanoparticles
(NPs) as drug carriers offers benefits such as enhanced protection,
bioavailability, and decreased immunogenicity, with enhanced
targeting through nanobody conjugation. Wang et al. (174)
created quantum-dot-based, anti-EGFR-nanobody micelles
carrying aminoflavone, showing enhanced tumor regression
in vivo. Additionally, anti-EGFR-nanobody micelles carrying
doxorubicin (175, 176) and anti-EGFR-nanobody liposomes
carrying kinase inhibitors (177) demonstrated enhanced
anti-tumor efficacy in vivo (176, 177). Interestingly, empty
anti-EGFR-nanobody liposomes could also downregulate in
vivo EGFR expression, an effect that anti-EGFR-scFv liposomes
were unable to induce (178). Co-delivery of simvastatin/gefitinib
using anti-PD-L1-nanobody liposomes reversed tyrosine
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kinase inhibitor (TKI) resistance, addressing a major treatment
obstacle in non-small-cell lung cancers (NSCLC) (179).
Anti-CD8-nanobody-gold NPs carrying a TGF-β inhibitor
demonstrated a 40-fold increase in CD8+ T cell uptake in
vivo (180). Polymer-based NPs (181) composed of albumin
(182, 183), and polyethyleneimine-PEG (184) demonstrated
tumor proliferation inhibition. Notably, anti-HER2, saporin-
loaded NPs demonstrated synergistic efficacy when paired with
photochemical internalization (PCI) (185). Other explored
implementations are nanobody-conjugated extracellular vesicles
(186, 187), dendrimers (188), DNA nanoplatforms (189), and
nanogels (190), but further studies are needed to characterize
these modalities.

Tumor Penetrating Peptides
Another approach to improving drug uptake is the use of tumor
penetrating peptides (TPPs), which can increase vasculature
and tissue permeability through activating endocytic pathways
(191). Various studies have conjugated nanobodies to TPPs
to improve specificity and penetration. Anti-EGFR nanobodies
fused to the “iRGD” TPP have demonstrated antitumor activity in
vivo (192–195), while also showing synergy with chemotherapy
drugs (193), T cells (194), silk fibroin nanoparticles (192),
and nanoparticles containing gambogic acid (195). Additionally,
anti-EGFR nanobodies conjugated to a lactoferrin sequence
demonstrated enhanced combinatorial EGFR inhibition (196).

Nanobody-Secreting Stem Cells
Stem cells have demonstrated great potential in cancer
therapeutics due to their inherent tumor tropism and
engineered ability to secrete various therapeutic agents,
creating a customizable system for targeted tumor delivery. Van
de Water et al. (197) developed therapeutic stem cells (SCs) that
secreted either anti-EGFR nanobodies (“ENbs”) or proapoptotic
ENbs conjugated to TNF-related apoptosis-inducing ligand
(TRAIL) for application in GBMs. Notably, the ENb-TRAIL
conjugates could significantly reduce tumor growth and invasion
in vivo across a wide spectrum of GBMs with varying TRAIL
resistances (197).

Nanobodies in α-Particle Radiation
Therapy
Targeted radiotherapy delivers a cytotoxic radionuclide-mAb
conjugate to the tumor site, and α-particles are commonly
used for their high biological efficacy (198). However, their
short half-lives are incompatible with the large size, and slow
tissue clearance of mAbs; thus, nanobodies hold potential
as improved delivery vectors. 225Ac-HER2 (199) and 211At-
HER2 (200) nanobody conjugates enhanced targeting in vivo
and demonstrate the relevance of further exploring nanobody-
delivered α-particle radiation therapy.

Nanobodies in Photodynamic Therapy
Another avenue of nanobody applications is photodynamic
therapy (PDT), which uses a light-activated photosensitizer
(PS) to kill tumor cells. mAbs have been used as conjugates
to better direct the photosensitizing agent to the tumor site;

however, their limitations hinder PDT efficacy and prolong
patient photosensitivity (201), which could be circumvented with
nanobodies. Anti-HER2 nanobodies conjugated to branched
gold NPs could remove HER2+ cells upon 5min of laser
treatment (202), and anti-EGFR (203–205), anti-c-Met (205), and
anti-U28 (206) nanobody-PS conjugates demonstrated targeted
phototoxicity in vitro (203, 205, 206), and in vivo (203).
Additionally, anti-EGFR nanobodies conjugated to a novel RuII

polypyridyl complex reported EGFR-specific targeting (207).

Intracellular Targeting
Currently, most therapies are designed for extracellular markers,
despite the fact that most tumor signaling is controlled
intracellularly (208). Various nanobodies, or “intrabodies,” have
been created for human papillomavirus (HPV) oncoproteins
E6 (209), E7 (210), with E7 intrabody expression in HPV16+

cells significantly delaying their growth (210). Steels et al.
(211) developed intrabodies targeting tumor suppressor p53’s
transactivation domain (TAD) and DNA-binding domain (DBD)
(212). The p53-DBD nanobodies unexpectedly inhibited p53
transactivation (212), demonstrating that p53 mechanisms are
still not fully understood. Additionally, intrabodies developed
against B-cell receptor-associated protein 31 (BAP31), have
demonstrated caspase-dependent tumor apoptosis in vivo (213).

DELIVERY OF NANOBODIES

Most studies have delivered nanobodies intravenously; however,
their small size subjects them to rapid renal clearance,
increasing the load/frequency needed to achieve clinically
relevant efficacy. As it would be both impractical and wasteful
to implement such a treatment regimen, a common approach
has been to modify nanobodies to extend their serum half-life.
PEGylation, fusion to anti-albumin nanobodies or Fc domains,
and multimerization have demonstrated longer serum half-
lives; however, the trade-offs are lower tumor penetration and
additional manufacturing costs. Although not as highly explored,
the utilization of nanobody-secreting carriers could circumvent
such issues by ensuring both continuous and localized delivery.
Notably, “programmable” bacteria that release CD47-targeting
nanobodies in the TME increased tumor regression and
metastatic inhibition in vivo (214). Similarly, Gurbatri et al.
(215) engineered a probiotic system that could release anti-
PD-L1 and anti-CTLA-4 nanobodies intratumorally, and a
single dose reported efficacy comparable to mAbs in vivo, a
potentiated systemic immune response, and synergistic potential
with granulocyte-macrophage CSF (GM-CSF).

For intracellular delivery, nanobodies can also be encoded
within viral vectors to produce intracellular-targeting nanobodies
inside the tumor, but further in vivo studies are needed.
Notably, the bacterial type III protein secretion system (T3SS)
has been utilized to deliver nanobodies into tumor cells.
Essentially a molecular syringe, the nanobodies are injected
into the cytoplasm, and anti-EGFP (216), anti-amylase (217),
and anti-GFP (217) nanobodies have demonstrated successful
delivery in vitro (216, 217), and in vivo (216). Currently, the
unspecific targeting hinders T3SS potential, but this could be
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addressed through conjugating nanobodies to the bacteria’s
surface. For imaging applications, most tumors can be visualized
through intravenous delivery of nanobody-based probes. The
same cannot be said for brain tumors, as the BBB significantly
hinders their uptake. However, a recent study found that intra-
arterial administration of nanobody imaging probes dramatically
enhanced delivery regardless of BBB status (218), suggesting a
potential avenue for circumventing BBB limitations.

NANOBODIES IN CANCER CLINICAL
TRIALS

Relative to the numerous avenues of nanobody applications,
very few clinical trials have been completed for cancer

(Table 3). This could be attributed to their relative infancy
as a cancer therapeutic, heightened by the 2012 clinical
trial of a tetravalent nanobody targeting DR5, which was
terminated due to unanticipated hepatoxicity (NCT01529307).
As mentioned previously, the completed phase I trial for the
68Ga-HER2 PET/CT nanobody spurred an ongoing phase II
trial that will quantify the metastasis in breast carcinoma
patients and assess repeatability (NCT03924466). The same
group is currently recruiting for a phase II trial assessing
68Ga-NOTA-HER2 nanobody uptake in brain metastasis of
breast carcinoma patients (NCT03331601), a phase I/II trial
for 68Ga-NOTA-MMR-VHH2 nanobodies (NCT04168528), and
a feasibility trial for anti-idiotypic nanobodies in multiple
myeloma patients (NCT03956615). An early phase I trial for

TABLE 3 | Nanobodies in cancer clinical trials.

Nanobody Disease Target Clinical trial Phase Status Ref.

68GaNOTA-Anti-HER2

VHH1

Breast carcinoma HER2 I Completed (17)

68GaNOTA-Anti-HER2

VHH1

Metastatic breast carcinoma

Locally advanced breast cancer

HER2 NCT03924466 II Recruiting

68GaNOTA-Anti-HER2

VHH1

Breast neoplasm

Breast carcinoma

Receptor, ErbB-2

HER2 NCT03331601 II Recruiting

99mTc-NM-02 Breast cancer HER2 NCT04040686 I Recruiting

131 I-SGMIB-Anti-HER2

VHH1

Breast cancer

Healthy volunteers

HER2 NCT02683083 I Completed

68GaNOTA-Anti-MMR

VHH2

Malignant solid tumor

Breast cancer

Head and neck cancer

Melanoma (Skin)

MMR NCT04168528 I/IIa Recruiting

99mTc-Anti-PD-L1 Non-small cell lung cancer PD-L1 NCT02978196 I Completed (38)

L-DOS47 +

Doxorubicin

Pancreas cancer CEACAM6 NCT04203641 Ib/II Recruiting

L-DOS47 +

Cisplatin/Vinorelbine

Lung adenocarcinoma NCT03891173 II Recruiting

KN035 +

Trastuzumab/Docetaxel

HER2 + Breast cancer PD-L1 NCT04034823 II Not yet

recruiting

KN035 Advanced/Metastatic solid tumors PD-L1 NCT03248843 I Unknown

KN035 Solid tumors

Hepatocellular carcinoma

PD-L1 NCT03101488 I Unknown

KN044 Advanced solid tumors CTLA-4 NCT04126590 I Recruiting

TC-210T Cells Mesothelioma

Malignant/Pleura/Pleural/Peritoneum

Mesothelioma

Cholangiocarcinoma

Recurrent cholangiocarcinoma

Ovarian cancer

Non-small cell lung cancer

Mesothelin NCT03907852 I/II Recruiting

CD19/CD20 bispecific

CAR T cells

Refractory/Relapsed B-cell lymphoma

stage

CD19/CD20 NCT03881761 I Recruiting

BCMA CAR T cells Refractory/Relapsed myeloma BCMA NCT03664661 I Recruiting

Anti-idiotypic Multiple myeloma Paraproteins NCT03956615 N/A

(Feasibility)

Recruiting

TAS266 Advanced solid tumors DR5 NCT01529307 I Terminated (12)

HER2, human epidermal growth factor receptor-2; MMR, macrophage mannose receptor; PD-L1, programmed death ligand 1; CTLA-4, cytotoxic T lymphocyte antigen-4; CEACAM6,

carcinoembryonic antigen cell adhesion molecule-6; CD19/CD20, cluster of differentiation 19/20; BCMA, B-cell maturation antigen; DR5, death receptor-5.
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TABLE 4 | Obstacles to clinical translation.

Consideration Reason Potential solution

Clinical trial attrition Failure rates of therapeutic candidates generally increase

with each trial phase due to poor translation from

preclinical models.

→ Reduce and refine animal-based models

→ Enhance in vitro and in silico methods

Administration/Dosing The short serum half-life of unmodified Nbs requires

frequent and concentrated IV delivery for therapeutic

applications, which increases the risk of renal toxicity.

→ Extend serum half-life through albumin-tagging, Fc-

domain fusion, PEGylation, multimerization

→ Alternative delivery methods: SCs, viral vectors,

programmable bacteria, intracellular delivery,

intra-arterial delivery (for BBB)

Immunogenicity As Nbs come from camelids, they possess a low risk of

triggering an immune resposne.

→ Humanization of Nbs

→ Developing different idiotypes for a specific Nb

→ Developing “camelized,” fully human HcAbs

(substituted hydrophilic residues into

hydrophobic regions)

Functionalization Modification of Nbs to conjugate other molecules or

build more complex constructs might compromise their

original functionality.

→ Site-selective Nb functionalization

On-Target/On-Tumor cytotoxicity Excessive targeting could cause adverse effects such as

cytokine release syndrome and tumor lysis syndrome.

→ “Safety-switch”/Suicide gene therapy

→ Separating out initial dosing regimen

On-Target/Off-Tumor cytotoxicity Tumor antigen could also be expressed on

non-malignant cells and cause damage to healthy tissue.

→ “Safety-switch”/Suicide gene therapy

→ Bispecific activation

→ Improve imaging of patient’s tumor antigen profile to

determine toxicity threshold

Reaching clinical-grade efficacy Success in preclinical models is not necessarily indicative

of therapeutic efficacy in human patients

→ Improve Nb affinity maturation

→ Improve Nb orientation

→ Enhance ADCC

Quality control Ensure that Nbs are homogenous to avoid variability in

functionality and risk adverse effects

→ Good manufacturing practices for microbial-based

Nb production

Nbs, nanobodies; IV, intravenous; SCs, stem cells; BBB, blood brain barrier; Fc, fragment crystallizable; HcAb, heavy-chain antibodies; ADCC, antibody-dependent cellular cytotoxicity.

evaluating a 99mTc-HER2 nanobody is projected to finish in June
2020 (NCT04040686). Additionally, a completed phase I study
assessing the [131I]-SGMIB-HER2 nanobody demonstrated no
adverse effects after one intravenous dose (NCT02683083). The
third completed clinical trial is an early phase I study of a 99mTc-
PD-L1 nanobody for NSCLC patients (NCT02978196), which
successfully visualized tumor uptake 2 h post-injection (35).

As for therapeutics, phase Ib/II and phase II trials are currently
evaluating the safety and tolerability of L-DOS47 in combination
with doxorubicin (NCT04203641) or vinorelbine/cisplatin
(NCT03891173), respectively. Furthermore, trials testing the
safety and tolerability of PD-L1 (NCT04034823, NCT03248843,
NCT03101488) and CTLA-4 (NCT04126590) inhibitors are
recruiting for breast and metastatic tumor patients. Nanobody-
based immune cell therapies also have clinical trials in the
recruiting phase. A phase I/II trial will assess the overall
response rate to T cells expressing anti-mesothelin nanobodies
fused to the endogenous TCR (NCT03907852). CD19/20
(NCT03881761) and B-cell maturation antigen (BCMA) CAR
T cells (NCT03664661) will also be assessed in patients with
refractory/relapsed B cell lymphoma.

PERSPECTIVES

Nanobodies uniquely possess the combined therapeutic
advantages of mAbs and the targeting potential of nanoscale

delivery. Their compact size enables enhanced tumor penetration
and access to hidden and/or intracellular epitopes, while also
granting high modularity for creating more complex nanobody-
based constructs. Their robustness and manufacturing ease are
favorable for large-scale production, and their superior paratope
diversity allows an extensive arsenal for tumor antigen targeting.
Although nanobodies could be portrayed as a superior version
of mAbs, it is important to consider the implications of their
differences. Nanobodies are subject to rapid renal clearance, and
although this is desirable for imaging purposes, it limits their
therapeutic lifetime and lowers the threshold for inducing renal
toxicity (219), further limited if conjugated to cytotoxic loads.
However, this could be combatted through infusing gelofusine
or lysine (27), inserting charged residues in the nanobodies,
and the aforementioned methods of extending serum half-life.
Additionally, unlike mAbs, nanobodies lack an Fc region, and
thus cannot directly initiate an Fc-mediated immune response.

As nanobodies are not naturally produced in humans,
their therapeutic implementation brings into question their
overall safety (Table 4). Nanobody sequence studies have
revealed high similarity with human VH domains (220), and
combined with their size, structure, and low agglutination,
nanobodies possess low immunogenicity and are appropriate for
human administration. Nonetheless, immunogenicity could be
further minimized through “humanization,” which is generally
accomplished through replacing various surface regions with
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human sequences. However, such replacementsmay compromise
functionality, and more concerningly, humanization may
decrease solubility, negating any immunogenicity-lowering
effects (221). Currently, conflicting clinical results make it
difficult to establish an immunogenic profile (222, 223), which
may best be resolved through the completion of additional
clinical trials.

Nanobody are versatile in that their applications extend
across the full timeline of a cancer patient’s treatment.
Using nanobody-based imaging probes has shown improved
visualization compared to traditional mAb-based probes. On
their own, nanobodies can be utilized as targeted antagonists,
ICIs, angiogenesis inhibitors, and as cytokine neutralizers or
stimulants. Their synergy with existing cancer therapeutics
is reflective of their promising potential to elevate cancer
treatments well outside of their origins in antibody-based
applications. Nanobodies can be conjugated to drugs, cytokines,
NPs, TPPs, photosensitizers, and α-particles for enhanced
delivery. Furthermore, they can augment immune cell-based

therapies, improve viral vector delivery, and be secreted
by engineered stem cells and bacteria. In light of these
various applications, their greatest potential may be found
in intracellular targeting. As evidenced by existing preclinical
studies, the targeting of critical intracellular tumor antigens
may be the next pivotal step to revolutionizing a new wave of
cancer therapeutics.
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