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Abstract: Over 20 years ago, orexin neuropeptides (Orexin-A/hypocretin-1 and Orexin-B/hypocretins-2)
produced from the same precursor in hypothalamus were identified. These two neurotransmitters and
their receptors (OX1R and OX1R), present in the central and peripheral nervous system, play a major
role in wakefulness but also in drug addiction, food consumption, homeostasis, hormone secretion,
reproductive function, lipolysis and blood pressure regulation. With respect to these biological functions,
orexins were involved in various pathologies encompassing narcolepsy, neurodegenerative diseases,
chronic inflammations, metabolic syndrome and cancers. The expression of OX1R in various cancers
including colon, pancreas and prostate cancers associated with its ability to induce a proapoptotic
activity in tumor cells, suggested that the orexins/OX1R system could have a promising therapeutic
role. The present review summarizes the relationship between cancers and orexins/OX1R system as an
emerging target.
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1. Introduction

The identification of orexin, also termed hypocretin, is still young in science history [1].
It was in the late 1990s, when two independent groups identified and characterized these
neuropeptides in mouse hypothalamus [2,3]. Orexins (for more clarity in this text, the
single term “orexin” will be retained) were encoded by the same gene (hcrt) constituted
of two exons producing a unique precursor named prepro-orexin which provided two
peptide isoforms, orexin-A (OxA also termed hypocretin-1) and orexin-B (OxB also termed
hypocretin-2) [4]. The major role of orexins in the central nervous system (CNS) is to
regulate wakefulness [5]. The dysregulation of orexin production in hypothalamus as well
as the loss of orexins neurons leads to narcolepsy associated with cataplexy designated as
narcolepsy type I [5]. [In addition to sleep regulation, orexins control energy homeostasis,
reward seeking, food consumption, drug addiction and motivation [6,7]. Although the
central action of orexins has been widely described, some studies have demonstrated that
orexins also play a physiological role in the peripheral nervous system (6). Orexins are able
to regulate reproductive and neuroendocrine functions, gastrointestinal motility, blood
pressure, metabolism and energy balance. However, few reports have been dedicated to
orexins’ role in the peripheral nervous system, indicating that these peripheral actions
remain relatively controversial [6]. Orexins mediate these biological actions by activating
two orexin receptor subtypes that have been identified as orexin receptor type 1 (OX1R)
and orexin receptor type 2 (OX2R). These two receptors are associated with Gq protein
and belong to the G protein-coupled receptor (GPCR) family [8]. The activation of these
receptors by orexins leads to the production of intracellular Ca2+, involving the activation
of αq, the phospholipase C and inositol triphosphate (IP3) production (Figure 1) [8].

Since the 2000s, it has been shown, in pathological conditions, that OX1R (but not
OX2R) is abnormally expressed in peripheral cancers [9]. This ectopic expression of OX1R
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has been observed in inflammation states, including intestinal bowel diseases (IBD), multi-
ple sclerosis, pancreatitis and also in digestive cancers such as colon, pancreas and liver
cancers [4,10,11] and non-digestive cancers such as prostate cancer [12]. The activation
of this ectopically expressed OX1R induces anti-inflammatory and anti-tumoral effects,
demonstrating its putative therapeutic interest in treatment of these pathologies, in par-
ticular, in cancer [6,13]. A recent report focused on the connection between narcolepsy,
Alzheimer’s and Parkinson’s diseases—where a dysregulation of orexin signaling was
observed—and cancer, suggesting that the modulation of orexin signaling could have a
putative therapeutic role in cancer treatment [14]. In this respect, the present review reports
the anti-tumoral role of the orexins/OX1R system in various cancers.
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2. Orexins and Orexin Receptors

Orexins (OxA and OxB) are encoded by the same mRNA which produced a com-
mon precursor [2]. OxA is a peptide of 33 amino acids that has a pyroglutamyl residue
in the N-terminal position, two disulfide bridges between C6–C12 and C7–C14, and an
amidated C-terminal end (Figure 1) [15]. OxB is a peptide of 28 amino acids that also
has a C-terminal end amidated (Figure 1) [3]. These two peptides are highly conserved
in all mammalians [15]. It should be noted that orexin-like genes are not found in inver-
tebrates [15]. Solution structures of OxA and OxB reveal the presence of two α-helices
between residues S13-G22 and G24-T32 for OxA and residues G6-S18 and H21-T27 for OxB
(Figure 1). These two α-helice domains are linked by a small flexible domain (Figure 1).
Structure–function relationship analyses of OxB revealed that the C-terminal domain N20-
M28 is crucial for the peptide activity [16]. However, the N-terminal moiety of OxB from
residue R1 to G6 is not essential for its activity [16]. As mentioned in the introduction, these
two peptides are able to interact with two receptor subtypes, OX1R and OX2R. OX1R had a
better affinity for OxA than OxB, whereas OX2R had the same affinity for two peptides [8].

Associated with the strong impact of orexins on sleep regulation, inhibition of orexin
receptors represents an important therapeutic option to treat insomnia [17]. In this context,
pharmaceutical industries, but also academic laboratories, have developed various antago-
nists that are able to regulate wake–sleep cycles [18]. Many molecules have been produced
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which were divided into two subclasses: the single orexin-receptor antagonists (SORAs)
including selective OX1R antagonist (SORA1s) and selective OX2R antagonist (SORA2s),
and the dual orexin-receptor antagonists (DORAs). Among these various compounds,
three antagonists termed suvorexant [19], lemborexant [20] and lately daridorexant [21]
were approved by the U.S. Food and Drug Administration (FDA) in insomnia treatment. In
2015, the first X-ray structure of OX2R complexed with one orexin antagonist (suvorexant)
was determined (Figure 1) [22]. One year after, the structure of OX1R associated with
suvorexant has been solved (Figure 1) [23]. As expected, orexin receptors have a simi-
lar structure to the other GPCRs [24], consisting of seven-transmembrane (TM) domains
(Figure 1). It should be noted that the analysis of the structure of orexins receptors com-
plexed with DORA shows that the backbone root-mean-square deviation (r.m.s.d.) between
OX2R and β2AR was close to 2A, indicating a good structural similarity, although a low
sequence homology was observed between these two receptors [22]. Analysis of orexin
receptor structures demonstrated that the suvorexant-binding pocket was accessible to the
extracellular environment [22,23]. Structure–function relationship studies associated with
the 3D modeling structure of OX1R bound to OxB and molecular dynamic simulation have
demonstrated that the mutation into alanine residue of K120, P123, Y124, N318, F340, T341,
H344 and W345 located in the TM2, TM3, TM6 and TM7 reduced the binding affinity of
OxB to OX1R and/or the ability to activate the Ca2+ signaling pathway [16]. Moreover,
L11 and L15 residues belonging to OxB sequence could interact with OX1R extracellular
domains [16]. Recently, the determination of the structure of OX2R associated with OxB
by electron microscopy has suggested the existence of one key residue (Q134) present in
the OX2R orthosteric site, which would be responsible for the activation or inactivation of
the receptor [25].

3. Orexins and Digestive Cancers
3.1. Colon Cancer

Among digestive cancers, colorectal cancer (CRC) represents the third most com-
mon cancer world-wide and the third highest cause of cancer-related mortality, which
is responsible of about 10% of total cancer death [26]. CRC development resulted from
the transformation of normal epithelium to adenoma and then adenocarcinoma. This
transformation was associated with multiple genetic and epigenetic alterations consisting
of chromosomal instability and microsatellite instability that led to damage in tumor sup-
pressor genes such as Apc, Kras, Smad, Cdc, Tp53 . . . [27] which dysregulated important
intracellular signaling pathways. Moreover, epigenetic alterations (CpG methylation, his-
tones acetylation) also caused a gene dysregulation [27]. If surgery was often the first line
of treatment for early-stage cancers, then in more advanced metastatic cancers, chemother-
apy based on fluoropyrimidines such as 5-fluorouracil (5-FU), oxaliplatin and irinotecan
was proposed [28]. It should be noted that recent treatments based on immunotherapy
(anti-PDL-1) and targeted drug therapy can be associated with chemotherapy [29]. Among
genetic/epigenetic remodeling in cancer cells, the aberrant expression or the inhibition of
various proteins’ expression had a direct impact on cancer cells in terms of proliferation,
apoptosis, cell signaling pathways, etc., but also opened the door to the identification of
new targets that may lead to new therapeutic approaches. GPCRs represented a class of
surface proteins whose expression was modulated in cancer cells by underexpression or
overexpression [30]. Moreover, these GPCRs were involved in many important signaling
pathways able to play a role in cancer cell proliferation, metabolism and metastasis [31].
In 2004, we demonstrated that OX1R was ectopically expressed in colon cancer and neu-
roblastoma in which the activation of these receptors by orexins induced an inhibition of
cell growth [9]. The percentage of cells from colon tumors expressing OX1R was about
50 to 100% and was independent of tumor location and Duke’s stage. In contrast, OX1R
was not expressed in normal colonic mucosa [13]. It should be keep in mind that neither
OX2R or orexins were found in colon tumors and normal epithelium. Moreover, OX1R
was also expressed in human hepatic metastasis from CRC, indicating that its expression
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was conserved throughout the epithelial-mesenchymal transition (EMT). OX1R was also
expressed in various human colon cancer cell lines, such as HT-29, LoVo, Caco-2, SW620,
etc. [13]. It is unknown why OX1R is expressed in colon cancer, although our personal data
using methylase/acetylase inhibitors suggest that its expression is dependent on epigenetic
regulation (unpublished data). The OX1R activation by OxA or OxB induced a strong inhi-
bition of cell growth (Figure 2) [13]. In the cell growth resulting from a balance between the
cell proliferation and apoptosis, our group has demonstrated that orexins did not have any
impact on cell proliferation but induced a mitochondrial apoptosis [32]. The deciphering
of the mechanism of action by which orexins induced apoptosis identified a new signaling
pathway, involving immunoreceptor tyrosine-based motifs (ITIM) and the tyrosine-protein
phosphatase non-receptor type 11 (SHP2) (Figure 1). The interaction between orexins
and OX1R in colon cancer cells induced the β/γ subunits dissociation from Gq protein,
leading to phosphorylation by Src kinases of two ITIM sites present in TM2 and TM7 of
the receptor [32,33]. Phosphorylated receptors were able to recruit and activate SHP2,
leading to the activation of p38 mitogen-stress protein kinase via RAS/MAPK signaling
pathways [34]. These activation cascades induced the translocation of the proapoptotic
Bax protein in mitochondria followed by the cytochrome c release involved in apoptosome
formation, which led to the activation of caspases 3 and 7, which caused cell death [32,33].
The presence of functional ITIM site in OX1R sequence was not an exceptional situation in
GPCR family. Indeed, in bradykinin receptor (B2) and somatostatin receptor (sst2), the pres-
ence of ITIM sites associated with SHP2 induced an inhibition of cell proliferation [35,36],
whereas in cholecystokinin B receptor (CCK2), this association led to the activation of the
AKT signaling pathway [37].
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Conventional chemotherapy used in CRC treatment was mainly based on the 5-
fluorouracil (5-FU) molecule either associated or not associated with other pyrimidine
analogs and/or platinated agents [27]. However, the implementation of chemoresistance
mechanisms (primary, before treatment, or secondary, in response to treatment) in CRC
and more broadly in digestive cancers including pancreas cancer, hepatocellular cancer,
gastric cancer and cholangiocarcinoma, severely limits patient remission. In the HT-29
colon cancer cell line that is resistant to 5-FU (HT-29-FU), OX1R was expressed and orexins
induced cell death in these cells, demonstrating that orexin response toward apoptosis was
conserved in drug-resistant cancer cells [13]. In preclinical mouse models, subcutaneous
injection of colon cancer cells from LoVo or HT-29 cell lines led to the development of
tumors. When OxA (or also OxB) was intraperitoneally daily injected, a strong decrease
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in tumor volume was observed [13]. If the OxA treatment was performed on mice with
established xenografted tumors (tumor volume about 150–200 mm3), a rapid and strong
reversion of tumor volume was identified demonstrating that OxA was able to reduce the
established tumors [13]. Histologic analysis of control and OxA-treated tumors indicated
that OX1R was similarly expressed along tumor development, showing that the OX1R
expression was not modulated by OxA treatment. Moreover, large areas of cell apoptosis,
revealed by activated caspase-3 staining, were observed in OxA-treated tumors [13]. In
contrast, xenografts obtained with HCT-116 cells which did not express OX1R were totally
insensitive to the action of OxA revealed by the absence of tumor volume inhibition [13].
Moreover, the tumor development kinetic was similar between HT-29 cells (OX1R+/+) and
HCT-116 cells (OX1R−/−), indicating that: (i) OX1R expression had no impact on tumor
growth in the absence of exogenous orexins; (ii) the presence (or not) of endogenous orexins
had no impact on tumor growth; and (iii) the concentration of circulating orexins is too low
(about 50 pM) to activate OX1R in tumors [38,39].

3.2. Pancreas Cancer

Pancreatic ductal adenocarcinoma (PDAC), which represents over 90% of pancreatic
exocrine cancers, is one of the most lethal cancers, with a 5-year survival rate of about
10% [40,41]. Other rare pancreatic exocrine cancers are adenosquamous carcinoma, squa-
mous cell carcinoma and intraductal papillary mucinous neoplasms (IPMN) including
colloid carcinoma [42]. According to projections, PDAC could represent the second largest
cause of cancer-related deaths in 2030 [43]. The etiology of this cancer was unknown,
whereas non-specific risk factors were invoked such as smoking, age, obesity, chronic in-
flammation, etc. [44]. Genetic alterations characterized by PDAC were Kras mutation (over
90% of tumors were Kras mutated), P16/Cdkn2a, Tp53, Arid1a, Brca1/2, Smad4, hMlh1 and
Msh2 for main mutations [45]. It should be noted that this mutation panel was modulated
in other rare pancreas cancer such as IPMN, where the prevalence of Kras mutation was
found, as well as the prevalence of Gnas mutation, which encoded the αs-subunit belonging
to Gs protein involved in the activation of adenylyl cyclase [45]. The poor prognosis of
PDAC was related to the late stage of diagnosis involving systemic metastasis for over 50%
of patients. About 20% of PDAC can be surgically resectable [42], frequently associated
with neoadjuvant treatment. Unfortunately, the incidence of relapse remained high (over
75%) needing chemotherapy. At this time, first line/second line chemotherapeutic treat-
ment of advanced cancers regrouped two combinatorial regimens differing from country
to country and based on Nab/GEM (Nab-paclitaxel/Gemcitabine) or FOLFIRINOX (folinic
acid, 5-FU, irinotecan and oxaliplatin). However, these treatments were not well tolerated
by patients and the survival gain remained relatively modest [42]. Moreover, chemoresis-
tance resulting from metabolic reprogramming and/or genetic/epigenetic modifications
of tumor and/or stromal cells appeared in PDAC [46]. In this context, identification of new
targets represents an essential challenge. In 2018, it was reported that OX1R was highly
expressed in 96% of 73 tested pancreatic tumors [47]. This expression was not correlated to
patient age, tumor stage, tumor size, tumor differentiation and presence or not of metas-
tasis [47]. OX1R was also expressed in precancerous lesions named intraductal papillary
mucinous neoplasms (PanIN) with a gradient from low to high, dependent on PanIN grade
(PanIN-1 to PanIN-3, respectively). OX1R was not expressed in normal exocrine tissue
and OX2R was not expressed in pancreatic normal and tumoral tissues [47]. Moreover,
OX1R was expressed in AsPC-1 cell line, which was obtained from nude mouse xenografts
initiated with cells from ascites of a 62-year-old patient with PDAC [48]. Activation of
OX1R by OxA in AsPC-1 cells induced a drastic inhibition of cell growth resulting in
mitochondrial apoptosis, as previously described in colon cancer [13,47]. In preclinical
mouse models, OxA reduced the tumor growth in nude mice subcutaneously injected with
AsPC-1 cells [47]. Similarly, if isolated cells from a PDAC patient named patient-derived
xenograft (PDX) were subcutaneously injected to nude mice, intraperitoneal (ip) injection
of OxA also induced an inhibition of tumor growth (Figure 2). Furthermore, OxA treatment
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started 15–20 days after tumor development of AsPC-1 or PDX cells xenografted in nude
mice; a strong and rapid decrease in established tumor volume was observed [47]. As
mentioned in the introduction chapter, a lot of OxA antagonists have been developed for
the insomnia treatment. Surprisingly, almorexant and also suvorexant were able to inhibit
the AsPC-1 cell growth by induction of mitochondrial apoptosis [47]. In the same manner,
ip injection of almorexant induced an inhibition of tumor growth in preclinical models
(Figure 2). Taking these observations into account, almorexant and suvorexant, which
displayed antagonist properties towards the Ca2+ signaling pathway, were full agonists
able to activate the SHP2-dependant apoptosis signaling pathway in cancer cells [47]. The
ability of these ligands to discriminate some signaling pathways were defined as biased
ligands [49]. The molecular explanation related to the ability of these antagonists to activate
the ITIM/SHP2 signaling pathway in various cancers is currently unknown. However, the
recent determination of the structure of orexin receptor X-rays, associated with structure–
function relationship studies (see above) should ensure that the role of some OX1R binding
site amino acid residues in this activation is understood. It should be noted that activation
of the ITIM/SHP2 signaling pathway was dependent on β/γ subunits of Gq protein and
independent of αq subunit [4].

3.3. Gastric Cancer

One group showed that OX1R was expressed in GBC-823 gastric cancer cells line.
The activation of OX1R expressed in GBC-823 cells induced an inhibition of apoptosis via
the AKT signaling pathway [50]. These observations indicated that the Orexins/OX1R
system could have a different behavior related to cancer type (Figure 2). Nevertheless, it is
important to note that GBC-823 and SGC-7901 cell lines were problematic because this cell
line was contaminated by HeLa cells [51,52], making these observations unreliable.

4. Orexins and Other Cancers
4.1. Prostate Cancer

Prostate cancer (PC) represents the second most commonly diagnosed cancer among
men worldwide [53]. Despite the development of various therapies which are excellent for
patients with localized tumors, patients with metastatic advanced prostate cancer have a
5-year survival rate of about 30% [54]. The etiology of PC was elusive but was associated
with risk factors including age, ethnicity (higher risk for African-American and Caribbean
men), geography (less frequent in Asia, Africa and Central and South America) and family
history, and, with less clear effects, diet, smoking, obesity, prostate inflammation and
chemical exposure [54]. Genetic alterations found in PC were divided into two groups;
inherited gene mutations, encompassing Brca 1/2, Hoxb13, Atm, Atr, Nbs1, Chek2, Palpb2 and
Rad51d, and acquired gene alterations, leading to androgen receptor amplification, Pten
deletions, PI3K/Akt/mTOR pathway alterations, Tp53 mutations, and Tmprss2-erg gene
fusions [55,56]. For localized non-metastatic cancers, an active surveillance or local ablation
by surgery or radiotherapy were planned [54]. For advanced metastatic cancer, androgens
stimulating the tumor development, the first line of treatment consisted of androgen de-
privation therapy (ADT), induced by LHRH analogs [57], inhibitor of androgenic steroids
synthesis, androgen receptor signaling inhibitors (ASRIs). However, in some patients,
a resistance even to low testosterone levels develops, which induces the establishment
of castration-resistant prostate cancer (CRPC), which is either associated with metastasis
(mCRPC) or not [54]. For CRPC or mCRPC, the treatment with chemotherapeutic agents
such as dodetaxel or cabazitaxel, associated with abiraterone or other inhibitors of steroid
synthesis, as well as radium-223 in the case of bone metastasis was proposed [58]. More
recently, the development of new therapeutic approaches, including a new generation
of androgen antagonists that have a greater affinity and no agonist activity for receptors,
such as poly ADP-ribose polymerase (PARP) inhibitors, radiopharmaceutical agents as
radium-223 or more recently lutetium-177, which allows systemic delivery of radiother-
apy and immunotherapy agents as immune checkpoint inhibitors as PD-1 inhibitor offer
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promising therapies in CRPC [54,59,60]. Among potential targets in the PC treatment, some
GPCRs were involved in the progression and development of PC [61]. These receptors
associated with their ligands promoted migration, proliferation, neuroendocrine differ-
entiation, mitogenic signaling and invasion of PC [61]. Some small molecules have been
tested to block these GPCRs as antagonists of gonadotropin-releasing hormone receptor
(GnRH), named degarelix or endothelin A receptor antagonist under clinical trial [54,62].
Inversely, few GPCRs and their ligands were able to inhibit growth of prostate cancer cells.
In high-grade advanced cancer (CaP), OX1R, but not OX2R, was highly expressed, but at a
lower expression in low-grade prostate cancers [12]. In contrast, OX1R was not expressed
in benign prostatic hyperplasia [12]. Preproorexin and OxA expressions were found in
“fiber-like” stroma of prostate cancer tissues. OxA was expressed in follicular exocrine
epithelium; however, large areas of normal prostate epithelium did not express OxA [63].
It should be noted that OxA was never detected in tumoral tissue, suggesting that OX1R
present in tumoral tissue was not activated by endogenous OxA [12]. OX1R was expressed
in prostate cancer cell line DU-145 corresponding to androgen-unresponsive cells and also
in androgen-responsive cell line LNCaP [12,64]. The activation of OX1R by OxA inhibited
the cell growth in these two cell lines [12,64]. In preclinical mouse model obtained by
subcutaneous xenografts of DU-145 cells, ip injection of OxA induced a reduction in tumor
volume (Figure 2) [65].

4.2. Other Cancers

The interaction of OX1R and OX2R with OxA and OxB activated the intracellular
Ca2+ release through the Gq protein and its αq subunit [6]. Moreover, this interaction also
induced the SHP2-dependant mitochondrial apoptosis in cancer cells [33]. However, some
groups have identified that the orexins/OXR system was able to activate other signaling
pathways (Figure 1), encompassing MAPK-Erk1/2, Pi3K-Akt, adenylyl cyclase/cAMP
and JNK [66]. These “alternative” signaling pathways promoted by orexins could also
play a role in cancer [67]. Furthermore, orexin’s actions and the expression of the orexin
receptor in various cancers were weakly studied, in relation with the poor availability
of molecular tools, in particular antibodies directed against receptors or orexins, which
were not always specific. Nonetheless, OX1R was expressed in the neuroblastoma cell
line, SK-N-MC, and its activation by orexins induced SHP2-dependant apoptosis [9].
However, OX2R was expressed in endometrial carcinomas [68], cortical adenomas [69] and
pheochromocytomas [70,71] (Figure 2).

5. Conclusions

A link between various cerebral disorders (narcolepsy, Alzheimer’s disease and Parkin-
son’s disease in which the orexins/OX receptors system was deregulated) and cancers had
been suggested [14,71]. The presence of OX1R at the cell surface of various cancers com-
bined to pro-apoptotic actions of orexins in cancer cells could represent a new therapeutic
target in the fight against cancer [72]. The development of new molecules including small
molecules and/or synthetic antibodies will depict a new challenge for the future decade.
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