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A B S T R A C T   

Non-invasive respiratory support (NRS) outside of the ICU has played an important role in the management of COVID-19 pneumonia. There is little data to guide 
selection of NRS modality. We present outcomes of NRS outside the ICU and discuss the effects of NRS on gas exchange with implications for management.   

1. Introduction 

The SARS-CoV-2 pandemic has resulted in unprecedented demand 
on intensive care units (ICUs) [1]. Patients with COVID-19 related acute 
hypoxemic respiratory failure (AHRF) are frequently managed outside 
ICU [2], which data suggests is safe and may be necessary to conserve 
critical resources [3]. Use of non-invasive respiratory support (NRS) 
including high flow nasal cannulae (HFNC) and positive end-expiratory 
pressure (PEEP) may support oxygenation and avoid invasive mechan
ical ventilation (IMV) [4], allowing time for recovery. Selection of 
optimal modality remains unclear, with a need for reliable non-invasive 
bedside monitoring to recognise treatment failure and avoid delayed 
intubation. 

In mechanically ventilated patients disease-course and effects on 
respiratory dynamics and gas exchange have been well described [5]. 
Comparatively little data is available for self-ventilating patients outside 
the ICU. Anecdotal observation of highly variable change in ratio of 
partial pressure of arterial oxygen (PaO2) to fraction of inspired oxygen 

(FiO2) (P:F) following initiation of continuous positive airway pressure 
(CPAP), led us to suspect that a subgroup may respond better via known 
physiological effects of PEEP. 

We hypothesised that analysis of gas exchange abnormalities prior 
to- and post-initiation of NRS (5 and 6 on the WHO Clinical Progression 
Scale respectively) could characterise a phenotype more likely to 
respond to greater PEEP afforded by CPAP. Our aims were to guide se
lection of optimal respiratory support modality and parameters for 
monitoring treatment outside the ICU. 

2. Methods 

We performed a longitudinal observational cohort study of consec
utive patients admitted to 6 centres in Ireland in March and April 2020 
with COVID-19 (confirmed by nasopharyngeal polymerase chain reac
tion for SARS-CoV-2) and a radiographic diagnosis of pneumonia 
causing AHRF (>4L/min oxygen to maintain peripheral O2 saturation 
(SpO2) above 92%). The study was approved by the National Research 

* Corresponding author. 31 St Joseph’s Square, Dublin, Ireland. 
E-mail address: Ciaragough007@gmail.com (C. Gough).   

1 CG and MC share joint first authorship. TM and RWC share joint senior authorship. 

Contents lists available at ScienceDirect 

Respiratory Medicine 

journal homepage: www.elsevier.com/locate/rmed 

https://doi.org/10.1016/j.rmed.2021.106481 
Received 22 February 2021; Received in revised form 20 May 2021; Accepted 21 May 2021   

mailto:Ciaragough007@gmail.com
www.sciencedirect.com/science/journal/09546111
https://www.elsevier.com/locate/rmed
https://doi.org/10.1016/j.rmed.2021.106481
https://doi.org/10.1016/j.rmed.2021.106481
https://doi.org/10.1016/j.rmed.2021.106481
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rmed.2021.106481&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Respiratory Medicine 185 (2021) 106481

2

Ethics Board (ref 20-NREC-COV-001) and consent waived. CPAP was 
administered via face mask with minimum PEEP of 10cmH2O. Flow rate 
for HFNC was capped at 30L/min, limiting PEEP to <3cmH20. Data from 
first presentation to time of death, intubation or recovery was collected. 
We calculated P:F and SpO2:FiO2 (S:F) prior to initiation of CPAP or 
HFNC and within 24hrs. 

3. Results 

169 patients were included, with useable data in 164 (Table 1). 
33.5% (55/164) had a do not resuscitate order (DNR), established at 
admission. 71.3% (117/164) received NRS, of whom 72.6% (85/117) 
received CPAP. Overall 45.9% (50/109) of individuals without DNR 
received IMV. Rates were similar across treatment groups (47.5%, 
44.4% and 43.8% for CPAP, HFNC and COT respectively). There was no 
difference in time to intubation (median days (IQR) 2 (1–3.75) for CPAP, 
3 (1-4) for HFNC and 1 (0–2.5) for COT, p = 0.29, Kruskall-Wallis) or 
number of days on IMV (data available for 35/50, median days 7 
(3.5–10) for CPAP, 7 (2-20) for HFNC, 9 (7-11) for COT, p = 0.3). 
Mortality in those with a DNR order was 56.4% (31/55) and was similar 

across groups (57.7% for CPAP, 50% for HFNC, 60% for COT). 
Change in P:F ratio (ΔP:F) after transitioning between respiratory 

support modalities are demonstrated in Fig. 1. Transitioning from COT 
to CPAP was associated with ΔP:F of +79.4 mmHg ( ±15.7, P < 0.0001, 
Wilcoxon matched-pairs signed rank test). Changes in PaCO2 were 
minimal (mean 36.8 ± 1.3 mmHg on COT/HFNC and 38 ± 1 mmHg after 
commencing CPAP). 17 of 49 patients initially treated with HFNC 
received ‘rescue’ CPAP, but this was not associated with significant 
change in P:F (mean + 29.4 ± 30.5 mmHg, P = 0.36). 10 (59%) of these 
individuals were subsequently intubated and two died. 

For the non-DNR group ΔP:F within 24hrs of commencing CPAP or 
HFNC was compared according to subsequent requirement for IMV 
(Fig. 1B), and did not differ significantly. Greater improvement in P:F 
after initiation of CPAP did not correlate significantly with BMI, age, 
duration since symptom onset or biomarkers. Nadir P:F was correlated 
with IMV, with 59.3% of patients with P:F ≤ 150 mmHg subsequently 
intubated, compared to 15.3% with P:F nadir >150 mmHg (unadjusted 
risk ratio 8.06, 95% CI 3.88–16.78). The relationship of S:F to P:F was 
described by the equation SF = 1.167*P:F + 47.99 (p < 0.0001, R2 0.76, 
Fig. 2A). An S:F cut-off of 225 had 88% sensitivity and specificity of 92% 
to determine P:F < 150 mmHg (area under the ROC curve 0.9476, 
Fig. 2B). 

4. Discussion 

Effects of CPAP include lung recruitment, preservation of pulmonary 
surfactant and redistribution of perfusion [6], whereas loss of surfactant, 
atelectasis and worsening V:Q mismatch/shunt have been implicated in 
COVID-19 AHRF [7]. WHO COVID-19 guidelines recommend CPAP in 
‘selected patients’, however selection criteria are not defined [8]. RCT 
data suggest that non-invasive PEEP may reduce risk of IMV [9]. Though 
unlikely to modify the disease course, this may allow time for recovery 
to occur and aid resource allocation. 

Increased BMI is associated with worse outcomes in COVID-19 and 
with increased lung atelectasis [10]. Contrary to our original hypothesis, 
elevated BMI was not associated with augmented response to PEEP/C
PAP in our study. We did not identify a distinct ‘PEEP/CPAP responder’ 
phenotype and initial improvement in gas exchange was not associated 
with overall improved outcome. S:F correlated well with P:F ratio and 
offers a non-invasive method of assessing treatment response. S:F ratio 
<225 predicted P:F < 150 mmHg, which was associated with increased 
risk of intubation and may serve as a useful benchmark. Rates of IMV 
were similar across oxygen delivery groups but comparison is precluded 
by differences in disease severity. We did not observe increased duration 
of mechanical ventilation in patients intubated following treatment with 
CPAP. 

Limitations of this study include its observational nature and lack of 
data on pharmacological treatment. Our study illustrates the effect of 
NRS on indices of gas exchange in COVID-19 AHRF. We believe that a 
trial of CPAP in those with more severe degree of shunt with careful 
bedside assessment of response is reasonable, albeit recognising that 
improvement in oxygenation within the first 24 h is not necessarily 
reassuring. S:F can be used in lieu of P:F, with a threshold of 225 
prompting more intensive monitoring or escalation. Logistical and pa
tient factors should be considered when starting NRS outside ICU, with 
bedside assessment of respiratory rate, pulse oximetry and work of 
breathing prioritised over routine arterial blood gas sampling. 
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Table 1 
Demographics, admission respiratory parameters and biomarkers for the entire 
group and according to oxygen delivery modality. Kruskal-Wallis test for 
continuous and Chi-square test for categorical variables. IQR, interquartile 
range. Cardiac disease includes heart failure and ischaemic heart disease. Res
piratory disease includes COPD, asthma or interstitial lung disease.   

Total n =
164 

Any CPAP n 
= 85 

HFNC only n 
= 32 

COT only n 
= 47 

Demographics 
and 
Comorbidities  

Age, median 
(IQR), yrs 

61.5 (50-74) 61 (51-73) 73 (56-93) 62 (48-75) 

Male, % 50.9 43.4 51.6 60.9 
BMI, median 

(IQR) 
30 (27-35) 29.7 (27-34) 28.7 (25-35) 31.4 (23-38) 

Rockwood 
Clinical Frailty 
Score, median 
(IQR) 

3 (2-5) 3 (2-4) 4 (2-5) 3.5 (2-6) 

Respiratory 
Disease, n (%) 

47/134 
(35.1) 

23/73 
(31.5) 

8/22 (36.4) 16/39 (41) 

Cardiac Disease, 
n (%) 

40/134 
(29.9) 

21/73 
(28.8) 

5/22 (22.8) 14/39 
(35.9) 

Hypertension, n 
(%) 

70/134 
(52.2) 

38/73 
(52.1) 

12/22 (54.5) 20/39 
(51.3) 

Diabetes, n (%) 27/134 
(20.1) 

10/73 
(13.7) 

5/22 (22.7) 12/39 
(30.8) 

DNR order, n (%) 55 (33.5) 26 (30.6) 14 (43.8) 15 (29.8) 

Admission Respiratory Parameters 

Respiratory Rate, 
median (IQR) 

24 (20-28) 24 (20-30) 22 (20-25) 22 (20-25) 

PaO2, median 
(IQR), mmHg 

60 
(53.5–71.3) 

60* 
(52.3–70.7) 

63.8 
(55.9–80.9) 

66.8 
(56.6–77.3) 

PaCO2, median 
(IQR), mmHg 

36 
(31.5–37.5) 

33.4 
(30.4–37.8) 

34.4 
(29.5–44.6) 

32.8 
(29.3–37.1) 

Initial P:F ratio, 
median (IQR) 

207 
(197.3–264) 

191.3 
(108–242.3) 

183 
(82.5–275.3) 

286.5 
(225–351.8) 

Initial ROX score, 
median (IQR) 

12.1 
(8–16.3) 

10.5 (7-14) 13.0 
(10.2–17.4) 

14.7 
(10.5–18.3) 

Admission Biomarkers 

CRP, median 
(IQR), mg/L 

143 (66- 
247) 

147 (78- 
238) 

193 (84-270) 114 (45- 
252) 

Ferritin, median 
(IQR), ng/mL 

1044 (555- 
2026) 

1130 (644- 
2074) 

927 (534- 
927) 

1032 (500- 
2023) 

Dimer, median 
(IQR), mg/L 

1.03 
(0.65–2.03) 

1.02 
(0.65–1.78) 

1.56 
(0.67–4.68) 

1.09 
(0.62–1.93) 

Lymphocytes, 
median (IQR), 
109/L 

0.795 
(0.55–1.22) 

0.79 
(0.54–1.16) 

0.8 
(0.5–1.37) 

0.76 
(0.55–1.5)  
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