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A B S T R A C T   

Lidocaine is an amide-class local anesthetic used clinically to inhibit pain sensations. Systemic administration of 
lidocaine has antinociceptive, antiarrhythmic, anti-inflammatory, and antithrombotic effects. Lidocaine exerts 
these effects under both acute and chronic pain conditions and acute respiratory distress syndrome through 
mechanisms that can be independent of its primary mechanism of action, sodium channel inhibition. Here we 
review the pathophysiological underpinnings of lidocaine’s role as an anti-nociceptive, anti-inflammatory 
mediated by toll-like receptor (TLR) and nuclear factor kappa-β (NF-kβ) signalling pathways and downstream 
cytokine effectors high mobility group box 1 (HMGB1) and tumour necrosis factor-α (TNF-α).   

1. Introduction 

Post-surgery inflammation is characterized by increased blood flow 
and vascular permeability, the upregulation of inflammatory mediators, 
and leukocyte accumulation [1]. Cytokines are key modulators of 
inflammation and can play both pro- and anti-inflammatory roles. A 
dynamic balance exists between pro- and anti-inflammatory cytokines 
that affects organ dysfunction, immunity, infection, wound healing, and 
pain – all of which are associated with surgery [1,2]. Surgical injury 
induces endogenous mediators and activates hemodynamic, metabolic, 
and immune responses [1]. This immune response initiates immediately 
after a surgical injury. Polymorphonuclear leukocytes (PMNs), endo-
thelial cells, macrophages, and lymphocytes are activated by the 
secretion of pro-inflammatory mediators including cytokines, chemo-
kines, and other molecules including but not limited to reactive oxygen 
species, nitric oxide, and platelet-activating factor [3]. While essential, 
when unchecked, excessive inflammation can disrupt the body’s im-
mune system, potentially leading to certain inflammation-related con-
ditions and even organ failure [4,5]. 

Lidocaine was first synthesized by Nils Lofgren in 1935 in the in the 
Stockholm laboratory of Professor Hans von Euler where Lofgren began 
tasting the compounds he and his colleagues had synthesized [6]. In 

1943, Lofgren found that the 57th compound he tested rapidly numbed 
his tongue. The patent for Xylocaine® was approved in Sweden on May 
11, 1948, based on Goldberg’s (toxicology) and Gordh’s (clinical results) 
papers suggesting that lidocaine had a strong and unexpected anesthetic 
effect. The Food and Drug Administration approved Xylocaine® for 
usage in the United States in November 1948 [6,7]. Torsten Gordh’s 
clinical testing revealed that lidocaine represented a significant 
improvement over procaine, the gold standard for managing surgical 
pain at the time [8,9]. This amide-class anesthetic is still used widely to 
ease the pain associated with surgery, provide neuropathic pain relief, 
and treat ventricular arrhythmias [10,11]. 

In addition to its use as a local anesthetic and anti-arrhythmic agent, 
lidocaine has analgesic properties for various pain conditions. The 
nociceptive antagonist effects of intravenous lidocaine have been well 
established in a variety of acute and chronic pain conditions [7,12]. 
Moreover, preclinical and clinical data evidence the antihyperalgesic 
effects of parenteral lidocaine [7]. The recommended initial dose is 1–2 
mg/kg administered intravenously followed by a continuous infusion of 
2–4 mg/kg/h, resulting in steady plasma concentrations of 1–3 mg/ml 
[7,13]. 

The mechanism of action of lidocaine as a local anesthetic is through 
a blockade of voltage-gated sodium channels (VGSCs) leading to a 
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reversible block of action potential propagation [7]. Lidocaine affects 
inflammatory cells in vitro, for example by inhibiting the priming of 
human peripheral PMNCs and neutrophils [7,14]. Lidocaine can further 
reduce the release of pro-inflammatory mediators such as IL-4, IL-6, and 
tumour necrosis factor-alpha (TNF-α) [7]. 

It is well established in the literature that lidocaine exerts its anti- 
inflammatory effects by inhibiting the expression of pro-inflammatory 
cytokines, the metabolic activity of leukocytes, and the release of his-
tamine [10,15]. The effects of lidocaine are achieved by preventing 
NF-kβ activation and its downstream cytokine storm [16]. Specifically, 
lidocaine significantly reduces TNF-α levels relative to vehicle-treated 
controls [17]. Therefore, lidocaine’s anti-inflammatory mechanism of 
action at the level of receptor engagement and pro-inflammatory cyto-
kine release in the context of post-surgical injury is the entry point for 
the present review. 

2. Systemic effect of lidocaine in molecular biology 

Lidocaine is an amide class of local anesthetics used in medicine to 
inhibit pain sensations [17,18]. It consists of lipophilic and hydrophilic 
subunits connected by hydrocarbon chains. The hydrophilic portion is 
composed of tertiary amines (e.g., diethylamine) while the lipophilic 
portion is composed of unsaturated aromatic rings [e.g., 
para-aminobenzoic acid (PABA)] [19,20]. Based on this structure, these 
local anesthetics can be classified into amino-esters and amino-amides. 
The lipophilic portion determines the anesthetic activity of the local 
anesthetic drug [9]. Local anesthetics act on sodium ion channels to 
reduce the permeability of cell membranes, thereby blocking depolari-
zation and preventing the conduction of the electrical impulse through 
which pain occurs [21]. 

Chemically, lidocaine [2- (diethylamino) -N- (2,6-dimethylphenyl) 
acetamide] contains three basic components: hydrophilic amine groups, 
aromatic residues, and intermediary groups that connect these two 
(Fig. 1) [22,23]. The amine group is a tertiary or secondary amine, be-
tween an aromatic residue group and an intermediate group connected 
by an amide bond. Lidocaine is a weak alkaline with pKa of 8, protein 
binding of 64%, and fat solubility of 1%. Lidocaine remains the drug of 
choice for a variety of medical procedures due to its strong anesthetic 
potential, fast onset of action, and wide safety limits [24,25]. Moreover, 
lidocaine can be administered via many routes, including topical (i.e., 
skin and airway), subcutaneous, intravenous, perineural, epidural, and 
intrathecal [22,26,27]. After intravenous administration, peak plasma 
levels are achieved within 3–5 min with a half-life of 30–120 min [28]. 

In the liver, lidocaine is dealkylated by dual-function oxidizing en-
zymes to the pharmacologically active metabolite, mono-
ethylglycinexylidide (MEGX) and then metabolized by the P450 3A4 
isoenzyme into N-ethylglycine (NEG) and glycinexylidide (GX). MEGX is 
80% as potent as the parent drug, whilst GX is nearly ineffective [29]. 

In clinical practice, lidocaine is also used as a class IB antiarrhythmic 

drug (sodium channel blocker). Sodium channels have three basic states: 
(1) resting (phase 1), while they await the arrival of an action potential; 
(2) open/active (phase 0), during which the channel is activated and 
conducts a sodium current; and (3) inactivated/refractory (phase 2), 
after the channel has conducted a sodium current but has not yet 
returned to its resting state. During this refractory period, the sodium 
channel cannot yet be activated again. Lidocaine occupies receptors on 
the sodium channel in its open/active (phase 0) and inactivated/re-
fractory (phase 2) states, which lidocaine has a high affinity for its re-
ceptors during both phases [30]. 

Lidocaine’s effects on the central nervous system include inhibiting 
nicotinic and acetylcholine receptors, inhibiting presynaptic calcium 
channels in the dorsal root ganglion, inhibiting opioid receptors, 
inhibiting of neurite growth, inhibiting muscarinic cholinergic re-
ceptors, and preventing substance P from binding to natural killer (NK) 
cell receptors [7,31,32]. 

The anti-inflammatory effect of lidocaine occurs at lower concen-
trations than required to block sodium channels [33,34]. The effect of 
lidocaine on inflammation, particularly against inflammatory poly-
morphonuclear granulocytes (PMNs), macrophages, and monocytes is 
not due to blocked sodium channels [35,36]. 

Priming can be described as a process that gives a resting neutrophil 
a functional response that can be greatly amplified upon exposure to 
another stimulus [37,38]. The second stimulus is usually considered an 
activating agent or agonist. The enhanced functional response keeps the 
neutrophils in an active state. Thus, full neutrophil activation is a 
two-step process, starting with initial exposure to primary agents such as 
cytokines (e.g., IL-1α, GM-CSF, and TNF-α) and antigens (e.g., patho-
genic endotoxin). Priming and activation change neutrophils from a 
resting state to an active state, thus enabling them to perform antibac-
terial, pro- and anti-inflammatory functions [39]. PMN priming regu-
lates the function of PMNs and is implicated in cases of excessive 
inflammatory responses that cause tissue damage [39,40]. Some po-
tential mechanisms include local anesthetics inhibiting G-pro-
tein-coupled receptors (GPCRs) signals that mediate inflammatory 
responses such as lysophospathic acid and thromboxane A2 as well as 
the M1 muscarinic acetylcholine receptor. GPCRs consist of muscarinic 
acetylcholine receptors M1-M5, which regulate several functions of the 
nervous system (Fig. 2) [23]. Furthermore, M1 and M4 receptors are the 
treatment sites for several central nervous system disorders such as 
Alzheimer’s disease, schizophrenia, and drug addiction [23,41]. 

3. Lidocaine as an anti inflammatory 

Lidocaine is a potent anti-inflammatory agent, whose properties are 
often compared with steroids and non-steroidal anti-inflammatory drugs 
(NSAIDs) [42]. The definite anti-inflammatory mechanism of lidocaine 
remains vague; however, it is presumed that the drug affects a multitude 
of inflammatory processes such as phagocytosis, migration, exocytosis, 
and cellular metabolism. In vitro experiments on human poly-
morphonuclear granulocytes suggest that lidocaine the membrane-ion 
transporters, thereby, dysregulating cellular pH levels and eventually 
depressing cytokine release [43]. 

There is still no universal reference dose for lidocaine administration 
as an anti-inflammatory agent. Ortiz et al. conducted a double-blind, 
randomized trial studying the effect of endovenous lidocaine on serum 
inflammatory cytokine levels using bolus lidocaine of 1.5 mg/kg at the 
start of the procedure with a maintenance dose of 3 mg/kg/h until 1 h 
after the end of the surgery [44]. A significant reduction in serum levels 
of pro-inflammatory markers (IL-1, IL-6, TNF-α, and IFN-γ) was 
observed in the IV lidocaine group in comparison with a control group 
[44,45]. In this same study, there were no statistically significant dif-
ferences regarding the postoperative pain intensity, morphine con-
sumption, ileus, and hospital stay compared with the control group, 
meaning there were no proven secondary effects at this dose [44]. 

Multiple, complex mechanisms likely underlie lidocaine’s anti- Fig. 1. Chemical structure of lidocaine [21].  
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inflammatory effects in a synergy that involves numerous pathways, 
receptors, cells, and mediators. More specifically, the modulation of 
high mobility group box 1 (HMGB1), toll-like receptor (TLR), nuclear 
factor kappa-β (NF-kβ), and TNF-α have been implicated in previous 
studies. 

3.1. High Mobility Group Box 1 (HMGB1) cytokine activity 

HMGB1 functions as a pathogenetic cytokine regulator under these 
conditions. HMGBl is actively secreted from various cell types including 
macrophages, NK cells, dendritic cells (DCs), blood vessel endothelial, 
and platelets [46,47]. HMGB1 is also passively released from necrotic 
cells, damaged cells, and after extracellular injury [48]. Cells undergo-
ing apoptosis release less HMGB1 than necrotic cells, yet macrophages 
covered with apoptotic cells can still stimulate the discharge of HMGB1 
from WEHI-231, Jurkat, and HL-60 cells. Pyropticosis and 
caspase-1-associated necrosis are responsible for the continuous 
discharge of HMGB1 controlled by dsRNA-dependent protein kinase 
(PKR) and the inflammasome. Pyroptosis follows the activation of 
inflammasomes, leading to the expression of caspase-1 and its down-
stream effects, including generation of the cytokines IL-1β and IL-18 by 
the cleavage of their precursors [49]. 

Release mechanisms such as necrosis, macrophage activation, 
pyroptosis, and apoptosis discharge HMGB1 in various redox forms. 
Necrotic and pyroptotic cells produce thiol in its reduced form, which 
then binds to the chemokine CXCL12 and the CXCR4 receptor to stim-
ulate the process of chemotaxis. Pyroptosis and TLR4 stimulation also 
release reduced HMGB1, disulfide bond HMGB1, C23, C45, and C106, 
which are all in thiol form. This form of HMGB1 then stimulates cytokine 
production via TLR4 signaling. Activated macrophages also release the 
cytokine-inducing form of HMGB1 upon TLT4 activation. Apoptotic 
cells release HMGB1 that is partially oxidized or completely oxidized at 
the critical cysteine residues. Completely oxidized HMGB1, with cyste-
ines in the form of sulfonates, is unable to stimulate cytokines or induce 
chemotaxis; apoptotic cells expressing this form of oxidized HMGB1 can 
induce tolerance [49]. 

3.2. Cellular inflammatory response and HMGB1 receptors 

HMGB1 is a classic pro-inflammatory mediator because [4]:  

a. Injuries and infections stimulate its release.  

b. It causes immuno-competent cells to release TNF-α, IL 1, and other 
related substances.  

c. It reduces symptoms of pyrexia, and the sickness syndrome in vivo;  
d. It is activated by exogenous TLR agonists and other cytokines that 

stimulate inflammation.  
e. It can be specifically targeted to therapeutic advantage in sterile and 

infectious disease syndromes associated with elevated HMGB1 
levels. 

One difference between HMGB1 and conventional PCs (e.g., TNF-α, 
IL-1) is it stimulates systemic inflammatory responses through receptors 
that report and interact with foreign substances [50]. Unlike TNF-α and 
IL-1, the allied plasma membrane receptor family interacts with HMGB1 
and initiates signal transduction through endogenous (RAGE) and 
exogenous ligands (TLR2, TLR4, and TLR9) [51,52]. These processes 
show that HMGB1 elicits various inflammatory responses to a diversity 
of infections and injuries. HMGB1’s ability to modulate the magnitude of 
the inflammatory response in clinical syndromes associated with injury 
is discussed below. These mechanisms have been explored in 
loss-of-function-type studies based on HMGB1 antagonists and/or the 
deletion of receptors via genetic clustering techniques [53]. 

HMGB1 binding to TLR4-MD2 acts as a measure of surface plasmin 
resonance and signal transducers that stimulate macrophages to release 
TNF [4]. These processes require redox-sensitive cysteine 106, which 
prevents HMGB1 from adhering to TLR4, the endogenous HMGB1 re-
ceptor responsible for regulating macrophage activation, cytokine 
release, and tissue injury repair by activating IKB kinase (IKK)-β, IKK-α 
(active endotoxin only IKK-β), and active nuclear translocation NF-kβ 
[54] [–] [56]. One difference between HMGB1- and endotoxin-mediated 
signaling, is that the former does not bind to TLR4 as readily as LPS. 
Another difference is the pattern of gene expression induced upon 
activation. While both HMGB1 and LPS significantly increase NF-kβ 
nuclear translocation and Akt/p38 MAPK phosphorylation, LPS in-
creases the production of NF-kβ and TNF more than HMGB1. Further-
more, HMGB1-induced secretion of TNF exhibits a biphasic kinetic 
profile, while the endotoxin LPS stimulates monophasic TNF release 
[56]. 

Animal studies have shown that HMGB1 levels increase during injury 
due to a lack of oxygen [4]. HMGB1 protein levels rise within 1 h of 
reperfusion and remain elevated for up to 24 h. Treating wild-type 
(C3H/HeOuj) mice with anti-HMGB1 antibodies helps to protect them 
from liver injury, while the TLR4 deficient (C3H/Hej) mice garner no 

Fig. 2. The mechanism of action of local anesthetics on inflammation [21].  

R. Karnina et al.                                                                                                                                                                                                                                



Annals of Medicine and Surgery 69 (2021) 102733

4

benefit from these antibodies [4,16,57]. HMGB1 signaling via TLR4 is an 
effective target for solid tumors treatment strategies such as antigen 
cross-presentation or chemotherapy. Renal tubular TLR4 expression in 
donor kidneys is indicated by HMGB1 immunoreactivity, this reveals its 
importance in developing kidney graft inflammation and sterile injury 
[4]. 

The impact of HMGB1 protein binding on the release of cytokines (e. 
g., CXCL12, TLR9, thrombospondin, syndecan, TLR2, MAC1, TREM1) in 
the pathogenesis of sterile infection and injury remains unknown [4]. 
Furthermore, HMGB1 regulates the body’s inflammatory response to 
sterile threats and infections through TLR4 receptor-mediated signaling 
[58,59]. HMGB1 then reacts with CD24, a plasma protein working with 
Siglec-10 to suppress nuclear translocation. This process is controlled by 
HMGB1 and mediated TLR4 activation, not pathogen-mediated TLR 
activation, indicating that the outcome of HMGB1 via TLR4 signaling is 
different from CD24-siglec-10 when it comes to sterile damage [56]. 

3.3. HMGB1 pathway to NF-kβ 

Receptors involved in HMGB1 binding include the receptor for 
advanced glycation end products (RAGE), a transmembrane, cell sur-
face, multi-ligand member of the large immunoglobulin family (Fig. 3) 
[4]. Consequently, RAGE-mediate HMGB1 signaling stimulates chemo-
taxis, cell growth, differentiation, and the migration of immune/smooth 
muscle cells by engaging with cell-surface moieties such as RAGE/TLR4. 
Although HMGB1 and RAGE bind to each other, TLR4 still controls the 
secretion of HMGB1 from macrophages due to the inhibition of RAGE 
macrophages and the inactivation of TNF-producing macrophages by 
TLR2. However, TLR4 does not mediate macrophage inactivation [53]. 

4. TOLL-LIKE receptors (TLRs) 

4.1. TLR signaling pathway 

The TLR pathways and signals are initiated by a ligand binding to 
TLRs expressed on the plasma membrane, endoplasmic reticulum, or 
endosome, which induces the dimerization of the TLRs proteins. Ligand- 
induced dimerization of TLRs likely transposes the TIR from the cyto-
plasmic tail of each adjacent protein, followed by a TIR-containing 
adapter protein that recruits and activates protein kinases to stimulate 
transcription factors. 

Interferon response factor 3 (IRF3), NF-κβ, activation protein 1 (AP- 
1), and IRF7 are the transcription factors stimulated by TLR signaling 
pathways upon PAMPs and DAMPs recognition, TLRs recruit TIR 
domain-containing adaptor proteins such as MyD88 and TRIF [60]. 
Furthermore, NF-κβ and AP-1 are essential proteins that mediate the 
gene expression of molecules involved in the inflammatory response 
such as chemokines (e.g., CCL2, CXCL), cytokines (e.g., TNF, IL-1), and 
endothelial adhesion molecules (e.g., N-cadherin, E-selectin). Different 
combinations of ligands and intermediate messengers dictate the shared 
and unique effects of TLRs. Upon engagement at the cell’s surface, 
dimerized TLRs bind to the MyD88 adapter, which activates NF-κβ, 
while the signal adapter TRIF (TIR domain-containing IFN-β inducing 
adapter) activates IRF3. For all TLRs except TLR3, signaling via MyD88 
activates NF-κβ and initiates a pro-inflammatory response. Via TRIF, 
TLR3 activates IRF3 and induces type I interferon expression. Regardless 
of adapter (i.e., MyD88 or TRIF), TLR-ligand interactions lead to a 
pro-inflammatory downstream response [61]. TLR7 and TLR9 are 
abundant within the cytoplasm of dendritic cells and use 
MyD88-dependent, TRIF-independent pathways to activate NF-κβ and 
IRFs. TLR7, TLR9, and TLR4 all stimulate reactions against bacterial, 
single-stranded (ss)RNA from viruses, viral DNA, and bacterial lipo-
polysaccharide (LPS) [60,62]. 

There is some evidence of an interaction between lidocaine and 
TLRs. Lidocaine (50 mM) inhibits the activation of TLR4 and subse-
quently also NF-kβ and mitogen-activated protein kinases (MAPKs) in 
LPS-stimulated murine macrophages [7]. 

5. Nuclear factor kappa- β (NF-kβ) 

5.1. NF-kβ in inflammation 

Inflammation and the actions of the adaptive and innate branches of 
the immune system are regulated by NF-kβ [63]. An inflammatory 
response comprises several activated signaling pathways that modulate 
the activation of pro- and anti-inflammatory regulators in resident tissue 
cells and blood-derived leukocytes [64]. Information on inflammation 
and its underlying signaling pathways is mostly obtained through 
studies on the IL-1, TNF, and TLR protein families aimed at under-
standing how microbes in the IL-1R family operate. IL-1 and TNF-α 
represent a baseline pattern of pro-inflammatory cytokines released 
rapidly in response to tissue injury and infection. TLR recognizes 

Fig. 3. The relationship between HMGB1, TLR4, and RAGE. TLR4 binding induces cytokine secretion from macrophages and monocytes (left), meanwhile, RAGE 
modulates endothelial and tumor cell function (right) [3]. 
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microbial molecular patterns and, as such, is known as a pattern 
recognition receptor (PRR). TLRs represent germline-encoded, non--
self-recognition systems poised to induce inflammation [65]. However, 
endogenous ligands also activate TLR during particular forms of dam-
age, which causes inflammation in the absence of infection. Ikβ kinase 
(IKK) and NF-kβ make use of similar signal-transduction mechanisms 
even though their structures differ [65,66]. 

6. Tumor necrosis factor-α (TNF-α) 

6.1. Systemic effects of TNF in the inflammatory response 

TNF receptors are expressed differently in a variety of cells and tis-
sues; however, the pro-inflammatory effects of TNF occur based on in-
teractions between blood vessel cells and leukocytes. These cells then 
initiate inflammatory processes with different temporal, spatial, and 
anatomical presentations using different leukocyte adhesion molecules, 
including E-selectin, intercellular adhesion molecule-1 (ICAM-1), and 
vascular cell adhesion molecule-1 (VCAM-1) [67]. 

This response, when combined with chemokine release (e.g., IL-8, 
MCP-1, IP-10) leads to the recruitment of several leucocytes indepen-
dent of antigen recognition [68,69]. Furthermore, the local effects of 
TNF on endothelial cells lead to many classic inflammatory features. For 
example, TNF-induced cyclo-oxygenase 2 expression can increase the EC 
production of PGI2, which results in vasodilation, and ‘rubor’ and ‘heat’ 
through increased local blood flow. Swelling is created by edema caused 
by the accumulation of endothelial fluid and other macromolecules 
[70]. Furthermore, TNF-induced pro-coagulant protein expression 
(including tissue-specific factors), anti-coagulant protein regulation, 
and thrombo modulation can cause intravascular thrombosis [67]. 

6.2. TNF to NF-kβ family signaling 

The NF-kβ pathway is activated by various immunologically-relevant 
ligands and receptors such as the TNF receptor (TNFR), TLR, IL-1 re-
ceptor (IL-1R), and other antigen receptor groups [66,71]. Furthermore, 
these receptors lack any enzymatic activity, while the results of ligand 
binding are always relayed through the lipid bilayer and converted into 
kinases via adapter proteins [66]. 

The process that holds the ligand bonds also fosters the creation of a 
receptor oligomer/ligand complex [66]. TNF family signaling via NF-kβ 
causes several adapter proteins to bind to the ligand-receptor complex, 
thereby activating IKK [72]. This adapter protein belongs to that protein 
is well described as the domain of protein interactions participating in 
the assembly of very complex oligomeric proteins that join 
ligand-receptor complexes to IKK [66]. Adapter protein domain in-
teractions important for TNF–NF–kβ family signaling include death fold 
domain (DD), RIP (receptor-interacting protein), homotypic interaction 
motifs (RHIM), and TRAF (TNF receptor-associated factor) domains [66, 
73]. 

This adapter protein directs signaling to various end pathways. In 
this case, the functions of transcription factors such as NF-kβ in signaling 
are discussed. Furthermore, changes in receptor conformation localiza-
tion and increased avidity are caused by the ligand binding of adapter 
proteins on cytoplasmic receptor tails [66,74]. This leads to the mobi-
lization of members of the TRAF and RIP families into a complex protein 
structure. Consequently, the oligomerization of these complexes is sus-
tained by cross-receptors, multimer ligands, and the ability of proteins to 
form high-order trimers and oligomers [66]. Upstream kinases that 
control the activation of IKK and NF-kβ signaling through the TNF 
cytokine family include NIK (NF-kβ inducing kinase) and TAK1 (trans-
forming growth factor-β activated kinase; MAP3K7) [66,71]. Further-
more, NIK controls the stimulation of IKKα and non-canonical pathways. 
The function of TAK1 in canonical pathways is NEMO-dependent; 
however, the requirements of TAK1 in all forms of TNF and NF-kβ 
signaling are not fully understood. After activation, IKK kinase (IKK–K) 

triggers a traditional kinase cascade within and outside of the NF-kβ 
pathway [66]. 

7. Lidocaine in acute and chronic pain 

Lidocaine exerts additional analgesic effects through other path-
ways. Various studies show the analgesic benefit of systemic lidocaine 
during surgical procedures, especially during laparoscopic abdominal 
surgery [75] [–] [80]. Usually, lidocaine is administered initially at 
doses of 1.5–2 mg/kg BW and maintained by 1.5–3 mg/BW/hr or 2–3 
mg/min. This results in serum levels of lidocaine that range from 0.5 to 
5 μg/ml (~2–21 μM), which is similar to after epidural administration 
[75,77,78,80,81]. The benefits of lidocaine include a quick recovery, 
reduced time in the hospital, unaffected bowel movements, and less 
post-operative pain (Table 1) [7,82]. 

7.1. Opioid receptors 

One study describes the absence of any cellular interaction between 
lidocaine and recombinant μ-, k-, and ծ-opioid receptors [83,84]. This is 
because all opioid receptors belong to a family of GPCRs lacking Gaq 
units, and lidocaine only influences receptors with Gaq. Meanwhile, 
another study found that when opioids and lidocaine are administered 
simultaneously, they synergistically potentiate anti-nociception. How-
ever, the mechanism underlying this effect, for example, whether occurs 
at the receptor level (e.g., via TLR4 signaling, Kir, or Ca + channels) or 
involves regional/systemic interplay, has yet to be elucidated [7,83]. 

7.2. Toll-like receptors (TLRs) 

Another study describes lidocaine’s negligible inhibitory effect on 
TLRs. However, lidocaine (50 μM) inhibits the activation of TLR4, along 
with NF-kβ and MAPKs, in LPS-stimulated murine macrophages. This 
mechanism is mediated by VGSCs [7]. 

Intravenous administration of lidocaine in rats with LPS-induced 
sepsis reduces organ failure significantly compared with control. It 
was also shown to protect against organ dysfunction through the 
downregulation of TLR4. The expression of TLR4, NF-kβ, and interleukin 
(IL)-6 was reduced in the lidocaine group by this mechanism [85]. 
Nebulized lidocaine prevents the respiratory system of mice from 
becoming inflamed by reducing TLR2 expression [86]. Further investi-
gation is needed to determine whether these processes can be applied for 
chronic pain management (Table 2). 

8. Lidocaine as an anti arrhytmic agent 

In the 1950s, the first case of cardiac arrhythmia treated successfully 
with intravenous lidocaine was reported: ventricular fibrillation that 
occurred during cardiac catheterization was successfully reverted to a 
regular sinus rhythm with electric shock and lidocaine administration 
[87]. The dose of lidocaine used to treat ventricular arrhythmias 

Table 1 
The biological effect of lidocaine on various forms of chronic pain [6,81].  

Source Spontaneous pain Hyperalgesia Allodynia 

Neuropathic 
pain 

Reduced   

Diabetic 
neuropathy 

Reduced   

Peripheral nerve 
injury 

Reduced Reduced  

Post herpetic 
neuralgia 

Reduced Reduced Reduced 

Chronic regional 
pain syndrome 

Reduced at high (3 
μg/ml) plasma 
concentration 

Reduced for cold 
threshold only 

Reduced for cold 
and mechanical 
thresholds 

Central pain Reduced Reduced Reduced  
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(tachycardia) is 1–1.5 mg/kg BW administered intravenously followed 
by an infusion of 1–4 mg/kg BW/hr [28,88]. 

The mechanism underlying the antiarrhythmic effect appears to be 
similar to that of procaine. Ventricular excitability is depressed with 
increasing doses, conduction time is slowed, and the refractory period is 
prolonged. Cardiac contractility is not diminished in therapeutic dos-
ages [87]. In contrast to procaine and procaine amide, doses of lidocaine 
that produce comparable increases in the diastolic stimulation threshold 
cause no fall in blood pressure or decreased myocardial contractility. 

Before amiodarone was approved, lidocaine was listed as the pri-
mary drug of choice to treat ventricular fibrillation (VF) or Ventricular 
tachycardia (VT) in the Advanced cardiac life support (ACLS) algorithm. 
Even though lidocaine had been used to treat VF/VT for years, there was 
a lack of evidence for its efficacy over other drugs. While lidocaine was 
since removed from the ACLS Algorithm, it is still considered a suitable 
alternative if amiodarone is ineffective or unavailable in cardiac arrest 
from VT/VF [89]. 

9. Lidocaine and covid-19-associated acute respiratory distress 
syndrome (ARDS) 

9.1. Pathophysiology of COVID-19 

COVID-19 is a disease that results from infection with the newly 
identified SARS-CoV2 virus. Very little has been published to date 
regarding its pathology and mechanism. Initial pathological changes 
experienced at the tissue and cellular level include death of alveolar 
epithelial cells, intraluminal edema, fibrin exudation, hyaline mem-
brane formation, hemorrhage, infiltration of inflammatory cells (e.g., 
monocytes, macrophages, lymphocytes, and neutrophils) into the alve-
olar wall and lumina, and elevated levels of serum pro-inflammatory 
cytokines and chemokines [90]. 

Other studies show high levels of cytokines and chemokines in blood 
samples collected during SARS-CoV infections. Kong et al. reported an 
increase in circulating cytokines, (TNF-α, CXCL-10 [interferon gamma 
inducible protein 10-strong leukocyte activator], IL-6 and -8) [91]. 
Other studies confirm these pro-inflammatory cytokine findings [92, 
93]. After an initial disruptive phase, the epithelial lining experiences 
less damage, reduced interstitial and alveolar fibrosis, bronchiolitis 
obliterans, pneumonia, regeneration of type II pneumocyte hyperplasia 
(e.g., IL1, IL-6, IL-12, IFN-γ, TGF-β), and chemokines. During this 
fibrotic phase, interstitial thickening is caused by moderate fibrosis and 
few inflammatory cells [94]. 

9.2. Lidocaine, acute lung injury, and ARDS 

COVID-19 can progress to acute respiratory distress syndrome 

(ARDS), a serious outcome of pulmonary viral infection [95,96]. The 
primary underlying pathophysiology of ARDS is vascular lung injury 
[97]. However, local anesthesia addresses the underlying etiology by 
inhibiting TNFα, which signals to endothelial cells to induce neutrophil 
binding and increases endothelial permeability [98]. 

Recently, preliminary studies have explored the anti-inflammatory 
effects of lidocaine in the context of acute lung injury [43]. The pre-
dominant mechanism of action in the specific clinical application re-
mains unclear; however, lidocaine might exert its anti-inflammatory 
effects by regulating cellular metabolic activity, migration, exocytosis, 
and phagocytosis by reversibly interacting with membrane proteins and 
lipids thereby attenuating the inflammatory response by decreasing 
PMN granulocyte accumulation in the lung [43]. These promising pre-
liminary findings have encouraged pulmonary physicians to introduce 
lidocaine into their clinical practice. 

Nebulized lidocaine appears to be a novel potential treatment for 
improving COVID-19-related lung injury by reducing the cytokine 
storms associated with the disease, which would theoretically reverse 
ARDS. As such, more pre-clinical research and clinical trials are war-
ranted to further define the efficacy and safety of lidocaine for treating 
patients with severe ARDS due to COVID-19. 

10. Conclusions 

The analgesic and anti-hyperalgesic effects of systemic lidocaine 
have served the clinical practice of medicine for 75 years. Prospective 
clinical investigations have confirmed that lidocaine is a highly safe and 
effective therapeutic option in cases of acute and chronic pain. The 
positive effects of incorporating lidocaine into multimodal pain therapy 
also include acute lung injury applications, based on evidence from 
experimental animal models. 
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Table 2 
Presents the results of studies on the relationship between lidocaine and acute/ 
chronic post-operative pain. Recent reviews highlight differences in the results 
obtained by these studies [6,76,86].  

Perioperative 
antinociceptive 
effects 

Pain at rest 
<24 h 

Pain 
during 
activity 

Opioid 
requirement 

PONV 

Abdominal 
surgery 

Reduced Reduced Reduced Reduced 

CPSP Odds ratio for 
incidence of 
CPSP (4–6 
months)  

Pain intensity 
(McGill pain 
questionnaire 
score)  

Overall 
Breast surgery 
Non-breast 
surgery 

Reduced 
Reduced 
Reduced  

Unchanged (P =
0.06)  

Abbreviations: CPSP: Chronic post-surgical pain, PONV: postoperative nausea 
and vomiting. 
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