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Recently, biomaterial scaffolds have been widely applied in the field of tissue engineering
and regenerative medicine. Due to different production methods, unique types of three-
dimensional (3D) scaffolds can be fabricated to meet the structural characteristics of
tissues and organs, and provide suitable 3D microenvironments. The therapeutic effects
of stem cell (SC) therapy in tissues and organs are considerable and have attracted
the attention of academic researchers worldwide. However, due to the limitations
and challenges of SC therapy, exosome therapy can be used for basic research
and clinical translation. The review briefly introduces the materials (nature or polymer),
shapes (hydrogels, particles and porous solids) and fabrication methods (crosslinking or
bioprinting) of 3D scaffolds, and describes the recent progress in SC/exosome therapy
with 3D scaffolds over the past 5 years (2016–2020). Normal SC/exosome therapy can
improve the structure and function of diseased and damaged tissues and organs. In
addition, 3D scaffold-based SC/exosome therapy can significantly improve the structure
and function cardiac and neural tissues for the treatment of various refractory diseases.
Besides, exosome therapy has the same therapeutic effects as SC therapy but without
the disadvantages. Hence, 3D scaffold therapy provides an alternative strategy for
treatment of refractory and incurable diseases and has entered a transformation period
from basic research into clinical translation as a viable therapeutic option in the future.

Keywords: 3D bioprinting, scaffold, regenerative engineering, stem cell, exosome, therapy

INTRODUCTION

The self-renewal capacity of human cells decreases with age and disease. Regenerative engineering
of complex tissue structures is a relatively recent discipline that combines materials research,
mechanics, stem cell (SC) science, and clinical translation. New therapies for regeneration of
weakened tissues and organs have focused on the use of autographs and tissues from living and
deceased donors. However, these therapies are dependent on the availability of donor tissues and
site morbidity. Hence, the field of tissue engineering and regenerative medicine has been rapidly
developing to meet the need of biological substitutes.
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GRAPHICAL ABSTRACT | A summary schematic of application of 3D scaffold-based stem cell/exosome therapy.

Stem cells, present in the human embryo, fetus, umbilical cord
blood, and adult (Ferraro et al., 2016), possess the ability to self-
renew in an undifferentiated state in culture, while retaining the
ability to differentiate into specific cell types (Shi et al., 2018).
SCs, which are usually in a quiescent state, help to maintain
homeostasis of tissues and organs by preserving the progenitor
characteristic via self-renewal. Stimulation with external factors
and/or components of damaged host cells derived from the tissue
microenvironment trigger the proliferation and differentiation of
SCs (Shi et al., 2018).

Exosomes are extracellular vesicles produced by various
eukaryotic cells that are much smaller than red blood cells,
extracellular vesicles, microvesicles, and apoptotic bodies with
diameters of 30–150 nm. Exosomes are either directly released

Abbreviations: SCs, stem cells; 3D, three-dimensional; HA, hyaluronic acid; PCL,
poly caprolactone; PDMS, polydimethylsiloxane; PEO, polyethylene oxide; PLA,
polylactic acid; PLGA, poly (lactic acid-glycolic acid); PVA, polyvinyl alcohol; PEG,
polyethylene glycol; TCP, tricalcium phosphate; ESCs, embryonic stem cells; iPSCs,
induced pluripotent stem cells; MSC, mesenchymal stem cell; BMSC, bone marrow
MSC; ASC, adipose MSC; UCMSC, umbilical cord MSC; NSCs, neural stem cells;
NPCs, neural progenitor cells; OA, osteoarthritis; MI, myocardial infarction; RPE,
retinal pigment epithelium; SAP, self-assembling peptide; RADA, self-assembling
gel-forming core sequence; ECM, extracellular matrix; iVPCs, induced vascular
progenitor cells; GEM, gelatin matrices.

from cells or by budding of the plasma membrane (Booth et al.,
2006). The cargo of exosomes include multiple proteins, lipids,
cytokines, RNA molecules, and chemokines (Simons and Raposo,
2009) (Figure 1). The activities of exosomes include immune
control, mediation of cell proliferation, migration, division, and
apoptosis, maintaining a physiological state, and participating
in disease processes (Tkach and Théry, 2016). In addition,
exosomes play various roles in the processes of coagulation,
waste management, and intercellular signaling transduction (van
der Pol et al., 2012). Therefore, the therapeutic application of
exosomes has gained widespread popularity.

Over the past decade, the field of regenerative engineering
has continued to evolve, and various functional biomaterials
compatible with the human body have been developed for the
treatment of diseased and damaged tissues (Riester et al.,
2020). The inner structure of biomaterials can provide
three-dimensional (3D) microenvironment that influence
various aspects of cell behavior, many of which can have
crucial physiological effects (Gattazzo et al., 2014). Indeed,
biomaterials can be prepared with cells and cell-derived
microvesicles, such as exosomes, from different sources to
elicit a therapeutic effect in injured and diseased tissues. In
addition, various 3D scaffold-based SC/exosome therapy have
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FIGURE 1 | A schematic of the main types of 3D bioprinting. The application process of a 3D scaffold combined with SCs/exosomes implanted into bone diseases.
A structural diagram of a representative exosome. SCs/exosomes are implanted in/on the 3D scaffolds, then the composite scaffolds are implanted into models of
cartilage defects, bone defects, and muscle injuries.

been developed for the treatment of diseased tissues and organs.
Biomaterials include natural, biological and synthetic materials
in various shapes and forms, such as injectable substances, gel,
particles, and polymers.

MATERIALS AND METHODS

Preparation of 3D Scaffold
Biomaterials
Biomaterials possess multiple attractive physical and chemical
characteristics, including biocompatibility, printability,
crosslinking capacity, biodegradability, specificity, controlled
release, and bioplasticity (Williams, 2008; Bose et al., 2017).
As carrier molecules, biomaterials also provide a specific
3D microenvironment to promote cell growth and function
(Mitrousis et al., 2018; Wang et al., 2019). Biodegradability is
considered to simulate the natural microenvironments of tissues
and organs. Printability is the ability to temporally and spatially

deposit biomaterials accurately. Crosslinking is a technique that
uses a balancing system, printability, and bioactivity to rapidly
mold soft printable materials into 3D structures to facilitate
the preparation and printing of scaffolds. Specific formulations
of various natural and synthetic biomaterials are vital to form
successful 3D scaffold.

Natural materials include collagen (Chang et al., 2011), gelatin
(Chang et al., 2020), fibrin (Rabbani et al., 2017), silk fibroin
(Qing et al., 2018), alginate (Yang et al., 2018), gellan gum,
hyaluronic acid (HA) (Yazdani et al., 2019), chitosan (Kim et al.,
2016), Matrigel (Wang et al., 2020b); while synthetic polymer
materials include poly caprolactone (PCL) (Zhang et al., 2017),
polydimethylsiloxane (PDMS) (McKee et al., 2017), polyethylene
oxide (PEO) (Evrova et al., 2016), polylactic acid (PLA) (Gandolfi
et al., 2020), poly lactic acid-glycolic acid (PLGA) (Swanson
et al., 2020), polyvinyl alcohol (PVA) (Kalachaveedu et al., 2020),
polyethylene glycol (PEG), tribasic calcium phosphate (TCP)
(Ying et al., 2020). Biomaterials used for 3D bioprinting are called
“bio-inks.”
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Preparation and Crosslinking
To better adapt to functional tissues and organs, 3D scaffolds
should be designed to promote cell proliferation and tissue
regeneration. Hydrogels are attractive materials for cell
encapsulation for transplantation of engineered cells and
tissues. Natural biological materials, such as collagen, gelatin,
fibrin, silk fibroin, alginate, and HA, are abundant in the body
(Moshayedi and Carmichael, 2013). Hydrogel is a biocompatible
and bioabsorbable material that allows the degradation of cells
and matrices (Hanjaya-Putra et al., 2012), and can be modified
and/or crosslinked by chemical modification to become more
suitable for specific cells, tissues, and organs (Lam et al., 2014).

Scaffolds containing encapsulated particles avoid the
integration of cells and degradation of drugs to exert a
therapeutic effect similar to that of an infiltrative mini pump.
To achieve a higher degree of cell attachment to a scaffold,
various characteristics of particles should be considered to
ensure that scaffolds adapt to the host-tissue architecture and can
pass through a microinjector, which influences cell attachment,
including materials, curvature, surface motif, electrostatic charge,
and interactions with cells (Hejcl et al., 2008; Chen et al., 2010).

A porous scaffold provides a suitable matrix and environment
for cell adhesion and growth, by seeding in the construct or
allowing cells to proliferate, migrate, and differentiate, while
interacting with surrounding tissues and organs (Park and
Bronzino, 2002). Solid implantation scaffolds are usually created
by computer-aided design and constructed by 3D bioprinting.

Types of 3D-Bioprinting (Figure 1)
Extrusion-Based Bioprinting
Extrusion-based bioprinting (also called direct ink writing) is a
type of 3D fabrication. Bio-inks are discharged from a syringe
in continuous filaments that can be layered to create the desired
design. The height of the architecture is based on piling several
layers of these filaments. There are two types of extrusion-based
bioprinting: (1) pneumatic extrusion bioprinting, which uses
compressed air to push the bio-ink from a syringe (Lee et al.,
2015b); and (2) mechanical extrusion bioprinting, which uses a
stepping motor connected to a piston or screw to extrude the
bio-ink. The mechanical outlet mechanism is more precise than
the pneumatic system and can print semi-solid and solid bio-
inks more effectively (Skardal et al., 2010; Fielding et al., 2012).
Micro-extrusion is a form of extended extrusion bioprinting in
which the diameter of the extrusion syringe is less than 1 mm
(Murphy and Atala, 2014).

Droplet-Based Bioprinting
There are four types of droplet-based bioprinting. Inkjet-based
bioprinting utilizes gravity, atmospheric pressure, and fluid
mechanics to generate and eject liquid droplets onto a receiving
matrix (Liu and Derby, 2019). However, the high pressure may
be harmful to cells contained in droplets when ejected through a
syringe with a very small diameter.

Electrohydrodynamic jet bioprinting, which utilizes an
electric field to drag bio-ink droplets out the syringe, thereby
eliminating the need for great pressure (Onses et al., 2015),
is suitable for applications that require syringes with small

diameters (≤100 µm) and high concentrations of bio-inks
(Jayasinghe et al., 2006).

Acoustic droplet ejection bioprinting is an extension of
DOD to pattern cells that uses the acoustic radiation force
related to the ultrasonic field to shift momentum from the
gas–liquid interface to the formation of droplets (Elrod et al.,
1989). A specific amount of liquid is ejected when the sound
pressure of the ultrasonic field is greater than the surface tension
(Demirci and Montesano, 2007).

Laser-assisted bioprinting is a predetermined computer-aided
design technology with the use of a scanning mirror system that
is focused on the laser-induced forward transfer effect and laser-
guided direct writing.

Photocuring-based bioprinting uses liquid light-curable resins
in the photopolymerization phase that chemically react to create
solid artifacts when exposed to light. Stereolithography (Melchels
et al., 2010) and digital light processing (DLP) (Patel et al., 2017;
Schmidt and Colombo, 2018) are both photopolymer additive
manufacturing techniques.

STEM CELLS (SCs)

Classification of Stem Cells
Embryonic Stem Cells (ESCs)
Embryonic stem cells (ESCs), upon separation from the inner
mass of blastocysts, have stable developmental potential and the
capacity of prolonged undifferentiated proliferation to form the
three primary germ layers (i.e., the ectoderm, mesoderm, and
endoderm) (Thomson et al., 1998).

Induced Pluripotent Stem Cells (iPSCs)
Most somatic cells can be reprogrammed to pluripotent SCs by
cultivation in vitro for a few weeks with retrovirally imported
transcription factors, such as c-Myc, Kfl4, Oct3/4, and Sox2. In
addition, somatic cells reversed to the embryonic pluripotent
state, similar to ESCs, can generate all the cell types of the body
(Takahashi and Yamanaka, 2006; Takahashi et al., 2007). On
account of this discovery, Dr. Shinya Yamanaka won the 2012
Nobel prize in Physiology or Medicine.

Mesenchymal Stem/Stromal Cells (MSCs)
Mesenchymal stem/stromal cells (MSCs), which are relatively
easy to isolate and extensively expand, differentiate into various
types of cells, mainly chondrocytes, osteoblasts, and adipocytes
(Dominici et al., 2006), which exhibit adherent and fibroblast-
like characteristics (Friedenstein, 1976). MSCs have been isolated
from various tissues, including bone marrow (bone marrow-
derived MSCs, BMSCs), adipose tissue (adipose-derived MSCs,
ASCs), umbilical cord blood (umbilical cord-derived MSCs,
UCMSCs), dental pulp, skeletal muscle, Wharton’s jelly, synovial
membrane, and amniotic fluid (Keating, 2012).

Tissue Specific Stem Cells
Neural stem/progenitor cells (NSC/NPCs) are derived by
separation from the adult and fetal brain. A satellite cell is a type
of SC that is derived from skeletal muscle.
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Stem Cell Therapy
Bone
Stem cell treatment has progressed rapidly over the last two
decades and it is now used as a tissue engineering technology in
orthopedic surgery for the treatment of bone fractures, cartilage
abnormalities, ligament-tendon injuries, and bone defects. For
osteoarthritis (OA), Zhou et al. (2018) reported that local
injection of ASCs into a rat model could alleviate histologically
confirmed OA of the knee. Sasaki et al. (2017) reported that
the enhanced proliferation could almost double the abundance
of MSCs in vitro. Injection of MSCs cultured with granulocyte-
colony stimulating factor was shown to induce regeneration of
the hyaline cartilage for repair of trochlear osteochondral defects
(Harada et al., 2015). In a clinical study of OA of the Knee, Al-
Najar et al. (2017) reported that intraarticular injections of MSCs
had significantly improved knee joint function.

Heart
Cardiovascular diseases remain the leading cause of death
globally. Heart failure, which is characterized by avascular
necrosis of cardiomyocytes at the terminal stage of disease, is
caused by dilated cardiomyopathy, coronary heart disease, and
severe valvular disease (Elgendy et al., 2019). However, since
the efficacy of current treatments to reverse heart failure during
myocardial infarction (MI) is limited, cardiomyocyte recovery
has become a top priority. Various types of SCs, especially
iPSCs, cardiac progenitor cells, and cardiosphere-derived cells,
have been applied in myocardial repair. iPSCs have superior
therapeutic efficacy in myocardial repair and iPSC-derived
cardiomyocytes exhibit many of the same features as cardiac cells,
including contractility, spontaneous pumping, and cytokine-
mediated ion channel expression (Xi et al., 2010). With the
use of a large animal model of immunosuppression-associated
MI, Ishida et al. (2019) demonstrated that xenogeneic epicardial
transplantation of iPSC-derived cardiomyocytes significantly
improved cardiac function and resulted in a significant
increase in capillary density in ischemic regions. Cell therapy
trials (Tarui et al., 2015; Ishigami et al., 2017) revealed
that intracoronary administration of cardiosphere-derived cells
improved heart failure, somatic development, and quality of life
by reverse remodeling.

Skin
For wound treatment, local injection of MSCs reduced apoptosis
(Öksüz et al., 2013; Abbas et al., 2018) and improve burn
wound progression (Öksüz et al., 2013) in animal models. Local
treatment also improved survival after burn injury (Caliari-
Oliveira et al., 2016). Furthermore, local injection of MSCs
was shown to significantly accelerate the wound healing rate
(Caliari-Oliveira et al., 2016; Abo-Elkheir et al., 2017; Chen
et al., 2017), re-epithelization (Shi et al., 2017), granulation tissue
formation (Caliari-Oliveira et al., 2016; Shi et al., 2017), and
vascularization/angiogenesis (Caliari-Oliveira et al., 2016; Hosni
Ahmed et al., 2017). SCs accelerated the wound healing process
by inducing neo-angiogenesis (Atalay et al., 2014; Liu et al.,
2014; Lough et al., 2014), collagen deposition (Liu et al., 2014)
and granulation tissue formation, in addition to modulating
the inflammatory response (Atalay et al., 2014; Liu et al., 2014;

Caliari-Oliveira et al., 2016) and reducing the risk of infection. SC
therapy was also shown to improve the healing of burn wounds
and the immune response.

Eye
Boucherie et al. (2013) reported that transient neuroepithelium,
which was generated by ESCs cultured together with a
Matrigel extracellular matrix, had induced conversion into retinal
progenitors in 5 days. The retinal progenitors had differentiated
into Crx1-expressing photoreceptor precursors after just 10 days
and then attained rod photoreceptor identity within 4 weeks.
Huo et al. (2010) reported that most MSCs injected to the
subretinal space of rats with retinosis remained in the cones
and retinal pigment epithelium (RPE), and differentiated into
retinal pigment epithelial and photoreceptor cells. Further,
pan-cytokeratin and rhodopsin were expressed in engrafted
MSCs. Tucker et al. (2011) reported that transplantation of
iPSCs into immune-compromised mice with retinal degeneration
formed teratomas containing all three germ layers and gradually
exhibited normal retinal physiological characteristics in response
to the delivery of neurotransmitters.

Nerve System
The SCs can restrict secondary injury, reduce inflammation,
and secrete paracrine factors to protect surviving neurons. SCs
also facilitate axon regeneration, and differentiate into new
neurons to replace injured neurons in spinal cord injury (SCI)
(Leng et al., 2019; Zhang et al., 2019; Feng et al., 2021).
The results of a phase I clinical trial conducted by Mendonça
et al. (Mendonça et al., 2014) showed that administration
of BMSCs improved behavioral scores, electromyography, and
somatosensory evoked potentials. A long-term follow-up study
revealed that administration of BMSCs improved upper-limb
motor capacity, electrophysiological function, and quality of life
in three patients with grade B impairment (Park et al., 2012).
Lower doses of ASCs were used to increase the cell migration
rate and infarct volume of permanent occlusion in rat models of
stroke during functional rehabilitation (Grudzenski et al., 2017).

Scaffold-Based Stem Cell Therapy
Bone
Mesenchymal stem cells are often used in bone regeneration
engineering. For cartilage formation: Xia et al. (2018) reported
that pericellular coating with collagen I promoted the adhesion
of MSCs to cartilage slices and direct intra-articular injection
of MSCs enhanced homing and retention in cartilage defects.
Intercellular associations were also stimulated by pericellular
coating with collagen I, which promoted the expression of
aggrecan, N-cadherin, and collagen II. The increased homing
rate was related to intercellular contact. Sawatjui et al. (2015)
reported that a silk fibroin-gelatin-chondroitin sulfate-HA
scaffold outperformed a single silk fibroin scaffold in vitro.
The hybrid scaffold might serve as a supporting system as
well as a cartilage modeling environment for chondrogenesis
by facilitating cartilage regeneration. This hybrid scaffold can
potentially improve chondrogenesis by inducing proliferation
and chondrogenic differentiation of MSCs. Chang et al. (2020)
reported that honeycomb-like gelatin scaffolds can promote

Frontiers in Cell and Developmental Biology | www.frontiersin.org 5 September 2021 | Volume 9 | Article 709204

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-709204 September 3, 2021 Time: 12:6 # 6

Gu et al. 3D Scaffold Based Stem Cell/Exosome Therapy

the survival of UCMSCs and chondrogenic differentiation to
form hyaline-like cartilage. Zhang et al. (2017) reported that
MSCs in a PCL scaffold improved fibrocartilage regeneration and
mechanical efficiency, providing a practical alternative to shield
the articular cartilage from injury following meniscectomy. Zorzi
et al. (2015) reported that as compared to the control group, ASCs
seeded on collagen/chitosan scaffolds improved the healing and
thickness of chondral lesions in an adult ovine model.

Further clinical studies conducted by Gobbi et al. reported
that an HA-based active bone marrow concentrate scaffold for
management of small or significant lesions, one or multiple
lesions in one or two compartments, and subsequent lesion
therapy resulted in reasonably stable long-term results in cartilage
repair (Gobbi and Whyte, 2016) and knee full-thickness cartilage
injury (Gobbi and Whyte, 2019).

Moreover, Tseng et al. (2020) reported that the grafting
of a layer of the anti-oxidative reagent N-acetylcysteine and
extracellular matrix-like type I collagen increased the adhesion
capabilities of rat ASCs and the proliferation of SCs in vitro.
In addition, dynamic compression stimulus accelerated the
differentiation of rat ASCs into the chondrogenic lineage within
a relatively brief period.

Besides, McKee et al. (2017) reported that increased mRNA
expression of RhoA in differentiated ESCs implanted into PDMS
scaffolds as a result of compression-induced stress. When the
ESCs in PDMS scaffolds were subjected to compression-induced
stress and treated with an RhoA inhibitor, the chondro-inductive
effect of RhoA was downregulated along with the transcription
and translation of early markers of chondrogenesis.

Ossification
Yang et al. (2018) reported that peptide-modified porous alginate
scaffolds enhanced the adhesion, proliferation, and aggregation
of MSCs in vitro. The alginate polymers also exhibited complex
bioactivity and functioned as an osteogenesis-promoting scaffold.
Fu et al. (2018) stated that in vitro, layer-by-layer gelatin
scaffolds modified with poly-L-lysine and minerals improved
the adhesion, proliferation, and osteogenic differentiation of
MSCs derived from dental pulp. In vivo, modified scaffolds
promoted the formation of mineralized deposits and the
expression of osteocalcin during osteogenic differentiation of
MSCs. Ma et al. (2017) reported that incorporation of minced
BMSC sheets into hydroxyapatite particles efficiently promoted
bone formation in vitro by enhancing alkaline phosphatase
activity and the mineralized area, while increasing angiogenesis,
collagen deposition, and bone mass in vivo. Wang et al. (2015)
reported that the combination of a decalcified bone matrix
scaffold and BMSCs generated significantly more bone tissue
in ovariectomized rabbits as confirmed by X-ray. However,
osteoporosis adversely affected the treatment of defect and
significantly reduced bone regeneration. To establish more
reliable therapies for management of bone defects associated
with osteoporotic disorders, the negative consequences of
pathological factors should be carefully considered. Su et al.
(2020) reported that the biocompatibility and bioactivity of
nano-hydroxyapatite-chitosan-poly lactide-coglycolide scaffolds,
which offered an appropriate microenvironment to prolong the

replicative senescence of UCMSCs, thus maintaining stemness
and youth, as compared to traditional long-term culture in vitro.

A clinical study conducted by Skoloudik et al. (2018) reported
that the combination of BMSCs and hydroxyapatite scaffolds
regenerated temporal bone defects and restored complete hearing
to near preoperative levels. This approach could become an
effective alternative for treatment of bone defects.

Moreover, a short-term follow-up study by Uri et al. (2018)
reported that implantation of autogenous ASCs to the proximal
femur of rats with osteoporosis associated with ovariectomy
had directly transformed into osteoblasts and improved bone
strength. Kroeze et al. (2015) reported that ASCs in combination
with a poly-L-lactide-PCL scaffold had no negative effects, but did
not increase the rate or quantity of fusions between antibodies
under specified conditions. However, higher mineralized tissue
content was observed in the autologous bone graft group.

Muscle healing
Chiu et al. (2020) reported that BMSC therapy accelerated
the repair of skeletal muscle by improving rapid twitch and
tetanus muscle strength after muscle contusion and increased
the rate of myofiber regeneration. BMSCs combined with a
Pluronic F-127 scaffold improved the function of contused
muscles and promoted new muscle formation. Kheradmandi
et al. (2016) reported that the physical and biological advantages
of a porous and potent chitosan-polyvinyl-alcohol nanofibrous
scaffold, leading to considerable viability, proliferation, and
attachment of BMSCs in scaffolds implanted into the muscle
tissue of rabbits, indicating significant cell-scaffold interactions
and proliferation of major cells, with far less immunoreactivity.

Besides, Evrova et al. (2016) reported that a hybrid PLGA–
PEO fibrous scaffold formed by blending of PEO to PLGA fibers
supported the adhesion and proliferation of myoblasts, resulting
in significant myotube formation and self-alignment, even if the
scaffold was randomly oriented. The hybrid scaffold exhibited
the strongest performance in terms of orientation, myotube
shape, and mechanical properties, suggesting that the best
biosynthetic microenvironment for myoblast segregation. The
tuning fiber properties provided a valuable tool for engineering
fibril microenvironments for several biomedical applications.

This section summarized the recent progress of SC therapy
combined with 3D scaffolds for bone regeneration, cartilage
formation, ossification, and muscle healing. Hence, 3D scaffolds
based on gels, polysaccharides, or their derivatives combined with
SCs can improve bone diseases (Figure 1).

Heart
Scaffold-based SC therapy with the use of MSCs, iPSCs, and
ASCs has been applied for the regeneration of cardiomyocytes
following MI.

Wang et al. (2020c) reported that injection with a collagen
scaffold improved the durability of transplanted UCMSCs,
implying greater angiogenesis and cardiomyocyte viability
after MI.

Firoozi et al. (2020) confirmed cardiac-compatible properties
of a self-assembling peptide (SAP) hydrogel with mild gelation,
injectability, repair ability, and possible sequence alteration. An
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SAP hydrogel composite with a self-assembling gel-forming
core sequence (RADA) was modified with a SDKP motif to
facilitate pro-angiogenic and anti-fibrotic behaviors for use as
a cardioprotective scaffold. With the addition of RADA-SDKP,
injection of the compound hydrogel restored cardiac function
following acute MI and gradually improved clinical outcomes.

Rabbani et al. (2017) reported that the combination of
Wharton jelly-derived MSCs with a novel compound containing
PEG, HA, and chitosan for heart regeneration. The cell/scaffold
complex improved defect size and cardiac function, while
promoting neoangiogenesis and cardiomyogenesis. Also, Rojas
et al. (2015) reported that a fibrinogen biomatrix improved the
retention of cardiac iPSCs and sustained improved cellular refill
and function of infarcted myocardium. Therefore, fibrinogen
could be considered as an ideal natural intramyocardial scaffold
in the future.

Gelmi et al. (2016) reported that a conductive
polymer polypyrrole-coated PLGA scaffold provided a
microenvironment, including electrical and mechanical
stimulation, which could promote proliferation, differentiation,
and survival of transplanted SCs by controlling the
microenvironment and mimicking the structural architecture of
the heart. The hybrid scaffold is used to stimulate the viability
and mediate the differentiation of iPSCs. Khan et al. (2015) stated
that the morphology and roles of iPSC-derived cardiomyocytes
cultured under an anisotropic atmosphere provided through an
aligned nanofiber patch changed more than when cultured on a
flat surface. These cells more closely resembled natural cardiac
tissue and, thus, were suitable for cardiac implantation.

Besides, Bai et al. (2019) reported that an extracellular
matrix (ECM) hydrogel greatly promoted the proliferation of
SCs derived from brown adipose tissue and cardiomyogenic
differentiation. The combination of SCs derived from brown
adipose tissue and an ECM hydrogel retained cardiac activity and
chamber geometry.

Oltolina et al. (2015) reported that spheroids were aggregated
by seeding cardiac progenitor cells onto methylcellulose
hydrogel-coated microwells. When spheroids were inserted
into the heart walls and cardiotoxin-injured myocardium of
female mice, the cells from the spheroids exhibited the very
same engraftment capacity. Jamaiyar et al. (2017) reported that
induced vascular progenitor cells (iVPCs) in a micro-bundle
scaffold achieved greater engraftment, survival, and retention
in the myocardium. Treatment with iVPCs and polymer
micro-bundles enhanced the viability of cardiomyocytes, heart
efficiency, and valve density, and reduced infarction size as
determined by echocardiography.

The use of MSCs, iPSCs, and ASCs in combination with
different types of 3D scaffolds achieved more significant effects
than traditional therapies, while improving cardiomyocyte
survival and improving infarcted tissues to varying degrees.

Skin
Kalachaveedu et al. (2020) reported that an electrospun
nanofibrous Guar gum/PVA-based scaffold matrix, which
incorporated four traditional medicinal plant extracts, was
characterized by good water absorption and thermal stability.

The scaffold outperformed skin in terms of elastic modulus,
fiber spinnability, and tensile strength. Integrating a mat of
herbal nanofibers and MSCs achieved complete skin repair with
minimal scarring. Han et al. (2019) reported that activation of
the Wnt signaling pathway promoted wound healing for diabetics
by regulating the proliferation and differentiation of UCMSCs in
a collagen-chitosan acellular dermal matrix scaffold. Shou et al.
(2018) reported that the defensive use of a hydrogel composed of
3D chitin nanofibers increased the viability of BMSCs and acted
as a functional scaffold that enhanced the regenerative capacity of
BMSCs to facilitate wound healing.

Lee et al. (2020) reported that the ASC-derived spheroids
were tightly entrapped by electrospun alginate nanofibers and
alginate strut, which then released numerous factors related
to angiogenesis and wound healing in a coordinated manner.
The scaffold loaded with spheroids facilitated the formation of
capillary-like structures in umbilical vein epithelial cells.

In summary, SC therapy, including MSCs and ASCs,
combined with a 3D scaffold can better promote wound healing
and reduce scarring (Figure 2). All 3D scaffolds based on a
single-component scaffold adopt the form of the composite and
exhibit better physical properties, such as spinnability and tensile
strength, as well as biological properties, such as low skin toxicity.

Eye
Haghighat et al. (2020) reported that the use of β-carotene
as a differentiation medium and an alginate-based scaffold to
induce the differentiation of ciliary epithelium-derived MSCs
into advanced retinal cells. Holan et al. (2015) reported that the
combination of MSCs and a nanofiber scaffold improved healing
via enhanced corneal thickness, re-epithelialization, and blood
vessel formation, while inhibiting local inflammation. Besides,
Yazdani et al. (2019) reported that the use of an HA hydrogel
crosslinked with PEG diacrylate. For ocular restoration, the
optimized HA scaffold improved the morphology of sheets of
oral mucosal epithelial cells, cell metabolism, and the expression
of genes associated with adherence and stemness, while reducing
cellular damage. M’Barek et al. (2017) reported that an amniotic
membrane scaffold produced from ESC-derived RPE cells on
amniotic membrane sheets. As compared to the injection of ESC-
RPE cells in suspension, transplantation of sheets of ESC-RPE
cells prevented the death of photoreceptor cells and increased
vision despite retinal degeneration.

In summary, SC therapy combined with polysaccharide-based
3D scaffolds significantly improved eye reconstruction.

Nerve System
Li et al. (2018a) reported that the use of an HA scaffold
modified with adhesive peptides for the treatment of SCI. MSCs
with recombinant brain-derived neurotrophic factor exhibited
improved cell survival and sustained gene expression in vitro.
MSCs also effectively improved the integrity of spinal tissue,
alleviated inflammation, and inhibited glial scar formation.

Caron et al. (2016) reported that a new agarose/carbomer-
based hydrogel optimized the viability, density, and delivery
of paracrine factors of MSCs. In a mouse model of SCI,
MSCs combined with a hydrogel scaffold greatly modulated
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FIGURE 2 | The process of implantation of different hydrogels combined with SCs/exosomes into models of skin defects and wound healing.

the pro-inflammatory environment, improved the numbers of
M2 macrophages, and facilitated regeneration of the original
environment (Shevela et al., 2019). Kim et al. (2016) reported
that as compared with intralesional injection, transplantation
of scaffold-based MSCs achieved a greater implantation success
rate and locomotor ability in acute SCI, especially with the use
of a chitosan scaffold, followed by a PLGA scaffold. Besides,
Wang et al. (2020b) reported that Matrigel efficiently supported
the survival and differentiation of NSCs. As compared with
rats treated with phosphate-buffered saline (sham control) or
with Matrigel transplants, NSCs in Matrigel improved the
behavioral recovery and the expression levels of neuronal and
reactive astrocyte marker in a rat model of SCI. Zweckberger
et al. (2016) reported that SAP-treated animals had more living
NPCs and the differentiation capability of oligodendrocytes
and neurons had increased. The combined treatment with
SAP and NPCs improved the reservation and behavioral
outcomes of the corticospinal tract. Qing et al. (2018)
reported that a novel heterostructure scaffold composed of
electrospun silk nanofibers layered on graphene paper, which
had high biocompatibility and conductivity, had effectively
induced oriented growth and improved differentiation of
neuroblastoma cells.

For stroke treatment, Moshayedi et al. (2016) reported that
as a platform to promote the adhesion of structural motifs
and release of growth factors, an HA-based self-polymerizing
hydrogel promoted differential maturation of NPCs in the stroke
cavity and improved the survival rate of NPCs, which can
be tracked by magnetic resonance imaging (Guo et al., 2019;
Wang et al., 2020).

For glioblastoma, Sheets et al. (2020) reported that gelatin
matrices (GEMs) significantly supported the viability,
persistence, and efficacy of seeded NSCs. Delivery with a
scaffold of GEMs enabled therapeutic cells to persist in an
immunologically active post-surgical environment, while
maintaining stemness and the ability to target tumors. In a
mouse model, GEM-NSCs significantly reduced the residual
tumor volume. Moore et al. (2020) designed composite gelatin-
electrospun scaffolds with two degradation profiles due to
different ratios of cyclic to acyclic acetals (fast and slow). NSC
implantation efficiency, persistence, and long-term survival
were all improved by the fast and slow degrading scaffolds,
respectively, and scaffold degradation had little effect on the
persistence of NSCs.

This section described 3D scaffold-based SC therapy for
treatment of neurological diseases, including SCI, stroke, and
glioblastoma (Figure 3). SC therapy with MSCs or NSCs is
advantageous for nerve repair by maintaining the survival
of implanted SCs and enhancing neuron proliferation and
differentiation.

Exosome Therapy
Exosomes are produced by various cell types, including MSCs
(Lai et al., 2010), NSCs, CPCs, Schwann cells (Fevrier et al., 2004),
B cells (Raposo et al., 1996), T cells (Peters et al., 1989), dendritic
cells (Zitvogel et al., 1998), mast cells (Zitvogel et al., 1998), tumor
cells (Wolfers et al., 2001), and sperms (Sullivan et al., 2005).
Additionally, in most studies, MSCs were the major source of
exosomes. MSCs are simple to culture, grow quickly, and have
a high capacity for exosome production (Lindroos et al., 2011;
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FIGURE 3 | The application of 3D scaffolds combined with SCs/exosomes implanted into models of SCI, cerebral infarction, and glioblastoma formation.

Yeo et al., 2013). MSCs are also easily isolated and manipulated,
with high potential for proliferation and differentiation (Mirsaidi
et al., 2012). MSC-derived exosomes have properties of donor
cells, which can facilitate cellular self-repair, retain homeostasis
of the microenvironment, and boost healing of injured tissues
(Lai et al., 2015). In contrast to MSCs, exosomes have greater
biological impacts when directly fused with the target cell. Since
the active components are shielded from destruction by the
plasma membrane, exosomes can be preserved and transported
at low temperatures. In addition, manual monitoring of the
dose, direction, concentration, and time of usage is relatively
simple. Most importantly, cell transplantation poses no risk of
immunological rejection or tumorigenesis (Lu et al., 2017).

Applications of Exosome Therapy
Bone
Zhang et al. (2018a) reported that MSC-derived exosomes
are able to repair osteochondral defects via an organized
multi-faceted response that includes increased migration,
proliferation, and matrix synthesis, decreased apoptosis, and
modulated immunoreaction. Cui et al. (2016) reported that
exosomes derived from mineralized osteoblasts significantly
influenced miRNA profiles in recipient bone marrow cells,
thereby promoting differentiation into osteoblasts. Axin1
expression was inhibited by changes in miRNA profiles, while
β-catenin expression was increased and activated the Wnt
signaling pathway.

Heart
Arslan et al. (2013) reported that the administration of MSC-
derived exosomes decreased the infarct size and increased
cardiac function in a mouse model of myocardial ischemia-
reperfusion injury. After revascularization, exosome treatment
greatly decreased neutrophil and macrophage infiltration,
implying that exosomes have an anti-inflammation effect. Bian
et al. (2014) found that hypoxic BMSC-derived exosomes were
fully accepted by umbilical vein endothelial cells, resulting in
increased proliferation and migration. Exosome administration
decreased infarct duration, restored cardiac activity, and induced
angiogenesis in the infarcted area of a rat model of acute
MI. Yu et al. (2015) reported that BMSC-derived exosomes
overexpressing the transcription factor GATA-binding protein
4 released more miRNA-19a. In a rat model of acute MI,
exosome administration conveyed an anti-apoptosis effect under
hypoxic conditions in vitro, while restoring cardiac activity
and reducing infarct volume. MiR-19a was shown to be active
in exosome cardioprotection by downregulating phosphatase
and tensin homolog expression and activating the AKT
signaling pathway.

Skin
Exosomes are becoming more widely used in regenerative
medicine due to anti-inflammatory properties and the ability
to promote angiogenesis through proliferative and migratory
phenotypes, wound healing, and anti-aging properties.
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Exosomes facilitate a major change of the recipient
macrophages to the anti-inflammatory phenotype during
inflammation (Regenerative et al., 2017). Exosomes have the
potential to inhibit the immune response by regulating the
recruitment, differentiation, and proliferation of B lymphocyte,
as well as converting activated T lymphocytes to the T-regulatory
phenotype (Nosbaum et al., 2015; Monguió-Tortajada et al.,
2017). According to numerous reports, exosomes also have
immunomodulatory effects through particular miRNAs, such
as miRNA-21, miRNA-181c, and miRNA-146a (Ti et al., 2015,
2016), and various receptor signaling pathways (Li et al., 2016).

Exosomes, which promote neoangiogenesis, tissue
regeneration, collagen deposition, re-epithelialization, and
wound healing during proliferation (Midwood et al., 2004), can
be preserved and transport their RNA and protein cargos to
recipient cells to regulate migration and proliferation. Exosomes
can also promote the synthesis and expression levels of types
I and III collagen and elastin during the remodeling process
(Zhang et al., 2015). In addition, exosomes suppress scar
formation by regulating collagen production at various stages of
the wound healing process (Kou et al., 2018).

Eye
Yu et al. (2016) investigated that intravitreal administration
of MSC-derived exosomes inhibited inflammation, limited the
extent of damage, reduced apoptosis, and improved visual
function via downregulation of MCP-1. Zhang et al. (2018b)
concluded that injection of MSC-derived exosomes into the
eye after a normal pars plana vitrectomy could increase the
anatomical and functional effects of macular holes, which is
difficult to treat during the initial surgery. Some studies Trichonas
et al. (2010); Nakazawa et al. (2011), and Xie et al. (2017)
have found that MSC-derived exosomes induce the production
of inflammatory cytokines and increase autophagy, thereby
increasing the survival of photoreceptors. In a rat model of retinal
detachment, exosomes were reported to inhibit the induction
of TNF-α and subsequently suppress the inflammatory response
and cell death following retinal damage by decreasing autophagy.

Nerve System
Xin et al. (2013) found that co-administration of BMSC-derived
exosomes significantly boosted neurological regeneration and
induced neurogenesis and angiogenesis in the ischemic zone
after ligating the middle cerebral artery in a rat model of
stroke. Doeppner et al. (2015) reported that following ligation
of the middle cerebral artery, administration of BMSCs and
BMSC-derived exosomes improved neurological function and
stimulated angiogenesis and neurogenesis to the same degree in
a mouse model of focal cerebral ischemia.

Scaffold-Based Exosome Therapy
Although the efficacy of exosome therapy has been investigated
in various systems for many years and some results have been
achieved, 3D scaffold-based exosome therapy is still in its infancy,
as the effects in some systems have not yet been studied.
Nonetheless, the use of 3D scaffold-based exosome therapies

for regeneration of bone, skin, and neurons have reportedly
achieved good results.

Bone
In recent years, 3D scaffold-based exosome therapy has shown
great potential in the regeneration of bone cartilage (Figure 1).
Narayanan et al. (2016) reported that osteogenic MSC-derived
exosomes can be combined with ECM proteins, such as
collagen I and fibronectin, to promote the differentiation of
MSCs into osteocytes. Yang et al. (2020b) reported that the
combination of UCMSC-derived exosomes and HAP-embedded
crosslinked HA-alginate hydrogel in situ significantly enhanced
bone regeneration of preosteoblasts. Several studies Qi et al.
(2016); Zhang et al. (2016), and Ying et al. (2020) reported
that the combination of iPSC- or MSC-derived exosomes and a
β-TCP scaffold promoted angiogenesis and osteogenesis. Three
studies Sanchez et al. (2020); Wang et al. (2020d), and Zha
et al. (2021) reported that the combination of exosomes and a
PCL scaffold significantly enhanced osteogenic differentiation of
MSCs. Gandolfi et al. (2020) reported that the mineral-doped
PLA porous scaffolds enriched with MSC-derived exosomes
increased the osteogenic commitment of MSCs. Li et al. (2018b)
and Swanson et al. (2020) reported that different scaffolds
based on biodegradable PLGA, in which exosomes facilitated
osteogenic differentiation, promoted mineralization by recruiting
endogenous cells to bone defects.

Many types of 3D scaffolds can promote osteogenesis. With
the exception of common gels, polysaccharides and related
complexes, some scaffolds are composed of metals, decellularized
ECM, and or related complexes. Scaffolds of different materials
can support the survival of SCs and promote osteogenic
differentiation and osteogenesis. The combination of 3D scaffolds
and exosomes provides various novel treatment methods for
orthopedic injuries and promotes clinical transformation.

Skin
Several studies have investigated the efficacy of 3D scaffold-
based exosome therapy for skin regeneration (Figure 2). Yang
et al. (2020a) reported that the combination of a Pluronic
F-127 hydrogel and UCMSC-derived exosomes significantly
accelerated wound closure, enhanced regeneration of granulation
tissue, and promoted wound healing for diabetics. Wang et al.
(2020a) confirmed that a biocompatible 3D porous self-healing
methylcellulose-chitosan hydrogel loaded with placental MSC-
derived exosomes facilitated wound healing by synergistically
inducing angiogenesis and inhibiting apoptosis. Shafei et al.
(2020) reported that a alginate-based hydrogel loaded with ASC-
derived exosomes improved wound closing, vessel development,
and collagen synthesis. Nooshabadi et al. (2020) reported
that a chitosan hydrogel scaffold containing exosomes was
effective for wound closure and promoted a high degree of
re-epithelialization.

Nerve System
Several studies have assessed the effectiveness of 3D scaffold-
based exosome therapy for treatment of nerve injuries (Figure 3).
Li et al. (2020) reported that topical transplantation of
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MSC-derived exosomes fixed in a peptide-modified hydrogel
provided exosome-encapsulated ECM for repair of damaged
nerve tissues and induced comprehensive mitigation of the
microenvironment. The implanted exosomes exhibited better
retention and continuous release. By mitigating oxidation
and inflammation, the exosome-loaded hydrogel significantly
elicited nerve repair. Hsu et al. (2020) reported that UCMSC-
derived exosomes induced neurite outgrowth and protected
neurons from formic acid in vitro. In vivo, an alginate scaffold
with exosomes exhibited anti-toxicity, anti-inflammation, and
pro-neurotrophy activities in a ligation model of spinal
nerve pain.

CONCLUSION

The SC therapy has become a fascinating biomedical field
that has prompted a lot of excitement in recent years. Local
injection of ASCs effectively alleviated OA of the knee (Zhou
et al., 2018); iPSCs had maximum capacity in myocardial repair
and iPSC-derived cardiomyocytes exhibit much of the same
features as cardiac cells (Xi et al., 2010). Treatment with the
combination of SAP and NPCs promoted the reservation and
behavioral outcomes of the corticospinal tract (Zweckberger
et al., 2016). As a potential medical option, the use of SC
therapy still faces numerous challenges, including immunological
rejection, teratoma formation, and differentiation of non-
targeted cells.

Exosomes, which carry different bioactive proteins, nucleic
acids, microRNAs, and unique gene products (Jo et al., 2014;
Katare et al., 2014; Lee et al., 2015a), have long been recognized
as vital for the clinical efficacy of endogenous and grafted
cells (Lai et al., 2015; Zhang et al., 2018a). Exosomes can also
serve as intercellular signaling mediators and transport trophic
factors to neighboring cells (Colombo et al., 2014). As compared
to SC therapy, the use of exosomes is minimally invasive
in acellular regenerative medicine. MSC-derived exosomes can
repair osteochondral defects via an organized, multi-faceted
response (Zhang et al., 2018a); MSC-derived exosomes were
shown to decrease the infarcted area and increase cardiac
function in a mouse model of myocardial ischemia-reperfusion
injury (Arslan et al., 2013); BMSC-derived exosomes significantly
boosted neurological regeneration and induced angiogenesis and
neurogenesis of the ischemic zone after ligating the middle
cerebral artery (Xin et al., 2013; Doeppner et al., 2015).

Various biomaterials used to create 3D scaffolds have
revolutionized tissue and organ transplantation and regenerative
medicine. Recent advances in 3D scaffold-based therapies in
different tissues are outlined in this study. The hydrogel particle
scaffolds are usually suitable for various tissues and organs,
while solid scaffolds are generally used as models of orthopedic
diseases. The combination of iPSC- or MSC-derived exosomes
and β-TCP scaffolds promote angiogenesis and osteogenesis (Qi
et al., 2016; Zhang et al., 2016; Ying et al., 2020); The combination
of Wharton jelly-derived MSCs with PEG, HA, and chitosan
improved defect size and cardiac function, while promoting
neoangiogenesis and cardiomyogenesis (Rabbani et al., 2017);
MSC-derived exosomes fixed in a peptide-modified hydrogel
significantly elicited nerve recovery by mitigating oxidation and
inflammation (Li et al., 2020).

As carriers, 3D scaffolds combined with SC/exosomes provide
a 3D microenvironment and played a role in continuous
infiltration and release. The combination of a 3D scaffold,
especially with exosomes, can better improve treatment of
bone and cartilage defects, myocardial repair, and nerve repair
more than normal SC/exosome therapies. In the future, 3D
scaffold-based SC/exosome therapy will be applied for successful
treatment of different tissues. Particularly, 3D scaffold-based
exosome therapy presents much stronger advantages without
the limitation of SCs. The combination a 3D scaffold and SCs
will continue to advance from fundamental research to clinical
application. 3D scaffold-based exosome therapy is expected to
become more widely applied in the future.
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