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Objective: HIV type 2 (HIV-2) represents an attenuated form of HIV, in which many
infected individuals remain ‘aviremic’ without antiretroviral therapy. However, aviremic
HIV-2 disease progression exists, and in the current study, we therefore aimed to examine
if specific pathological characteristics of CD4þ T cells are linked to such outcome.

Design: HIV-seronegative (n¼25), HIV type 1 (HIV-1) (n¼33), HIV-2 (n¼39, of
whom 26 were aviremic), and HIV-1/2 dually (HIV-D) (n¼13)-infected study partici-
pants were enrolled from an occupational cohort in Guinea-Bissau.

Methods: CD4þ T-cell differentiation, activation, exhaustion, senescence, and tran-
scription factors were assessed by polychromatic flow cytometry. Multidimensional
clustering bioinformatic tools were used to identify CD4þ T-cell subpopulations linked
to infection type and disease stage.

Results: HIV-2-infected individuals had early and late-differentiated CD4þ T-cell
clusters with lower activation (CD38þHLA-DRþ) and exhaustion programmed
death-1 (PD-1) than HIV-1 and HIV-D-infected individuals. We also noted that aviremic
HIV-2-infected individuals possessed fewer individuals. CD4þ T cells with pathological
signs compared to other HIV-infected groups. Still, compared to HIV-seronegative
individuals, aviremic HIV-2-infected individuals had T-betþ CD4þ T cells that showed
elevated immune activation/exhaustion, and particularly the frequencies of PD-1þ cells
were associated with a suboptimal percentage of CD4þ T cells.

Conclusion: Increased frequencies of CD4þ T cells with an activated/exhausted
phenotype correlate with exacerbated immunodeficiency in aviremic HIV-2-infected
individuals. Thus, these findings encourage studies on the introduction of antiretroviral
therapy also to individuals with aviremic HIV-2 infection.
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Introduction
Untreated HIV type 1 (HIV-1) infection is characterized
by progressive decline of CD4þ T cells, resulting in the
development of AIDS. Infection with HIV type 2 (HIV-
2) may also progress to AIDS, but the likelihood is
reduced (reviewed in [1]). The reason for this difference is
not fully elucidated, but it is clear that the plasma viral
load set-point in HIV-2-infected individuals is at least one
log lower than in HIV-1-infected individuals [2,3]. Even
though HIV-2 plasma viremia may emerge, and is
predictive of progressive HIV-2 disease [4,5], a large
proportion of HIV-2-infected individuals maintain
undetectable HIV-2 plasma levels, similar to individuals
with untreated aviremic HIV-1 infection (elite con-
trollers) [2,3]. Studies have implicated that lower HIV-2
plasma levels might partly be a consequence of an efficient
T-cell response, including HIV-2-specific CD4þ and
CD8þ T cells with sustained functionality and specific
transcriptional profiles [6–9]. Furthermore, HIV-2 can
delay subsequent HIV-1 disease progression in HIV-1/
HIV-2 dually (HIV-D)-infected individuals [10,11].
Therefore, studies of aviremic HIV-2-infected individuals
may provide insights to how protective immunity can be
harnessed and translated for future vaccine or curing
strategies against both HIV-1 and HIV-2.

Despite the fact that HIV-2 represents an attenuated form
of HIV, individuals infected with HIV-2 may display
patterns of immune dysregulation, for example, elevated
activation and exhaustion of myeloid, natural killer (NK),
invariant NKT, and T cells [12–17]. Furthermore, gut
disruption and microbial translocation can also be a
consequence of HIV-2 infection [18,19]. Nevertheless,
many of these studies have not separated aviremic from
viremic HIV-2-infected individuals, and therefore large
heterogeneity can be found for immune activation and
other pathological characteristics. However, it was
recently indicated that aviremic HIV-2-infected individ-
uals had CD8þ T cells with lower immune activation and
cell cycling compared to those with viremia [20]. In
another study, expression levels of the programmed
death-1 (PD-1) exhaustion marker on T cells were found
to be different comparing aviremic and viremic HIV-2-
infected individuals [15]. However, it remains largely
unexplored whether specific memory CD4þ T-cell
compartments display pathological traits in progressive
HIV-2 disease without viremia.

Several lines of evidence suggest that HIV-1 elite
controllers retain increased T-cell activation compared
with HIV-seronegative and long-term antiretroviral
therapy (ART)-treated HIV-1-infected individuals
[21,22]. Studies have also demonstrated reduced T-cell
activation in HIV-1 elite controllers undergoing pro-
spective ART [23]. Moreover, some of these individuals
also progress to AIDS despite undetectable viremia, and
possess higher risk to develop non-AIDS-related diseases
[24]. A large proportion of individuals infected with
HIV-2 remain aviremic for years, but it is not clear
whether these individuals have CD4þ T cells with
markers of elevated activation and other pathological
characteristics, thereby increasing their risk of AIDS and
non-AIDS-related illnesses.

Here, HIV-1, HIV-2, and HIV-D-infected individuals,
and also HIV-seronegative controls, were enrolled from a
cohort in Guinea-Bissau [25,26]. Our aim was to
describe, with new clustering in-situ tools, which
memory CD4þ T-cell populations that were highly
activated, exhausted, and transcriptionally dysregulated in
these infections. Furthermore, we set out to determine
whether CD4þ T cells with specific pathological
phenotypes were elevated and associated with immuno-
deficiency in aviremic HIV-2 infection.
Methods

Study participants
The study participants were part of an occupational cohort
of police officers in Guinea-Bissau [25,26] (see Supple-
mental Digital Content Table S1, http://links.lww.com/
QAD/A971). Blood samples were obtained from HIV-1
(n¼ 33), HIV-2 (n¼ 39, of whom 26 were aviremic), or
HIV-D (n¼ 13)-infected individuals, either naive to
treatment or not successfully treated, that is, with viremia
above the detection level. Samples from 25 HIV-
seronegative individuals within the same cohort were
included as controls. Informed consent was obtained from
the participants and the local science coordination, the
ethical committee in Guinea-Bissau, and the ethical
committee at Lund University approved the study.

Sample collection and CD4R T-cell level
determination
Blood samples were collected using EDTA vacutainer
tubes (BD Biosciences, San Jose, California, USA,
Omaha, Nebraska, USA) and Cyto-Chex BCT tubes
(Streck). As previously described [27], HIV status and
percentage of CD4þ T cells (%CD4) were determined
using serology and flow cytometry, respectively. The
rational for the use of %CD4 as a marker of
immunodeficiency came from findings that %CD4 is a
more stable disease marker than absolute CD4þ T-cell
(CD4) count in settings with elevated pathogenic burden
and comorbidities [28], and on the prior use of this
marker in the studied cohort [29]. CD4 count was
determined on Cyto-chex-stabilized whole blood at the
Laboratory of Clinical Immunology and Transfusion
Medicine, Skåne University Hospital, Lund, Sweden.

Plasma HIV-1 and HIV-2 viral load
With minor modifications, HIV-1 and HIV-2 plasma
viral loads were determined by in-house quantitiative

http://links.lww.com/QAD/A971
http://links.lww.com/QAD/A971


Pathological T cells in HIV-1 and HIV-2 Buggert et al. 2417
PCR (qPCR) protocols as described [30]. Briefly, viral
RNA was extracted using miRNeasy micro Kit (Qiagen,
Hilden, Germany), and TaqMan qRT-PCR was per-
formed using the Superscript III Platinum One Step
qRT-PCR kit (Life Technologies, Carlsbad, California,
USA). The detection limit for the viral loads was 75 RNA
copies/ml plasma for HIV-1 or HIV-2 singly-infected,
and 135 RNA copies/ml plasma for HIV-D-infected.

Flow cytometry staining and analysis
Flow cytometry staining of markers on CD4þ T cells
was performed on Cyto-Chex-stabilized whole blood
[31]. Preanalysis was conducted to confirm that Cyto-
Chex-stabilized blood generated data of all tested markers
equivalent to that obtained with fresh blood samples (data
not shown). Stainings of blood were adopted from
protocols used for peripheral blood mononuclear cells
[32]. Red blood cells were lyzed and remaining cells
were stained with fluorochrome-conjugated antibodies
(Supplemental Digital Content Table S2, http://
links.lww.com/QAD/A971). Cells were permeabilized
and fixed with the FOXP3 staining kit (eBioscience, San
Diego, California, USA). Within 6 h, cells were run on a
LSR Fortessa (BD Biosciences), where minimally
600 000 events were collected per run. Antibody capture
beads (BD Biosciences) were used for compensation and
FlowJo 8.8.7 (Tree Star, Ashland, Oregon, USA) for
analyses. All manual gatings were based on fluorescence-
minus-one gating strategies as described [33,34]. A typical
gating strategy to distinguish CD4þ T cells is visualized in
Fig. 1a.

Multidimensional clustering FLOw Clustering
without K analysis
The FLOw Clustering without K (FLOCK) analyses
were in large performed as described [35]. Thirty
thousand events from every HIV-infected individual
were randomly subsampled from all CD4þ-gated
population to create centroids. If a study participant
had fewer than 30 000 events, all events were included.
The centroids were applied to the cohorts, in which, for
each individual, their events were binned into their
respective closest cluster. This translates the events for
each individual into frequencies of FLOCK population
usage, yielding a FLOCK frequency matrix describing
these frequencies for all study participants. Single-channel
normalization – GaussNorm [36] – was used to correct
for minor fluorescence shifts of CD45RO and CD27
expression between individuals.

Statistical analysis
All statistical tests are described in corresponding figure
legends. Statistical comparisons between two or more
groups and correlations were performed using Graphpad
Prism 5.0 (Graphpad Software, La Jolla, California,
USA). Pie charts and permutations tests were analyzed
using SPICE [37]. Clustering analysis, heat maps, and
principal component analysis (PCA) were performed in
R environment [38].
Results

CD4R T-cell activation and exhaustion, but not
memory differentiation, distinguish HIV-2 from
HIV-1 and HIV-D infections
Previous studies have demonstrated elevated levels of
T-cell pathology, such as immune activation and
exhaustion, in HIV-1-infected individuals compared
to HIV-2-infected and HIV-seronegative individuals
[12–15,20]. However, no study has assessed these cellular
characteristics comparing individuals who are singly
versus dually infected with HIV-1 and HIV-2. We here
conducted in-depth investigations of CD4þ T cells
(Fig. 1a) and their simultaneous expression of markers
reflecting maturation (CD45RO, CD27), activation
(CD38, HLA-DR), exhaustion (PD-1, 2B4), senescence
(CD57), and also transcription factors of memory
differentiation and cytolytic potential (T-bet, Eomes)
[39] in HIV-1, HIV-2, and HIV-D-infected individuals.
We first investigated individual and dual combinations of
commonly used markers distinguishing CD4þ T-cell
subsets. Surprisingly, the frequency of CD4þ T-cell
memory phenotypes was largely similar between the
groups, in which only late-differentiated (CD45ROþ

CD27�) cells were elevated in HIV-1-infected compared
to HIV-2-infected study participants (P< 0.05; Fig. 1b).
The frequency of activated (CD38þHLA-DRþ) cells was
lower, whereas the frequency of resting (CD38�HLA-
DR�) cells was higher, in HIV-2 compared to both HIV-
1 (P< 0.001) and HIV-D (P< 0.05)-infected individuals.
The level of PD-1-expressing cells followed similar trends
and was reduced on CD4þ T cells in HIV-2 compared to
both HIV-1 (P< 0.001) and HIV-D (P< 0.05) infections
(Fig. 1c). Level of 2B4 expressing cells, and also CD57,
T-bet, and Eomes, was similar between all the groups
(P> 0.05), implicating that markers of late/terminal
differentiation and senescent CD4þ T cells are not
hallmarks that distinguish HIV-1 from HIV-2 infection
(Fig. 1d).

Clustering-based analysis define four separate
memory CD4R T-cell populations that are
elevated in HIV-1-infected individuals
In order to combine the measurement of all assessed
markers, we used a multidimensional clustering
method, FLOCK [35,40], to delineate whether specific
CD4þ T-cell clusters were differently expressed
between the three HIV-infected groups. Using this
approach, we identified 23 unique CD4þ T-cell
populations after including CD4þ T cells from all
HIV-infected study participants. By employing unsu-
pervised hierarchical clustering analysis on the 23
unique populations, we identified clustering that was
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Fig. 1. CD4R T-cell populations identified by single/double expression patterns of assessed markers in HIV-1, HIV-2, and HIV-
D-infected individuals. (a) Gating scheme to differentiate CD4þ T cells. Flow and scatter plots illustrating the level of (b) memory
differentiation, (c) expression of CD38, HLA-DR, PD-1, 2B4, and (d) CD57, T-bet, Eomes expression, in all HIV-infected groups.
Nonparametric Kruskal–Wallis test with Dunn’s multiple comparison test was conducted to compare groups; �P<0.05,
��P< 0.01, and ���P<0.001. Medians and IQR are depicted in plots. HIV-D, HIV-1/2 dually infected; IQR, interquartile range.
particularly dependent on the CD4þ level and HIV
status (horizontal dendrograms of the individuals) and
memory differentiation (vertical dendrograms of the
FLOCK populations) (Fig. 2a). Furthermore, two
memory clusters were primarily found to be elevated
within the HIV-1 and HIV-D-infected individuals
compared to the HIV-2-infected individuals: one early-
differentiated (CD27þ CD45ROþ) cluster with increased
CD38 and PD-1, but low HLA-DR levels and with
variable expression levels of 2B4 and Eomes (populations 8
and 9), and a late-differentiated (CD27�CD45ROþ)
cluster with elevated levels of CD38, HLA-DR, and PD-1,
and alsovariable expression of 2B4 and Eomes (populations
5 and 10) (Fig. 2b; Supplemental Digital Content Fig. S1,
http://links.lww.com/QAD/A971). These two popu-
lations also demonstrated intermediate expression levels of
T-bet. Finally, a PCA on all 23 FLOCK population
frequencies were performed. PCA is an unsupervised
statistical method for reducing data dimensionality while
retaining the vital variation in fewer informative variables.
Specifically one component (PC1) of the PCA was
significantly lower for individuals infected with HIV-2
compared to HIV-1 (P< 0.001) and HIV-D (P< 0.01)
(Fig. 2c).
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Fig. 2. CD4R T-cell populations identified by expression patterns of all assessed markers in HIV-1, HIV-2, and HIV-D-infected
individuals evaluated by FLOCK analysis. (a) The FLOCK frequency matrix is visualized (center red/blue) using a heat map
representation. The rows denote the FLOCK populations and the columns represent HIV-infected individuals. The color of each
tile denotes the population frequency for the specific FLOCK population in the specific patient. Unsupervised hierarchical
clustering was performed on both the rows and columns of the FLOCK frequency matrix. The heat map on the (green/brown) left-
hand side shows the average mean fluorescent intensities (MFIs) for each FLOCK population. The top two bars show the HIV status
of each individual and their corresponding %CD4. The populations found to be significantly different between HIV-1, HIV-2, and
HIV-D are denoted by the asterisk on the right-hand side of the main heat map. A bar plot representation of the frequencies of these
four FLOCK populations, late differentiated (Diff) population (Pop) 5 and 10 (CD38þþHLA-DRþPD-1þT-betþ) and early diff Pop 8
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FLOCK, FLOw Clustering without K; HIV-D, HIV-1/2 dually infected; PCA, principal component analysis.
Viremic HIV-2-infected individuals possess
higher CD4R T-cell activation and exhaustion
than aviremic individuals
Despite that HIV-2-infected study participants demon-
strated lower levels of CD4þ T-cell activation and
exhaustion, we found a large heterogeneity in this group
where some individuals clustered together with the HIV-
1-infected group (Fig. 2). Therefore, we next analyzed
whether individuals with detectable (viremic, n¼ 13)
versus undetectable (aviremic, n¼ 26) HIV-2 RNA
plasma levels showed differences between the measured
CD4þT-cell parameters. We first assessed single and dual-
marker combinations of all measured parameters. In line
with our previous observations, no major differences
were observed in regard to naive/memory phenotype
distributions, T-box transcription factors, CD57, and 2B4
expression (data not shown). However, the co-expression
pattern of CD38, HLA-DR, and PD-1 were statistically
different between the viremic versus aviremic HIV-2-
infected groups (permutation test; P< 0.001) (Fig. 3a).
Using Boolean gating principles, we found that the
frequency of CD38þHLA-DRþPD-1þ (P< 0.01),
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CD38þHLA-DR�PD-1þ (P< 0.05), and CD38þHLA-
DRþPD-1� (P< 0.01) CD4þ T cells were elevated
within viremic individuals, whereas the nonactivated/
nonexhausted state (CD38�HLA-DR�PD-1�) was
higher within aviremic study participants (P< 0.001;
Fig. 3a). Strikingly, HIV-2 viremic individuals possessed
similar CD4þ T-cell activation and exhaustion as the
HIV-1 and HIV-D-infected groups (Fig. 2) despite a 1.3
log lower plasma viral load than the HIV-1-infected
individuals (see Supplemental Digital Content Table S1,
http://links.lww.com/QAD/A971).
Next, FLOCK was adapted to identify specific CD4þ

T-cell clusters that differed between the viremic versus
aviremic HIV-2-infected patients. We found that only
early or late (CD45ROþ) differentiated CD4þ T-cell
individuals. populations with increased CD38 expression,
and variable levels of HLA-DR, PD-1, 2B4, CD27,
Eomes, and T-bet, were elevated within viremic
individuals (populations 2, 5, 8, 9, and 10) (Fig. 3b).
Similarly, only memory (CD45ROþ) CD4þ T-cell
populations, but with lower CD38, HLA-DR, and
PD-1 levels, were increased in aviremic individuals

http://links.lww.com/QAD/A971
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(populations 4, 7, and 12) (Fig. 3b). Also, here the PCA
confirmed that the overall combination of all FLOCK
populations were significantly different, based on PC1
score (P< 0.001), between the viremic and aviremic
HIV-2-infected individuals (Fig. 3c).

Elevation of CD4R T-cell activation/exhaustion
in aviremic HIV-2 infection
Although the aviremic HIV-2-infected study participants
possessed lower combined and single measurements of
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CD4þ T-cell pathology than those with viremic HIV-2
infection, we found that these individuals had 48% fewer
absolute count CD4þ T cells (median 513 versus
1037 cells/mL; P< 0.001) and %CD4 was reduced with
30% (mean 29.5 versus 42.6%; P< 0.001) compared with
HIV-seronegatives from the same cohort (Fig. 4a). We
therefore hypothesized that reduced CD4þ T-cell levels
were associated with altered expression of markers
indicating CD4þ T-cell pathology. No T-box tran-
scriptional or memory differentiation differences were
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observed (data not shown), but again both CD38þHLA-
DRþ (P< 0.01) and PD-1þ (P< 0.05) frequencies were
significantly elevated among CD4þ T cells in aviremic
HIV-2-infected individuals (Fig. 4b). Interestingly, the
reduction of resting CD4þ T cells in the aviremic
individuals was particularly strong (P< 0.001) (Fig. 4b).
Similarly, FLOCK analysis identified that early and late-
differentiated CD4þ T-cell clusters (populations 5, 8, 9,
and 10) commonly displaying increased CD38 and PD-1
levels were elevated in the aviremic HIV-2-infected
individuals (Fig. 4c). In contrast, memory CD4þ T cells
with no expression of HLA-DR and PD-1, and variable
levels of CD38, 2B4, and T-bet (populations 12 and 17)
were higher within HIV-seronegative study participants
(Fig. 4c), demonstrating an imbalance of resting memory
CD4þ T cells in aviremic individuals with HIV-2
infection. The PC1 score on all FLOCK population
frequencies demonstrated significant differences between
HIV-seronegative and HIV-2 aviremic individuals
(P< 0.01; Fig. 4d).

Combined CD38, HLA-DR, and PD-1 expression
is primarily associated with lower %CD4 and
CD4 count in aviremic HIV-2 infection
We finally evaluated whether the suboptimal CD4þ levels
in the aviremic HIV-2-infected individuals were associ-
ated with heightened CD4þ T-cell activation/exhaustion
or lower levels of resting CD38�HLA-DR� cells.
Despite the fact that aviremic HIV-2-infected individuals
demonstrated lower frequencies of CD38�HLA-DR�

cells than HIV-seronegative controls, no significant
correlation was observed between the frequency of
resting CD4þ T cells and %CD4 or CD4 count (data
not shown). Percentage of CD38þHLA-DRþ CD4þ

T cells was instead inversely associated with both %CD4þ

(r¼ -0.42, P< 0.05) and CD4 count (r¼�0.44,
P< 0.05) (Fig. 5a). In contrast, the frequency of PD-
1þ CD4þ T cells correlated inversely only with %CD4
(r¼�0.59, P< 0.01), and not CD4 count (Fig. 5b). In
line with the Boolean gating analysis (Fig. 3a) was the
triple combination of CD38, HLA-DR, and PD-1
indicative of disease severity, both assessed as %CD4 and
CD4 count, in aviremic HIV-2 infection (r¼�0.59,
P< 0.01; Fig. 5c). After plotting the frequencies of
FLOCK-mediated CD4þ T-cell clusters, we found that
also the early differentiated CD38þþHLA-DR�PD-
1þT-betþ population 8 correlated inversely with both
%CD4 and CD4 count (r¼�0.45, P< 0.05; and
r¼ 0.41, P< 0.05, respectively; Fig. 5d). Still, it was
particularly the late differentiated CD38þþHLA-
DRþPD-1þT-betþ population 10, with the highest
PD-1, CD38, and HLA-DR fluorescent intensity levels,
that correlated with low %CD4 and CD4 counts in
aviremic HIV-2 infection. Collectively, our results show
that T-betþ memory CD4þ T cells with specific
pathological phenotypes, including a combination of
elevated CD38, HLA-DR, and PD-1, are associated with
reduced CD4þ T-cell levels in aviremic HIV-2 infection.
Discussion

Deeper knowledge of HIV-infected individuals con-
trolling their virus might potentially lead to novel
insights into how protective immunity could be
translated in future therapeutic cure or vaccine
approaches. Studies investigating whether aviremic
HIV-2 infection is associated with increased CD4þ

T-cell pathology remain, however, limited [12,15,20],
and no study, to our knowledge, has shown whether
immunodeficiency in aviremic HIV-2-infection is
linked to altered memory CD4þ T-cell pathology. By
the support of an interdisciplinary approach, we here, in
side-by-side analysis of blood samples from HIV-1,
HIV-2, or HIV-D-infected individuals, identified that
HIV-2-infected aviremic individuals demonstrate the
lowest frequencies of CD4þ T cells with an activated/
exhausted phenotype. Still, memory CD4þ T cells
expressing these markers were significantly elevated in
aviremic HIV-2-infected individuals, and more impor-
tantly, were inversely correlated with lower CD4þ

T-cell levels, compared to HIV-seronegative individuals
from the same cohort.

Intriguingly, we noted that the strongest correlation to
reduced %CD4þ T cells in HIV-2 aviremic infection was
linked more to accumulation of PD-1þ and less to
CD38þHLA-DRþ cells. Of note, HIV-1-infected
individuals demonstrated a different relationship, in
which PD-1þ (r¼�0.74, P< 0.001) and CD38þ

HLA-DRþ (r¼�0.71, P< 0.001) cells demonstrated
similar correlation coefficients to reduced %CD4 (data
not shown). These data suggest that PD-1, partly
independently of the activation status, hinders normal
immune homeostasis of memory CD4þ T cells in
aviremic HIV-2 infection, an assumption also supported
by the difference in %PD-1þ cells observed between
our controls and aviremic HIV-2-infected individuals.
Tendeiro et al. [15] did not find any difference in PD-1
expression between aviremic individuals and controls.
The dissimilar result might be due to the usage of different
anti-PD-1 antibody clones and the interpretation of the
flow data, based on mean fluorescent intensity (MFI) [15]
or cell frequencies. In addition, a significant proportion
(77%) of the aviremic HIV-2-infected individuals in our
study had suboptimal CD4þ T cell levels, below the
interquartile range of the HIV-seronegative individuals.
Interestingly, strong links between elevated frequency of
cells expressing PD-1, in combination with CD38 and
HLA-DR, was noted with reduced levels of both %CD4
and CD4 count. However, when analyzing %PD-1þ cells
separately, there was only an association with %CD4, in
line with our earlier observations that CD4/CD8 ratio
and %CD4 correlate better with pathological T-cell
phenotypes than CD4 count [33]. The simultaneous
assessment of all markers and specific CD4þ T-cell
populations using FLOCK analysis also revealed that
PD-1-expressing populations, primarily the activated
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Fig. 5. Frequencies of CD4R T-cell subpopulation in correlation to levels of CD4R T cells among aviremic HIV-2-infected
individuals. Correlations between percentage CD4þ T cells or absolute CD4þ T-cell count and (a) CD38þHLA-DRþ, (b) PD-1þ,
(c) CD38þHLA-DRþPD-1þ, (d) FLOCK population (Pop) 8 (early differentiated CD38þþHLA-DR�PD-1þT-betþ), and (e) Pop 10
(late differentiated CD38þþHLA-DRþPD-1þT-betþ) CD4þ T cells among HIV-2 aviremic individuals. The Spearman rank
nonparametric test was used for correlations analysis. FLOCK, FLOw Clustering without K.
late-differentiated, were associated with low CD4þ T-cell
levels in aviremic HIV-2 infection. The intermediate
to high T-bet levels furthermore support that
increased exhaustion, and partly activation, is particularly
associated with immunodeficiency during aviremic
HIV-2 infection.
Similarly to our analysis of aviremic HIV-2-infected
individuals, studies have demonstrated that HIV-1 elite
controllers demonstrate elevated T-cell activation that is
associated with progressive disease [21,22]. A recent study
reported, however, that PD-1 MFI levels on CD4þ

T cells were not different between HIV-1 elite controllers
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and HIV-seronegative individuals, although PD-1 was
highly predictive of failing CD4þ T-cell recovery after
ART initiation [41]. The CD4þ T-cell levels of the
HIV-2 aviremic individuals participating in the current
study varied widely and were significantly lower than in
the HIV-seronegative individuals. Thus, it seems likely
that the aviremic HIV-2-infected individuals in our study
partly differ from American/European HIV-1 elite
controllers, in whom CD4þ T cell levels are relatively
preserved [21,22,41]. The reason for these differences
may be multifactorial, including type of HIV infection
(HIV-1 versus HIV-2) and geographical location.
Another difference could be duration of HIV infection.
Because the majority of the HIV-2 aviremic individuals in
our study had been diagnosed more than 15 years before
the sampling (data not shown), one can assume that they
had been infected for decades. Progressively increased
expression of PD-1 on both CD4þ and CD8þ T-cell
subsets have been shown by longitudinal studies of
untreated HIV-1 infection [41], and could likely be a
component of failed CD4þ T-cell regeneration. Similarly
to HIV-1 elite controllers, HIV-2 aviremic individuals
could also have ongoing virus replication. Ultrasensitive
PCR analyses and virus phylogenetic studies support
ongoing low-grade virus replication in HIV-1 elite
controllers [42,43]. Such studies have not yet been
performed in HIV-2 aviremic infections, but it can be
anticipated that ultrasensitive assays will detect low-grade
viremia in a substantial proportion of HIV-2-infected
individuals now classified as aviremic, as indicated by a
digital droplet PCR protocol [44]. It is, however,
intriguing that proviral loads in HIV-2-infected individ-
uals have been reported to be similar to that of HIV-1-
infected individuals, despite the large difference in plasma
viral load [45]. It has also been shown by Soares et al. [46]
that HIV-1 and HIV-2-infected individuals matched for
CD4þ exhibit similar gag mRNA levels, suggesting that
viral transcription occurs, despite low plasma viral load in
HIV-2 infection, which might fuel the disease progression
in aviremic HIV-2 infection.

In line with other studies, we also found that CD4þ T-cell
activation [12,20] and PD-1 expression [15] were elevated
in viremic compared to aviremic HIV-2 infection. Here,
clustering analysis revealed that it was CD45ROþ

(memory) CD4þ T-cell populations with elevated
CD38 expression that accumulated in the viremic HIV-
2-infected individuals. Several of these highly activated
populations also expressed intermediate to high levels of
T-bet, which implicate that many of the changes could
potentially occur in T-helper 1 polarized cells (reviewed in
[47]). Furthermore, the elevated CD38 levels in HIV-2
viremic individuals stands in contrast to the dominance of
PD-1 expression during immunodeficiency in aviremic
HIV-2 infection, and may suggest that markers of
activation and exhaustion appear with different kinetics
during the HIV-2 disease course, and that T-cell activation
is more closely related to the extent of viremia.
In summary, we here describe that aviremic HIV-2-
infected individuals in general demonstrate lower
expression levels of pathological CD4þ T-cells markers
than viremic HIV-1 and HIV-2-infected individuals.
However, aviremic HIV-2-infected individuals still dis-
play specific memory CD4þ T-cell compartments with
elevated activation and exhaustion compared with HIV-
seronegative individuals. Taken together, we believe these
findings should be the incentive for future studies/trials
examining whether CD4þ T-cell decline and immune
activation/exhaustion could be reversed by adminis-
tration of ART also to HIV-2 aviremic individuals.
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