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Abstract: Drug resistance causes therapeutic failure in refractory cancer. Cancer drug resistance stems
from various factors, such as patient heterogeneity and genetic alterations in somatic cancer cells,
including those from identical tissues. Generally, resistance is intrinsic for cancers; however, cancer
resistance becomes common owing to an increased drug treatment. Unfortunately, overcoming this
issue is not yet possible. The present study aimed to evaluate a clinical approach using candidate
compounds 19 and 23, which are sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)
inhibitors, discovered using the evolutionary chemical binding similarity method. mRNA sequencing
indicated SERCA as the dominant marker of patient-derived anti-cancer drug-resistant hepatocellular
carcinoma (HCC), but not of patient-derived anti-cancer drug-sensitive HCC. Candidate compounds
19 and 23 led to significant tumor shrinkage in a tumor xenograft model of anti-cancer drug-resistant
patient-derived HCC cells. Our results might be clinically significant for the development of novel
combinatorial strategies that selectively and efficiently target highly malignant cells such as drug-
resistant and cancer stem-like cells.

Keywords: patient-derived anti-cancer drug-resistant hepatocellular carcinoma; endoplasmic
reticulum stress; sarcoplasmic/endoplasmic reticulum calcium ATPase; thapsigargin; candidate 19;
candidate 23; cancer stem cells

1. Introduction

Independent of presurgical cancer progression, post-surgical recurrence and survival
rates have benefitted from systemic presurgical chemotherapies [1–3]. However, standard
preoperative systemic chemotherapy is not available for hepatocellular carcinoma (HCC).
Systemic chemotherapy is recommended for patients with advanced HCC, the symptoms
of which include metastatic lesions or portal vein invasion, and localized therapy is not
applicable owing to systemic chemotherapy-resistant cancer [4,5]. Metabolic reprogram-
ming of cancer cells has garnered considerable attention as an emerging hallmark of cancer
progression [6]. High extent of glycolysis, known as the Warburg effect, is observed in
response to an increased need of tumor cells for biosynthetic precursors and can render
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the cells exquisitely sensitive to glucose deprivation [7,8]. Moreover, an increasing num-
ber of malignant cancer cells, such as highly drug-resistant subclones, have acquired a
universal survival strategy and are better equipped than nonmalignant cells to cope with
evolutionary stresses, including metabolic and genotoxic stresses [9]. Particularly, epige-
netic reprogramming of drug-resistant cancer cells is crucial for their survival following
treatment of anti-cancer drugs [10,11]. The progression of drug resistance in refractory
cancer cells is a critical factor behind the failure of conventional cancer therapy [9,12,13].
This is an extremely acute problem that can lead to cancer recurrence, metastasis, and
death [14,15]. The present study aims to elucidate the mechanisms underlying suscep-
tibility of refractory cancer cells to existing therapies. In this study, we investigated the
sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA), a dominant marker of
patient-derived anti-cancer drug-resistant HCC but not of patient-derived anti-cancer drug-
sensitive HCC. SERCA is crucial in regulating cytosolic free calcium [16]. Moreover, it
substantially participates in calcium signaling homeostasis by effectively re-sequestering
cytosolic free calcium into the endoplasmic reticulum (ER) once the desired physiological
reaction occurs [17,18]. Cytosolic free calcium regulates numerous cellular processes, in-
cluding cellular life-or-death decisions, programmed cell death, also known as apoptosis,
and autophagy [19,20]. We investigated two novel SERCA inhibitors, compounds 19 and
23, as potential therapeutic agents for patient-derived anti-cancer drug-resistant cells.

2. Results
2.1. Patient Disease Characteristics

In total, 233 patients were consecutively treated with R0 resection between 2016
and 2021. Among them, 37 patients had extrahepatic spread HCC (Figure 1A) and were
analyzed in this study. Medical records indicated that before operation, 19 patients did
not undergo chemotherapy; one patient underwent chemotherapy with sorafenib, three
patients underwent chemotherapy with sorafenib and regorafenib, one patient underwent
chemotherapy with gemcitabine and cisplatin, and 13 patients underwent chemotherapy
with fluorouracil and cisplatin. The mean age of the patients was 60.2 ± 13.3 y, and
83.8% were males. Disease characteristics and demographics of patients are presented in
Figure 1A. Disease-free survival (DFS, Figure 1B) and overall survival (OS, Figure 1C) for
the 37 patients were 12.4 ± 12.94, and 20.3 ± 13.80 months, respectively. No significant
difference in DFS and OS was observed in patients with or without chemotherapy.

2.2. Contrasting Gene Expression and Signaling Stimulation between Patient-Derived Anti-Cancer
Drug-Sensitive and Drug-Resistant HCC Cells

To investigate alterations in gene expression and signaling pathways in patient-derived
anti-cancer drug-sensitive and drug-resistant HCC, we performed an RNA sequencing
(RNA-Seq)-based transcriptome analysis. Diverse patient-derived HCC cells used in this
study were detached from the specimens (Figure 2A). YUMC-S-H1 was the first isolated
drug-sensitive HCC cell, and YUMC-R-H1, -H2, -H3, -H4, and -H5 were the first, second,
third, fourth, and fifth isolated drug-resistant HCC cells, respectively. YUMC-R-H1, -H2,
-H3, -H4, and -H5 were more aggressive than YUMC-S-S1. Metastasis and recurrence were
observed in patients with drug-resistant HCC cells (Figure 2A). Remarkably, under severe
ER stress following anti-cancer drug treatment, these drug-resistant HCC cells exhibited a
significantly higher expression of target genes and survival signaling pathways than did
the drug-sensitive HCC cells. The divergence of mRNA expression patterns between drug-
resistant and -sensitive HCC cells was detected using transcriptome analysis (Figure 2B).
Particularly, exposure to genotoxic stressors, such as regorafenib, sorafenib, cisplatin,
and gemcitabine, markedly increased the levels of HCC stemness markers (CD13high,
CD24high, CD44high, CD90high, CD133high, EpCAM, ICAM-1, LGR5, MAEL, Cripto-1, and
Oct4high) and calcium-mediated and survival-related target genes (ATP2A isoforms and B-
cell lymphoma 2 (Bcl-2)) in drug-resistant HCC cells compared with those in drug-sensitive
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HCC cells (Figure 2B). Figure 2C–G show a comparison of 20 key regulator genes in distinct
signaling pathways in drug-resistant and drug-sensitive HCC cells.
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Figure 1. Information on patients with HCC after surgery with or without chemotherapy. (A) Patient
characteristics and clinical features. (B) Disease-free survival rate after surgery with or without
chemotherapy. (C) Overall survival rate after surgery with or without chemotherapy.

Intriguingly, we discovered that the Notch, calcium, and cancer stemness signaling
pathways were highly enriched in drug-resistant HCC cells (Figure 2C–G). Moreover, the
levels of SERCA and Bcl-2, key regulator proteins involved in calcium homeostasis and
anti-apoptosis, were significantly high in drug-resistant HCC cells (Figure 2H). SERCA is
crucial for removing free calcium from the cytoplasm; therefore, we measured the level of
SERCA isoforms. Expression of SERCA isoforms slightly differed between the two types
of HCC cells; particularly, mRNA levels of SERCA1 and SERCA3 were upregulated in
drug-resistant HCC cells (Figure 2I–M).

These data indicate that the enhancement of gene pathways in regulating stemness
and SERCAs is crucial for the survival of drug-resistant HCC cells under anti-cancer
drug-treated conditions.

2.3. A Novel Therapeutic Trial of Candidates 19 and 23, SERCA Inhibitors, for Patient-Derived
Drug-Resistant HCC Treatment via in Silico Screening

Based on the results in Figure 2, we hypothesized that the functional restriction of
SERCA in anti-cancer drug-resistant HCC cells could be a possible therapeutic approach.
In silico screening for SERCA-binding compounds was used to explore possible pharma-
cophoric binding modes. Particularly, 1750 (based on binding score), 184 (manual selection),
and 78 candidate compounds were identified. Of these, 34 compounds exhibited high bind-
ing affinity with SERCA (Figure 3A). The 19th (Figure 3B) and 23rd (Figure 3C) candidate
compounds (candidates 19 and 23) significantly inhibited SERCA and were selected for
further evaluation as novel therapeutic agents for drug-resistant HCC (Figure 3A–C).
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Figure 2. Features of patient−derived HCC cell lines. (A) Features of patient-derived subtypes of
drug-sensitive and drug-resistant HCC cell lines. (B) Hierarchical clustering of annotated genes
revealed different gene expression. Differences in gene expression profiles between drug-sensitive
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analysis of SERCA levels in HCC cells. (I–M) qRT−PCR and mRNA expression of SERCA family
genes of drug-resistant HCC cells compared with those of drug-sensitive HCC cells. ** p < 0.01 versus
anti-cancer drug-sensitive HCC cells, YUMC-S-H1.
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2.4. Novel Pharmacophore Candidates 19 and 23 Suppressed the Survival of Drug-Resistant
HCC Cells

To assess the anti-cancer effects of candidates 19 and 23, we performed cell viability
assays by treating cells with anti-cancer drugs and candidates 19 or 23. The viability
of YUMC-S-H1 notably decreased in a dose-dependent manner following treatments of
regorafenib, sorafenib, cisplatin, and gemcitabine with or without candidates 19 or 23
(Figure 4A). However, the viabilities of YUMC-R-H1, -H2, -H3, -H4, and -H5 were not
significantly affected following anti-cancer drug treatment. Notably, thapsigargin, a well-
known SERCA inhibitor (positive control) or candidates 19 or 23 treated in combination
with anti-cancer drugs significantly suppressed the viability of drug-resistant HCC cells in
a dose-dependent manner (Figure 4B–F, Supplementary Figure S2). Moreover, treatment
with thapsigargin or candidates 19 or 23 alone did not significantly affect the viability
of HCC cells. The cytosolic free calcium influx through SERCA and the release of free
calcium from the ER into the cytosol is an early and crucial event in apoptosis [21]. A
failure to lower the spike of intracellular calcium leads to ER stress and apoptotic cell
death [22–24]. In drug-sensitive HCC cells, cytosolic free calcium returned to the basal
levels after the spike when treated with candidates 19 or 23 alone, whereas treatment with
anti-cancer drugs prevented such a return of free calcium levels (Figure 4G). In contrast,
free calcium in drug-resistant HCC cells returned to the basal levels when treated with
anti-cancer drugs or candidates 19 or 23 alone (Figure 4H–L). Interestingly, combination
treatment with anti-cancer drugs and candidate 19 or 23 failed to show similar effects
(Figure 4H–L). Half maximal inhibitory concentrations (IC50) were 7 µM for regorafenib,
25 µM for sorafenib, 20 µM for cisplatin, and 80 nM for gemcitabine in drug-sensitive
HCC cells. In drug-resistant HCC cells, IC50 values were 20 µM for regorafenib, 20 µM
for sorafenib, 20 µM for cisplatin, and 100 nM for gemcitabine. The doses of candidates
19 (120 µM) and 23 (80 µM) were fixed for single or combined treatment.

These results demonstrated that SERCA is a critical factor in the survival of drug-
resistant cancer cells when treated with existing chemotherapies. When existing chemother-
apies are used in combination with candidates 19 and 23, cytosolic calcium levels remain
elevated and do not return to the basal levels.

2.5. SERCA Increased the Anti-Apoptotic Activity of Severe ER Stress- and Drug-Resistant HCC
Cells upon Prolonged Anti-Cancer Drug Treatment

The results in Figure 4 show that the increase in SERCA expression might be crucial
for cell survival under severe ER stress following anti-cancer drug treatment. Therefore,
we performed an immunoblot assay to investigate the relationship between SERCA ex-
pression and ER stress. SERCA expression was predominantly induced in drug-resistant
(Figure 5E–I) but not in drug-sensitive (Figure 5A–D) HCC cells. Consequently, drug-
sensitive HCC cells exhibited a weak response to severe ER stress following drug treatment
(Figure 5A–D). In contrast, drug-resistant HCC cells could avoid severe ER stress by
inducing SERCA expression. However, treatment of anti-cancer drugs combined with
thapsigargin or candidates 19 or 23 markedly increased apoptosis in the sub-G0G1 phase
(Figure 5J–N). To demonstrate that primarily SERCA and not calcium ion channels in-
creased the intracellular/extracellular calcium ratio in drug-resistant HCC cells, we treated
the cells with candidates 19 or 23 (novel SERCA inhibitors), nifedipine or verapamil (cal-
cium channel blockers), and regorafenib, sorafenib, cisplatin, or gemcitabine (anti-cancer
drugs). Combination treatment with SERCA inhibitors and anti-cancer drugs significantly
induced the expression of CHOP, an ER stress marker, in drug-resistant HCC cells, while
calcium channel blockers alone or combined with anti-cancer drugs had no significant
effect on drug-resistant HCC cells (Figure 5O–S).
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Figure 4. Synergistic anti-cancer effects of candidates 19 and 23 in patient-derived anti-cancer drug-
resistant HCC cells. The viability of (A) YUMC-S-H1 and (B–F) YUMC-R-H1, -H2, -H3, -H4, and
-H5 treated with regorafenib, sorafenib, cisplatin, or gemcitabine combined with candidates 19 or
23 or with each agent alone. Points indicate the mean percentage of the values of solvent-treated
control. All experiments were repeated at least thrice. Data represent the mean ± standard deviation.
* p < 0.05 and ** p < 0.01 versus control. (G–L) Cytosolic free calcium was measured in patient-derived
HCC cells treated with anti-cancer drugs.
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Figure 5. Analysis of the relationship between endoplasmic reticulum (ER) stress and apoptosis by
immunoblotting and DNA quantitation. Immunoblot (A–I) and flow cytometry (J–N) analyses of
patient-derived anti-cancer drug-sensitive and -resistant HCC cells. Immunoblot analysis of CHOP
and SERCA in YUMC-S-H1 (A–D) and YUMC-R-H1, -H2, -H3, -H4, and -H5 (E–I). (J–N) Cells
were treated with the indicated anti-cancer drug combined with a SERCA inhibitor or with each
agent alone, harvested, and stained with propidium iodide before analysis using flow cytometry.
(O–S) Immunoblot analysis of CHOP in drug-resistant HCC cells treated with a combination of an
anti-cancer drug, calcium channel blockers, and a SERCA inhibitor or with each agent alone.

Consequently, these results showed that drug-resistant HCC cells may avoid calcium-
mediated apoptosis via ER stress induced by the existing anti-cancer drugs by increased
SERCA levels, rather than calcium ion channels.

2.6. Novel Therapeutic Trials of Candidates 19 and 23 in Patient-Derived Drug-Resistant HCC
Cell-Treated Mouse Xenograft Model

We assessed the anti-cancer effects of candidates 19 and 23 in vivo. We established a
mouse xenograft model using patient-derived drug-resistant HCC cells. We administered
regorafenib, sorafenib, cisplatin, and gemcitabine to increase genotoxic stress in the mouse
xenograft model. Treatment with thapsigargin or candidates 19 or 23 alone was not
significantly effective. However, their treatment in combination with anti-cancer drugs
significantly induced tumor shrinkage compared to that in the control group and mice
treated with each agent alone (Figure 6A–E, left; Supplementary Figure S3A–E). The
increase in spontaneous ER stress upon tumor growth and progression resulted in slight
tumor shrinkage following treatment with regorafenib, sorafenib, cisplatin, or gemcitabine,
and thapsigargin or candidates 19 or 23 (Figure 6A–E, left; Supplementary Figure S2A–E).
Moreover, the resected tumor weight was markedly lower in the combined treatment group
(Figure 6A–E, middle). Treatment with each agent alone or combined treatment did not
significantly affect mouse body weight (Figure 5A–E, right).
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Figure 6. SERCA inhibitors effectively suppress tumor growth in a xenograft model using drug-
resistant HCC cells. (A) YUHS-R-H1, (B) YUHS-R-H2, (C) YUHS-R-H3, (D) YUHS-R-H4, and
(E) YUHS-R-H5; changes in relative tumor volumes (left), resected tumor weights (middle), and
body weight (right) of mice (each group, n = 10). Tumors were established in NOD/Shi-scid, IL-2Rγ
KOJic (NOG) mice and animals were treated with regorafenib, sorafenib, cisplatin, or gemcitabine
combined with candidates 19 or 23 or with each agent alone. Data represent the mean ± standard
error of the mean. * p < 0.05 and ** p < 0.01 versus control.

3. Discussion

Owing to the development of anti-cancer drugs, numerous studies have reported that
preoperative chemotherapy improves the survival rates after surgery and demonstrated
the effect of properly administered chemotherapy and performed surgery even when
effective treatment was considered impossible [25–28]. Nevertheless, no treatment options
have been accepted as the standard neoadjuvant or adjuvant setting for HCC [29–31], and
considerable numbers of HCC patients with cancer died; therefore, unmet medical needs
have steadily increased.
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A significant part of these needs is attributed to drug-resistant recurrent and metastatic
cancers [32–36]. Acquisition of drug resistance by refractory cancer cells remains a major obstacle
in treating patients with refractory cancers [37–39]. Therefore, anti-cancer drug resistance of
refractory cancers represents the greatest challenge in cancer therapy [40–42]. Numerous under-
lying mechanisms of drug resistance in patients with refractory cancers have been proposed;
each cancer has a distinct set of characteristics required for its progression [43,44]. Therefore, a
clinical solution for anti-cancer drug resistance of refractory cancer may appear unattainable.

Here, we used mRNA-Seq, ECBS, and patient-derived anti-cancer drug-resistant HCC
cells to create a framework for drug-resistant cancer therapy. HCC is the second most
deadly cancer worldwide and is generally accompanied by chronic hepatic inflammation
related to alcohol abuse, viral infection, and metabolic syndromes [44,45]. In recent decades,
remarkable progress has been made in HCC treatment [46,47]. Unfortunately, >50% of
HCCs progress to an advanced stage, and approximately 70% of patients experience
recurrence within the first five years after initiating therapy [48]. Early stage HCC is
surgically removed, while advanced HCC frequently requires systemic therapy, including
local ablation therapy, irradiation, and trans-arterial chemoembolization [49,50]. However,
the effect of systemic chemotherapy on HCC is not as significant as that of surgery. Notably,
the relationship between systemic chemotherapy before surgery and improved survival
of patients with HCC after surgery has not yet been elucidated. Therefore, preventing the
acquisition of anti-cancer drug resistance is important in HCC treatment.

Previously, we have demonstrated that acute metabolic stress response leads to posi-
tive subclone sorting with cancer stem cells (CSCs) [51,52]. Survival signaling pathways
are more stimulated in cells with CSC properties than in their progenitors under severe ER
stress [53]. Epigenetic alterations in refractory HCC can change the expression of target
genes without modifying DNA sequences [54]. In this study, we revealed that the calcium
and Notch signaling pathways were among 20 highly enriched signaling pathways in
anti-cancer drug-resistant HCC cells compared with those in anti-cancer drug-sensitive
HCC cells.

mRNA-Seq revealed that SERCA was dominantly expressed in anti-cancer drug-
resistant HCC cells. Notably, the relationship between the calcium and Notch signaling
pathways has been previously reported [55]. Notch signaling is suppressed by SERCA
inhibition [55,56]. Therefore, we first focused on crucial genes and the signaling pathways
related to cell survival and calcium homeostasis in drug-resistant HCC cells. Intriguingly,
we demonstrated that metabolic stress-resistant cancer cells avoided apoptosis mediated
by cytosolic free calcium overload via SERCA activation under metabolic stress [52]. How-
ever, regardless of the high induction of SERCA expression in drug-resistant HCC cells,
functional inhibition of SERCA by thapsigargin or candidates 19 or 23 might lead to apop-
tosis via an increase in ER stress. Interestingly, despite well-known anti-cancer effects
of regorafenib, sorafenib, cisplatin, and gemcitabine, drug-resistant HCC cells were not
significantly affected.

The expression of numerous genes markedly differed between drug-sensitive and
drug-resistant HCC cells, suggesting that complex biological processes were reprogrammed
in drug-resistant HCC cells to prolong cell survival under severe ER stress caused by anti-
cancer drug treatment. Consequently, we hypothesized that the survival of patient-derived
anti-cancer drug-resistant HCC cells could lead to the transcriptional stimulation of the
calcium and nuclear factor kappa B signaling pathways, which could overburden the cells
with cytosolic free calcium and adjust anti-apoptotic and metabolic pathways, respectively,
following anti-cancer drug treatment.

Cytosolic free calcium levels are markedly increased by anti-cancer drug treatment, which
causes an increase in calcium-mediated apoptosis of drug-sensitive cancer cells [56,57]. The
regulation of cytosolic free calcium signaling represents a critical hallmark procedure for regu-
lating SERCA-induced resistance to apoptosis [55,58]. Moreover, high SERCA levels prevent
calcium-mediated apoptosis and are associated with a poor prognosis in patients with can-
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cer [59]. Consequently, we employed the ECBS method to explore the effect of SERCA inhibitors
on anti-cancer drug-resistant HCC cells [60].

In this study, the inhibition of cytosolic calcium influx into the ER by candidates 19 and
23 caused cytosolic free calcium overload and cell death via severe ER stress. Particularly,
genotoxic stress caused by anti-cancer drug treatment increases cytosolic free calcium levels via
ER stress [61–63]. Notably, the ER is the main intracellular storage site for free calcium and is
crucial for regulating calcium homeostasis [64–66]. Upon a marked increase in cytosolic free
calcium levels, mitochondria buffer and rapidly uptake cytosolic free calcium to maintain cal-
cium homeostasis and avoid free calcium overload [67,68]. However, diminished mitochondrial
respiration caused by cytosolic free calcium overload decreases membrane potential and induces
cytochrome c release, resulting in apoptosis [69–71]. Consequently, the restoration of cytosolic
free calcium levels via SERCA could account for the prolonged survival of drug-resistant cancer
cells after anti-cancer drug treatment.

This study is the first to demonstrate that SERCA activation plays a crucial role in
preventing apoptosis mediated by cytosolic free calcium overload in patient-derived anti-
cancer drug-resistant HCC cells. Therefore, SERCA activation in drug-resistant HCC cells
might represent one of the most effective mechanisms of prolonged HCC cell survival. We
showed that anti-cancer drug-resistant HCC cells could be killed by selectively inhibiting
SERCA under severe ER stress following anti-cancer drug treatment. No evidence of
systemic toxicity or treatment-related death was observed in any of the groups.

4. Materials and Methods
4.1. Study Design and Ethical Considerations

This study was a single center examination of patients diagnosed with HCC over a
7-year period (January 2015–December 2021). A chart of the study design is shown in
Supplementary Figure S1. Cancer cells were obtained from resected specimens of the
patients at the Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul,
Korea. All patient procedures and courses of treatments complied with institutional ethical
standards, national/local regulations, and guidelines of the 1964 Helsinki Declaration as
amended. Study methods were authorized by the Institutional Review Board (IRB) of
Severance Hospital, Yonsei University College of Medicine (IRB protocol: 3-2019-0281).

4.2. Patient Characteristics

Patient-derived hepatocellular carcinoma (HCC), YUMC-S-H1, -R-H1, -R-H2, -R-H3,
-R-H4, and -R-H5 C1 cells were obtained from tumor specimens of patients following their
last surgery (Table 1).

4.2.1. Patient for Sample 1

Patient was a 63-year-old male with HCC and the patient had hepatitis B virus (HBV)-
related liver cirrhosis, with a 2.5 cm mass observed in the left lateral sector of the liver during
a regular health check-up. The patient underwent laparoscopic left lateral sectionectomy.
Specimens for culture were collect after the surgery. The pathology state revealed HCC.



Int. J. Mol. Sci. 2022, 23, 7971 13 of 21

Table 1. Sample data from patients with hepatocellular carcinoma.

Cells name PatientsNumber Age Sex First Operation Second Operation Third Operation Fourth Operation Chemotherapy Regimen before
Specimen Was Obtained

YUMC-S-H1 1 63 male laparoscopic left
lateral sectionectomy * � � � none

YUMC-R-H1 2 53 female
left trisectionectomy and caudate
segmentectomy with radical
resection of common bile duct

palliative abdominal
wall mass excision * Sorafenib

YUMC-R-H5 2 53 female
left trisectionectomy and caudate
segmentectomy with radical
resection of common bile duct

palliative abdominal
wall mass excision

palliative chest wall
mass excision * sorafenib, regorafenib

YUMC-R-H2 3 70 male laparoscopic right
anterior sectionectomy

laparoscopic aortocaval
lymph node dissection

superior mesenterioc
lymph node dissection *

Sorafenib
regorafenib

YUMC-R-H3 3 70 male laparoscopic right
anterior sectionectomy

laparoscopic aortocaval
lymph node dissection

superior mesenterioc lymph
node dissection

Multiple lymph
node dissection *

Sorafenib
regorafenib
Foluorouracil and Cisplatin

YUMC-R-H4 4 63 male wedge resection of segment 5 right hepatectomy * � � Gemcitabine and Cisplatin

* Operation from which the specimens for culture were obtained.
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4.2.2. Patient for Samples 2 and 6

Patient was a 53-year-old woman with HCC. She had jaundice with perihilar mass
and Klatskin type IIIb bile duct obstruction. She underwent left trisectionectomy and
caudate segmentectomy with radical resection of bile duct in October 2019. Pathology
state reveals HCC. One month post-surgery, abdominal carcinomatosis was confirmed on
abdominal and pelvic computed tomography (APCT) for which she received two cycles
of sorafenib. The disease had a partial response. However, the course of treatment was
changed due to the progression of her cancer and chemotherapy induced complications
(hand–foot syndrome). She underwent palliative abdominal wall mass excision for a
metastatic lesion that had penetrated the skin; a fresh specimen for culture was obtained
post-surgery. Following this, the chemotherapy regimen was changed to regorafenib, and
stopped after three cycles of regorafenib due to chemotherapy complication. A subsistent
tumor was later located in the xiphoid area and she went under surgical excision from
which the specimens for culture were obtained.

4.2.3. Patient for Samples 3 and 4

Patient was a 70-year-old male with HBV-related early liver cirrhosis. High levels of
alpha-fetoprotein were discovered during an examination and he was referred to Gangnam
Severance Hospital in February 2019. His APCT revealed a 3.3 cm single arterial enhancing
lesion in the right lobe of liver. He underwent laparoscopic right anterior sectionectomy
in March 2019. A follow-up outpatient post-surgical examination and APCT identified a
2.1 cm enlarged aortocaval lymph node. Laparoscopic aortocarval lymph node dissection
was performed in May 2019 and the pathology state revealed metastatic carcinoma. After
the surgery in May, the patient underwent two cycles of sorafenib after which the disease
progression was confirmed in the anti-cancer drug response evaluation. The chemotherapy
regimen was changed to regorafenib. After four cycles of regorafenib, the disease did
not have a response. Tumors were observed in the celiac trunk lymph node and superior
mesenteric lymph node. The patient requested surgery because of the side effects of
chemotherapy. Multiple lymph node dissections were performed and the fresh specimen
for culture was obtained after surgery. Tumor recurrence continued even after six surgeries;
palliative chemotherapy with fluorouracil and cisplatin (FP) was prescribed. After the 6th
FP chemotherapy cycle, the tumor was localized to the retropancreatic area. A tumorectomy
was performed and a specimen for culture was obtained after surgery.

4.2.4. Patient for Sample 5

Patient was a 64-year-old male with HCC. He underwent segment 5 wedge resection of
liver in June 2015. Three years after surgery, metastasis to abdominal wall was discovered,
and wide excision of abdominal wall mass was performed. Post-surgery, gemcitabine and
cisplatin chemotherapy was prescribed, after 6 cycles the tumor recurred in right lobe of
liver. Right hepatectomy was performed in March 2019. The specimens for culture were
collected after surgery.

4.3. Patient Tissue Specimens

Fresh tumor samples were collected from patients who underwent surgical resection
and had biochemically and histologically established drug resistance, metastatic and recur-
rent cancer with metastasis, and were treated at the Severance Hospital, Yonsei University
College of Medicine, Seoul, Korea.

4.4. Ethical Considerations

The research protocol was approved by the Institutional Review Board of Severance
Hospital, Yonsei University College of Medicine (Institutional Review Board Protocol:
3-2019-0281). Cell samples were obtained from patients at the Severance Hospital, Yonsei
University College of Medicine, Seoul, South Korea.
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4.5. Tumor Cell Isolation and Primary Culture

After resection, tumor tissue samples were maintained in normal saline supplemented
with anti-fungal and antibiotic agents and transferred to the laboratory. Normal tissue and
fat were removed and the tumor tissues were rinsed with 1× Hank’s balanced salt solution.
Further protocol details are as published [72].

4.6. mRNA-Seq Data

We preprocessed the raw reads from the sequencer to remove low-quality and adapter
sequences before analysis and aligned the processed reads to Homo sapiens (GRCh37) using
HISAT v2.1.0 (KIM et al., 2015) [73]. HISAT utilizes two types of indexes for alignment:
a global, whole-genome index, and tens of thousands of small local indexes. Both are
constructed using the same Burrows–Wheeler transform (BWT) or graph FM index (GFM)
as Bowtie2. Due to the use of these efficient data structures and algorithms, HISAT generates
spliced alignments several times faster than Bowtie and the widely used BWA. The reference
genome sequence of Homo sapiens (GRCh37) and annotation data were downloaded from
the National Center for Biotechnology Information (NCBI). Then, transcript assembly of
known transcripts was processed using StringTie v2.1.3b (Pertea, Mihaela et al., 2015, 2016).
Based on these results, expression abundances of transcripts and genes were calculated
as read count or fragments per kilobase of exon per million fragments mapped (FPKM)
value per sample. The expression profiles were used for additional analyses, such as of
differentially expressed genes (DEGs). In groups with different conditions, differentially
expressed genes or transcripts were filtered through statistical hypothesis testing. Further
protocol details are as previously published [74].

4.7. Statistical Analysis of Gene Expression Level

The relative abundances of genes were measured in read count using StringTie. We
performed statistical analyses to find differentially expressed genes using the estimates
of abundances for each gene in the samples. Genes with one more than zero read count
values in the samples were excluded. To facilitate log2 transformation, 1 was added to
each read count value of filtered genes. Filtered data were log2-transformed and subjected
to trimmed mean of M-values (TMM) normalization. The statistical significance of the
differential expression data was determined using exactTest, edgeR, and fold change, in
which the null hypothesis was that no difference exists among groups. False discovery rate
(FDR) was controlled by adjusting the p-value using the Benjamini–Hochberg algorithm.
For DEG sets, hierarchical clustering analysis was performed using complete linkage and
Euclidean distance as a measure of similarity. Gene-enrichment and functional annotation
analysis and pathway analysis for a significant gene list were performed based on Gene
Ontology and KEGG pathway analyses.

4.8. Hierarchical Clustering

Hierarchical clustering analysis was carried out with complete linkage and Euclidean
distance as a measure of similarity to indicate the expression patterns of differentially
expressed transcripts which are satisfied with |fold change| ≥ 2 and independent t-test
raw p < 0.05. All data analysis and visualization of differentially expressed genes were
conducted using R 3.5.1 (www.r-project.org (accessed on 1 October 2021)).

4.9. Whole RNA Extraction and Quantitative Real-Time Reverse Transcription PCR (qRT-PCR)

Total RNA was acquired from patient-derived HCC cells by extraction with the
RNeasy Mini Kit (Qiagen, Valencia, CA, USA; 74106) and the One-Step RT-PCR Kit (Qi-
agen; 204243) following the manufacturer’s protocols. All data were normalized to the
expression level of α tubulin. Primers for SERCA1, SERCA2, and SERCA3 are listed in
Supplementary Table S1.

www.r-project.org
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4.10. Cell Culture

The patient-derived HCC cells, YUMC-S-H1, YUMC-R-H1, YUMC-R-H2, YUMC-R-
H3, YUMC-R-H4, and YUMC-R-H5 were obtained by tumor cell isolation from the patients
and cultured in RPMI-1640 medium with 15% fetal bovine serum (FBS; authenticated by
short tandem repeat profiling/karyotyping/isoenzyme analysis).

4.11. Cell Viability Assay

Cell viability was measured using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium
bromide (MTT) assay, cells were seeded in 96-well plates at 7 × 103 cells per well and incubated
overnight to achieve 80% confluency. Further details on the protocol are in an existing publica-
tion [21]. The assay was performed three times and the viability of the cells was measured as a
percentage of the signal observed in vehicle-treated cells and is reported as the means ± standard
error of the means.

4.12. Cytosolic Free Calcium Measurements by Microspectrofluorimetry

Patient-derived HCC cells were cultured and loaded with Fura-2/AM. HCC cells were
perfused with 140 mM NaCl, 5.4 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 33 mM glucose,
and 20 mM HEPES (pH 7.4, adjusted with NaOH, and 320–335 mOsm with sucrose). The
cytosolic free calcium level of HCC cells was imaged using a calcium-sensitive fluorescent
dye, Fura-2AM. The ratio of Fura-2 fluorescence intensities measured with excitation
at 340 nm and 380 nm [F340/F380] was used as a [Ca2+]i-related signal. Fluorescence
intensities (∆F) were normalized to the resting values.

4.13. Immunoblot Analysis

The primary antibodies sarco/endoplasmic reticulum calcium ATPase (SERCA, 1:200,
Santa Cruz Biotechnology, #271669), C/-EBP homologous protein (CHOP, 1:100, Santa Cruz
Biotechnology, #7351), Bcl-2 (1:500, Cell Signaling Technology, Danvers, MA, USA, # 4223S),
and β-actin (1:2000, Santa Cruz Biotechnology, CA, USA, #47778) were purchased and
maintained overnight at 4 ◦C. Equal amounts of protein were separated on 8–10% sodium
dodecyl sulfate-polyacrylamide gels; the resolved proteins were electro-transferred onto
polyvinylidene fluoride membranes (Millipore, Bedford, MA, USA). The membranes were
subsequently blocked with 5–10% nonfat milk in TBST for 1 h at room temperature and
incubated with appropriate concentrations of primary antibodies overnight at 4 ◦C. The
membranes were then rinsed 3–10 times with TBST and probed with the corresponding sec-
ondary antibodies conjugated to horse radish peroxidase (Santa Cruz) at room temperature
for 1 h. After rinsing, the blots were developed with ECL reagents (Pierce) and exposed
using Kodak X-OMAT AR Film (Eastman Kodak, Rochester, NY, USA) for 1–5 min. Further
protocol details are as previously published [75].

4.14. Cell Cycle Analysis Using Flow Cytometry

Cells were treated with anti-cancer drugs (regorafenib, sorafenib, cisplatin, and gemc-
itabine) and SERCA inhibitors (thapsigargin, candidates 19 and 23) as either agent alone
or combination in RPMI-1640 medium containing 15% FBS for 40 h. The cells were then
harvested by trypsinization and fixed in 70% ethanol. Cells were stained for total DNA
using PBS containing 40 µg/mL propidium iodide and 100 µg/mL RNase I for 30 min at
37 ◦C. The cell cycle distribution was then analyzed using the FACSCalibur Flow Cytometer
(BD Biosciences, San Jose, CA, USA). The proportions of cells in the sub-G0/G1, G0/G1,
S, and G2/M phases were analyzed using FlowJo v8 for MacOSX (Tree Star, Ashland, OR,
USA). This experiment was repeated in triplicate and the results were averaged. Further
details on the protocol can be found in our previous article [76].
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4.15. Pharmacophore- and Docking-Based Sequential Virtual Screening for the Identification of a
Novel SERCA Inhibitor

The potential SERCA-binding chemical compounds were screened by evolutionary
chemical binding similarity (ECBS), which was built based on classification similarity-
learning to prioritize evolutionarily related chemical pairs (ERCPs). By ECBS, chemical
pairs are considered as “similar” when their binding targets are identical or evolutionarily
related. Among variants of ECBS models, the target-specific ensemble ECBS (TS-ensECBS)
model was adapted for the virtual screening owing to the highest test accuracy in our
previous study [26]. The TS-ensECBS model was built for SERCA (i.e., the ERCPs are
only defined for SERCA and its homologous proteins). The model was then used to
calculate chemical binding similarity (ECBS score) between previously known SERCA
inhibitors (obtained from DrugBank and BindingDB database) and the virtual chemical
library (141,102 chemicals combined from Maybridge and Chembridge screening collection,
and DrugBank). The maximum ECBS score assigned for each molecule in the chemical
library was considered as a final SERCA-binding score. The output similarity score ranged
from 0 to 1, and the scores closer to 1 represent a higher binding probability to SERCA.
More details about the ECBS model can be found in our previous work [60].

4.16. Patient-Derived Hepatocellular Carcinoma (HCC) Cell Xenograft

Whole experiments were within the guidelines established by the Animal Experiment
Committee of Yonsei University. YUMC-R-H1, -H2, -H3, -H4, and -H5 patient-derived
HCC cells (4.4 × 106 cells/mouse) were cultured in vitro. The patient-derived HCC cells
were then injected subcutaneously into the upper left flank region of female NOD/Shi-scid,
IL-2Rγ KOJic (NOG) mice. After 15 days, tumor cell planted mice were randomly grouped
(n = 10 per group). The mice were then administered with 40 mg/kg regorafenib (p.o.),
80 mg/kg sorafenib (p.o.), 5 mg/kg cisplatin (p.o.), and 40 mg/kg gemcitabine alone, or a
combination 20 mg/kg regorafenib (p.o.), 40 mg/kg sorafenib (p.o.), 2.5 mg/kg cisplatin
(p.o.), and 20 mg/kg gemcitabine. Candidate 19 and 23 was treated 25 mg/kg (p.o.) alone
or combination with regorafenib, sorafenib, cisplatin and gemcitabine. Tumor volume
was quantified every two days by calipers. Tumor volume was gauged by the following
formula: L × S2/2 (L, longest diameter; S, shortest diameter). Mice were kept under
specific pathogen-free conditions.

4.17. Statistical Analysis

For the assay of patient reports, unequivocal fluctuations were expressed as frequency
and proportion whereas summary statistics (median, range) were used to report continuous
data. Survival curves were generated using the Kaplan–Meier method based on the log-
rank test. As this was a retrospective analysis, no formal statistical compari

Sons were performed. Statistical analyses were performed using GraphPad Prism
6.0 software (GraphPad Software, La Jolla, CA, USA), Microsoft Excel (Microsoft Corp,
Redmond, WA, USA), and R version 2.17. One-way ANOVA was performed for the
multigroup analysis, and a two-tailed Student’s t-test was performed for the two-group
analysis. Immunohistochemistry results were subjected to one-way analysis of variance,
followed by a Bonferroni post hoc test. Values were expressed as mean ± standard error of
mean. p values < 0.05 were considered statistically significant.

5. Conclusions

SERCA activation promoted cytosolic free calcium influx into the ER, prevented
cytosolic free calcium overload, and was primarily responsible for cellular resistance to
genotoxic stress and apoptosis triggered by anti-cancer drug treatment. Of note, candidates
19 and 23 in combination with anti-cancer drugs could markedly inhibit drug-resistant
HCC. Therefore, our findings might represent the tip of an iceberg of numerous signaling
pathways involved in the survival of anti-cancer drug-resistant HCC cells. However, the
experiments on patient-derived drug-resistant cancer cells were challenging and limited.
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Nevertheless, these challenges might lead to a breakthrough in and clinical solution to
drug-resistant cancer.
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