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Compression, in general, aims to reduce file size, with or without decreasing data quality of the original file. Digital Imaging and
Communication in Medicine (DICOM) is a medical imaging file standard used to store multiple information such as patient data,
imaging procedures, and the image itself. With the rising usage of medical imaging in clinical diagnosis, there is a need for a fast
and secure method to share large number of medical images between healthcare practitioners, and compression has always been
an option. )is work analyses the Huffman coding compression method, one of the lossless compression techniques, as an
alternative method to compress a DICOM file in open PACS settings. )e idea of the Huffman coding compression method is to
provide codeword with less number of bits for the symbol that has a higher value of byte frequency distribution. Experiments
using different type of DICOM images are conducted, and the analysis on the performances in terms of compression ratio and
compression/decompression time, as well as security, is provided. )e experimental results showed that the Huffman coding
technique has the capability to compress the DICOM file up to 1 : 3.7010 ratio and up to 72.98% space savings.

1. Introduction

DICOM (Digital Imaging and Communication inMedicine)
is a file standard used to handle, store, print, and send in-
formation in medical imaging. All modern medical imaging
devices (imaging modalities) such as X-ray, CT (computed
tomography) scan, and MRI (magnetic resonance imaging)
use DICOM as their standardized file output. A DICOM file
consists of a few data elements or attributes capable to store
some information, such as patient data (name, sex, etc.),
imaging procedure (calibration, radiation dose, contrast
media, etc.), and the information of the image itself (reso-
lution, pixel data, bit allocation, etc.) [1]. Due to its bigger
size than the other standard sizes of the image file, the
storage and transmission of the DICOM file become one of
the problems in an integrated hospital information system

(HIS) with picture archiving and communication system
(PACS) implementation. )e larger the size of the data, the
more the storage media and bandwidth for the data
transmission are required. It certainly causes the problem in
terms of procurement cost for larger storage and bandwidth
[2–4].

Data compression is one of the solutions to overcome
this problem. Data compression is to convert the input data
source into the output data that has a smaller size [5]. )e
main purpose of compression techniques is memory effi-
ciency, fast compression, generation of the best output. It
can be divided into two types, namely, lossless compression
and lossy compression. Lossless compression is a type of
data compression which does not remove any information
from the initial data, while the lossy compression removes
some of the information from the initial data [6].
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Lossy data compression is usually used for generating
higher compression ratio, without considering the loss of
information in the image [7]. )e latest research on lossy
data compression was conducted by Kumar et al. [8] who
used a logarithm method called LDCL (lossy data com-
pression logarithm) in their methodology. )eir experi-
mental results showed that the particular method could
generate the compression ratio up to 1 : 60 in many cases.

)e lossless JPEG2000 is the popular data compression
method used in various PACS and considered the standard
for DICOM compression [9] despite being not backward
compatible [10]. Nevertheless, ongoing researches are still
being carried out to analyze the performance of JPEG2000
compression method as well as proposing an alternative
compression method in PACS with the aim to balance
image quality and transfer duration [9, 11–15]. )us, this
work implements and provides the performance analysis of
the Huffman coding, identified as one of the lossless
standard data compression methods by the US Food and
Drug Administration (FDA) [16].

Existing work on Huffman coding adoption to compress
the DICOM image by Kavinder [17] did not address the
performance, security aspect, complexity, and compression
time for compressing the DICOM image file by considering
the information stored in the file.

2. Related Work

Huffman coding has been used for many cases of data
compression. In 2015, Ezhilarasu et al. [18] reviewed
Huffman coding and concluded that the Huffman code can
provide better compression ratio, space savings, and average
bits than uncompressed data. A comparative study was
performed by Maan [19] in 2013, who analyzed and com-
pared three lossless data compression codings, namely,
Huffman, arithmetic, and run length. )e experimental
results showed that arithmetic coding can generate highest
compression ratio among lossless data compression tech-
niques, but its compression speed is slower than the
Huffman coding.

Another related research work was done byMedeiros et al.
in 2014 [20]. )ey compressed lightweight data for wireless
sensor networks (WSNs) by monitoring environmental pa-
rameters by using low-resolution sensors. )e obtained per-
centage of the compression ratio in their experiment varied
from 46% to 82%. )e researchers stated that the Huffman
coding is extremely simple and outperforms lossless entropy
compression (LEC) and adaptive linear filtering compression
(ALFC) in most cases.

Research has been conducted on DICOM image file
compression using various techniques. In fact, several
studies combined lossless and lossy data compression
techniques. In 2013, Kavinder [17] combined Huffman
coding (lossless) and discrete cosine transform (lossy) and
improved the technique by using vector quantization to
increase the compression ratio. In 2015, Kumar and Kumar
[21] used hybrid techniques of discrete wavelet transform-
discrete cosine transform (DWT-DCT) and Huffman cod-
ing, while Fahmi et al. introduced sequential storage of

difference for image compressing in medical image cloud
application [22, 23]. Other works on lossless and lossy data
compression techniques are found in [24–28].

3. Materials and Methods

In previous studies, the lossy data compression technique
generates high compression ratio but decreases the quality
metrics of the peak signal-to-noise ratio (PSNR), which is
generally used to analyse the quality of an image. )e higher
the PSNR is, the better the quality of the compressed or
reconstructed image is. )us, the lossless technique should
be applied for the enhancement of the compression of the
same PSNR. An image can be compressed without the loss of
significant details through Huffman coding. In the per-
spective of a DICOM file, we expect that the DICOM image
has intact quality and metadata after its compression and
decompression. Standard DICOM compression method is
in JPEG2000, and thus, we compare the performance
analysis between JPEG2000 and Huffman coding as an al-
ternative DICOM compression method. )e lossless criteria
of Huffman coding are the foundation of this work. Image
quality after decompression is a vital point here and is the
reason for selecting Huffman coding as the methodology.

Figure 1 shows the three parts of the methodology. )e
first part is Huffman encoding for DICOM image file com-
pression.)eDICOM image file is collected first and used as a
source. )is part encodes (compresses) the file by calculating
the byte frequency distribution (BFD), creating a prefix tree to
get codewords, changing byte distribution into codewords,
and then performing bit padding if necessary.)e second part
is View, which displays the DICOM image and includes the
steps for determining the image frame and window level and
width and for resizing the image. )e third part is Huffman
decoding for decompression. In the decoding process, a prefix
tree is read from a compressed data flow file, and codeword
threads are extracted from data flow and changed back into
the original distribution byte. )e more detailed steps in the
methodology are described below.

3.1. Huffman Encode. )e input DICOM file is compressed
in the first step. )e byte distribution on file is read and
calculated with BFD. Next, a prefix tree is created for the
acquisition of codewords that will substitute the byte dis-
tribution on the input file used for generating a new smaller
file. )e data used for encoding are the byte distributions,
which are compiled in the DICOM file, as shown in the
following (in hexadecimal):

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
44 49 43 4d 02 00 00 00 55 4c 04 00 be 00 00 00
82 04 82 04 82 04 82 04 82 04 82 04 82 04 82 04
7d 04 78 04 78 04 78 04 78 04 78 04 69 04 5a 04
5a 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00

)e BFD, which is a table storing the frequency of oc-
currence value from every byte that compiles the file, is
calculated for each DICOM file. For example, when the FF
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byte (255) occurs 887 times in a file, the value of the FF byte
(255) in the BFD table is 288700. Table 1 shows the BFD
from one of the DICOM files used in the experiment. If the
FF byte (255) occurs 200 times in a file, then the value of the
FF byte (255) in the BFD table is 200.

Once the calculation of BFD is completed, a prefix tree is
created for the acquisition of appropriate codewords as
substitutes of byte distribution [6]. Table 2 shows the result
of the generated codewords after searching the prefix tree,
which was created on the basis of BFD in Table 1.

Bit padding is the process of adding one or more bits into
the data flow to fit into the minimum 8-bit computer ar-
chitecture. In the example, when the generated data size is
7 bit, then 1-bit padding is required to fulfill the 8 bit
(1 bytes), and if the generated data size was 28 bit, then 4-bit
padding is required to fulfill the 32 bit (4 byte), and so on.

3.2. View. )e View part comprises the features that are
built as the user interface. )is part shows to the user the
compressed DICOM image, which is displayed in accor-
dance with the original size or the size of the provided
canvas. )is part is called the DICOM Viewer in other
systems. )e View loads the image from the DICOM file,
determines the DICOM image frame to be displayed and the

Table 1: BFD for CT0011.dcm file.

Byte (hexadecimal) Byte (decimal) Frequency
00 0 2661671
01 1 613
02 2 724
03 3 49653
04 4 702819
. . . . . . . . .

FD 253 2
FE 254 49043
FF 255 887

Table 2: Codeword for byte distribution of CT0011.dcm file.

Byte (hexadecimal) Byte (decimal) Codeword
00 0 1
01 1 010000011110
02 2 010100111001
03 3 010111
04 4 00
. . . . . . . . .

FD 253 011111011100100011010
FE 254 010101
FF 255 011011001001
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Figure 1: General architecture.
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window level and width to be configured, resizes the image,
and reads and displays the pixel distribution of the image.
)e View describes the metadata of the DICOM file.

3.3. Huffman Decode. )e Huffman decode decompresses
the file to be restored in its original file.)e part starts with the
reading of the data flow of the compressed file, creation of a
prefix tree from previously stored data into data flow in the
encoding process, and construction of a lookup table that
contains codewords and symbols to be changed back into the
original byte structure before the compression [29]. However,
using the bottom-up Huffman tree with probabilities [30] is
good in terms of run time; however, for the case of DICOM
compression, we found that using a lookup table provide a
balance between faster run time and memory usage.

)e lookup table contains codewords and represents
symbols generated from the results of the search of the prefix
tree created previously. )e table is used for changing the
codeword thread from the data flow back into the original
byte distribution. Table 3 shows the lookup table for the
compressed DICOM file, CT0011.dcm (CT0011.huf).

After reading the codeword thread of the compressed file
data flow, the generated codeword is changed into an original
byte distribution or symbol according to the created lookup
table. )is step is conducted by reading every bit of data flow,
then determining whether the bit is in the lookup table. If not,
the next bit is read and threaded with the previous bit; then,
the search is repeated in the lookup table. If the thread of bit is
found as one of the codewords that represents a symbol, then
the bit is changed into the symbol. )e process is done
continuously until the number of the returned symbols
achieve the original data size.

)e programming language used in this research is
VB.NET, while the operating system used is Windows 7
Ultimate 64 bit SP1. )e computer specification is Intel i5
450M in processor unit, 4 GB RAM, 500GB HDD, and ATI
Radeon HD 5470 in graphic card.

)e data used in this research work are several sets of
DICOM image files available at http://www.mmnt.net/, and
another set of the anonymized DICOM image from com-
puted tomography is collected randomly from the Uni-
versity Hospital RS USU Medan. )e files used were 20
DICOM image files with the extension ∗.dcm. )e speci-
fications of all DICOM files are described in Table 4.

4. Results and Discussion

4.1. Huffman Coding Compression Performances. Tables 5
and 6 present the results of DICOM file compression
through the Huffman coding technique. )e specifications
are provided in Table 4. From the obtained result, the
percentage of space savings is up to 72.98% at a 1 : 3.7010
compression ratio, while the lowest space saving percentage
is at −0.08%. )e worst compression ratio is 1 : 0.9992.

One of the factors that affect the compression ratio is the
number of nodes or symbols, which creates a prefix tree of
the image file. )e tree is shown in CT-MONO2-16-
ankle.dcm and CT-MONO2-16-brain.dcm files, which

nearly have the same original size (±525 kB) but have dif-
ferent compression ratios. )e CT-MONO2-16-ankle.dcm
file was twice as large as the CT-MONO2-16-brain.dcm file
with respect to the compression ratio.

Compared to other image data sets in Table 6, the
CT0013.dcm file has a smaller compression ratio than that of
the CT0014.dcm file, although the former had fewer sym-
bols. Hence, another factor affects the value of the com-
pression ratio apart from the number of symbols. One such
factor is BFD value of the file. )e BFD values of the
CT0013.dcm and CT0014.dcm file are shown in Table 7.

)e BFD of the CT0013.dcm file spreads more evenly
than that of the CT0014.dcm file. )is feature causes the
length of the codeword from the former to exceed that of the
latter. For instance, if the assumption for the length of
codewords for byte 00 is 2, byte 03 is 5, and byte FE is 6, then
the obtained size of CT0013.dcm file when other bytes are
disregarded is as follows:

(663477 × 2 + 24806 × 5

+ 24489 × 6) � 1597918 bit ≈ 199740 byte,
(1)

while the obtained size of CT0014.dcm file is as follows:

Table 3: Lookup table for CT0011.HUF file.

Symbol Codeword
0 1
1 010000011110
2 010100111001
3 010111
4 00
. . . . . .

253 011111011100100011010
254 010101
255 011011001001

Table 4: DICOM file specification used in the experiments.

File name Number of frames Size (byte)
CT0011.dcm 8 4.202.378
CT0012.dcm 2 1.052.902
CT0013.dcm 2 1.052.750
CT0014.dcm 2 1.053.770
CT0031.dcm 15 7.871.216
CT0032.dcm 1 527.992
CT0033.dcm 7 3.675.976
CT0034.dcm 1 528.012
CT0035.dcm 6 3.149.976
CT0051.dcm 1 208.402
CT0052.dcm 1 259.602
CT0055.dcm 1 208.416
CT0056.dcm 1 259.616
CT0059.dcm 1 362.378
CT0081.dcm 2 2.607.730
CT0110.dcm 9 4.725.954
CT-MONO2-8-abdo.dcm 1 262.940
CT-MONO2-16-ankle.dcm 1 525.436
CT-MONO2-16-brain.dcm 1 525.968
CT-MONO2-16-chest.dcm 1 145.136
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(698830 × 2 + 14 × 5

+ 91 × 6) � 1398276 bit ≈ 174785 byte.
(2)

In the experimental results, we also observe a limitation
of Huffman coding where one case generates a compression
ratio of less than 1 (ratio< 1), causing the generated com-
pressed file size is larger than the original file size.

Table 8 shows the BFD pattern and the codeword from
CT-MONO2-16-chest.dcm file, which has 1 : 0.992 of com-
pression ratio. )e BFD value is nearly evenly distributed and

thus causes the created prefix tree to generate codewords,
which are approximately equal to or longer than the re-
quired bit length for the creation of 1 byte (8 bit). For the

Table 5: Compression results.

File name Original size (byte) No. of symbol/node Compression time (s) Compressed size (byte)
CT0011.dcm 4.202.378 254 2.75 1.371.932
CT0012.dcm 1.052.902 223 0.67 346.880
CT0013.dcm 1.052.750 209 0.60 328.241
CT0014.dcm 1.053.770 254 0.65 284.727
CT0031.dcm 7.871.216 256 17.25 5.057.232
CT0032.dcm 527.992 256 0.65 322.986
CT0033.dcm 3.675.976 256 6.50 2.592.421
CT0034.dcm 528.012 256 0.78 380.848
CT0035.dcm 3.149.976 256 3.02 1.395.825
CT0051.dcm 208.402 256 0.24 118.713
CT0052.dcm 259.602 256 0.29 145.620
CT0055.dcm 208.416 256 0.26 127.395
CT0056.dcm 259.616 256 0.31 164.952
CT0059.dcm 362.378 256 0.36 193.416
CT0081.dcm 2.607.730 256 4.30 1.882.801
CT0110.dcm 4.725.954 256 8.87 3.196.659
CT-MONO2-8-abdo.dcm 262.940 217 0.23 124.563
CT-MONO2-16-ankle.dcm 525.436 89 0.29 175.696
CT-MONO2-16-brain.dcm 525.968 256 0.61 360.802
CT-MONO2-16-chest.dcm 145.136 256 0.28 145.248

Table 6: Compression ratio value and space savings.

File name Compression
ratio Space savings (%)

CT0011.dcm 3.0631 67.35
CT0012.dcm 3.0353 67.05
CT0013.dcm 3.2072 68.82
CT0014.dcm 3.7010 72.98
CT0031.dcm 1.5564 35.75
CT0032.dcm 1.6347 38.83
CT0033.dcm 1.4180 29.48
CT0034.dcm 1.3864 27.87
CT0035.dcm 2.2567 55.69
CT0051.dcm 1.7555 43.04
CT0052.dcm 1.7827 43.91
CT0055.dcm 1.6360 38.87
CT0056.dcm 1.5739 36.46
CT0059.dcm 1.8736 46.63
CT0081.dcm 1.3850 27.80
CT0110.dcm 1.4784 32.36
CT-MONO2-8-abdo.dcm 2.1109 52.63
CT-MONO2-16-
ankle.dcm 2.9906 66.56

CT-MONO2-16-
brain.dcm 1.4578 31.40

CT-MONO2-16-
chest.dcm 0.9992 −0.08

Table 7: BFD for CT0013.dcm and CT0014.dcm file.

Byte (hexadecimal) CT0013.dcm CT0014.dcm
00 663477 698830
01 103 175
02 237 59
03 24806 14
. . . . . . . . .

11 5178 45
12 4703 18
13 4719 13
14 6152 6
. . . . . . . . .

FC 3 6
FD 2 5
FE 24489 91
FF 413 682

Table 8: BFD and codeword for CT-MONO2-16-chest.dcm file.

Byte (hexadecimal) BFD Codeword
00 938 0010110
01 495 01001000
02 532 01100111
03 495 01001001
. . . . . . . . .

7D 381 111111110
7E 472 00110011
7F 398 00000011
80 222 001001110
. . . . . . . . .

FC 266 100000000
FD 307 101001010
FE 210 1011100011
FF 117 1011100010
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CT-MONO2-16-chest.dcm file, the created codewords are 11
(7 bit long), 19 (9 bit long), and 2 (10 bit long). )e other
codewords are 8 bit long. From the total number of created
codewords, only 11 symbols are compressed into 7 bits, while
the others still have the 8 bit length or more (9 bit and 10 bit).
Hence, the compression of CT-MONO2-16-chest.dcm file
generates a larger file size than the original size.

Another issue in using Huffman coding occurs when all
bytes or symbols have the same occurrence frequency, and
the generated prefix tree has a log 2(n) depth, where n is the
total number of symbols (n � 256, for each file). )e gen-
erated codeword for each symbol has a length in the amount
of depth from the created prefix tree, log 2(256) � 8 bit. In
this case, no compression was generated from the generated
codeword. Figure 2 illustrates the Huffman coding limita-
tion for the same occurrence frequency, assuming that each
character only needed 3 bits to be compiled (A� 000,
B� 001, C� 010, . . ., H� 111).

Table 9 shows that the generated codeword has the same
3 bit length as the initial symbol.)erefore, no compression
occurred during the process. If the value of occurrence
frequency for each symbol is 5, then size of the original file
(5 ∗ 8 ∗ 3�120 bit) will be the same as that of the com-
pressed file (5 ∗ 8 ∗ 3�120 bit). )is illustration is quite
similar to the case of CT-MONO2-16-chest.dcm file, where
the BFD values for the bytes have nearly the same value
without centering on a much greater value. Consequently,
the created prefix tree generates the same length of
codeword as the initial bit length (8 bit), one fraction with
7-bit length and others with 9- and 10-bit lengths.
)erefore, the size of the compressed file becomes larger
than that of the original file.

4.2. Security Aspect. One of the problems in the security of
the DICOM file is that the information of the DICOM file
itself can be easily read by using general text editors, like
Notepad or WordPad.)is feature is a serious threat as even
pixel data can be read by only with taking a few last bytes
from the DICOM file. Figures 3 and 4 show the structure
comparison between the original DICOM and the com-
pressed files. )e symbol character, 129 to 132 previously
read as “DICM” on the DICOM file, is unreadable on the
compressed file. )e prefix “1.2.480. . .” previously was able
to be read, which indicates that the DICOM file is no longer
available in the compressed DICOM file.

All characters that can be directly read previously, such
as patient’s name, doctor’s name, hospital, and date,
change to unique characters in a compressed file. )e set of
last bytes no longer represents the pixel data from the
original DICOM file. Now, interpreting the compressed
DICOM file is difficult without decompressing the file, and
the process for decompression is only known by the user.
)e worst thing that can be done by anyone on the

ABCDEF
GH

ABCD EFGH

AB CD EF GH

A B C D E F G H

1
0

1
10 0

1 0 1 0 1 0 1 0

Figure 2: Prefix tree for symbol with the same appearance frequency.

Table 9: Codeword for symbol with the same occurrence
frequency.

Symbol Codeword
A 111
B 110
C 101
D 100
E 011
F 010
G 001
H 000
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compressed file is to change the structure or byte distri-
bution from the file.)is change may cause decompression
that generates a file with a different bit structure from the
original DICOM file. As a result, the generated file be-
comes unreadable in the DICOM viewer or corrupted. )e
result of the decompression process from the compressed
file to be converted into the original DICOM file is shown
in Table 10.

4.3. Huffman Coding Compression Time. )e duration of
compression is proportional to the generated compressed
file size. )e larger the generated file size, the longer the time
required for compression. Figure 5 shows the effect of
duration of compression on the generated file size.

In Huffman coding, inputted data are traversed when
they receive a BFD value and when they are assigning a
codeword for every symbol. If the input file size is defined as
n, then the time needed will be 2∗ n. For the prefix tree, if the
nodes and symbols are defined as | 􏽐 |, with the depth of
log 2| 􏽐 |, then the prefix tree’s size becomes 2∗| 􏽐 | (the total
number of final nodes). From this state, we can obtain a
traversed prefix tree for the collection of symbol codewords,
which can be represented according to the construction time
of the prefix tree’s best and worst cases.

)e time required for decompressing depends on the
compressed file size, which is caused by the search to de-
compress all the bits in the file from the initial to the last bit.
Figure 6 shows the effect of duration of decompression on
the decompressed file size. Table 10 shows that a significantly
longer time is required for the decompression process than
for the compression time. For example, the CT0031.dcm file
was decompressed for 101.93 seconds but compressed for
only 17.25 seconds. However, the compression and de-
compression times are both proportional to the compressed
size and not to the original file size. Figure 6 displays the

correlation graph between the compressed file sizes with the
required decompression time.

4.4. Best Case Complexity. )e best case in Huffman coding
occurs when the constructed prefix tree forms a shape of
perfectly height-balanced tree, where subtrees in the left and
the right form one node that has similar height. In the
perfectly height-balanced prefix tree, the traversed time for
each symbol will take log 2| 􏽐 |. )erefore, every symbol will
take | 􏽐 |∗ log 2| 􏽐 |, and if we assume the length of the data
is n, the best case complexity will become
2∗ n + | 􏽐 |∗ log 2| 􏽐 | or O(n + | 􏽐 |∗ log 2| 􏽐 |).

4.5. Worst Case Complexity. )e worst case in Huffman
coding occurs when the constructed prefix tree forms a
shape of a degenerated or linear tree, which is called the
unbalanced tree. )is case takes time to reach one node as
| 􏽐 |. )erefore, reaching a codeword for every symbol takes
| 􏽐 |∗| 􏽐 | � | 􏽐 |2. )us, the time complexity for worst case
becomes 2∗ n + | 􏽐 |2 or O(n + | 􏽐 |2).

4.6. Comparison with JPEG2000. Lossless JPEG2000 com-
pression implementation was applied to the same set of
DICOM files listed in Table 4 in order to get a benchmark
performance comparison with Huffman coding. Figure 7
depicts the results of comparing the compression time and
size of JPEG2000 and Huffman coding. Overall, from the
results, we can observe that Huffman coding compression
performance was comparable with the standard JPEG2000
compression method with slightly faster compression time
for CT images. However, JPEG2000 still outperforms
Huffman coding on compressing large DICOM image such
as CR, DR, and angiography.

Figure 3: CT0011.dcm file hex content.
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Nevertheless, Huffman coding maintains the original file
format and size while JPEG2000, being not backward
compatible, changes the original size upon decompression.
)is comparable performance gives Huffman coding an
advantage to be an alternative implementation of DICOM
image compression in open PACS settings due to JPEG2000
proprietary implementation.

5. Conclusions

Huffman coding can generate compressed DICOM file with
the value of the compression ratio up to 1 : 3.7010 and space

savings of 72.98%. )e compression ratio and percentage of
the space savings are influenced by several factors, such as
number of symbols or initial node used to create prefix tree
and the pattern of BFD spread from the compressed file. )e
time required for compressing and decompressing is pro-
portional to the compressed file size. )at is, the larger the
compressed file size, the longer the time required to com-
press or to decompress the file.

Huffman coding has time complexity,
O(n + | 􏽐 |∗ log 2| 􏽐 |), and space complexity, O(| 􏽐 |),
where n is the read input file size and | 􏽐 | is the number of
symbols or initial nodes used to compile the prefix tree.

Figure 4: CT0011.HUF file hex content.

Table 10: Decompression results.

File name Original size (byte) Time (s) Decompressed size (byte)
CT0011.dcm 1.371.932 21.04 4.202.378
CT0012.dcm 346.880 5.92 1.052.902
CT0013.dcm 328.241 5.66 1.052.750
CT0014.dcm 284.727 4.08 1.053.770
CT0031.dcm 5.057.232 101.93 7.871.216
CT0032.dcm 322.986 6.06 527.992
CT0033.dcm 2.592.421 48.05 3.675.976
CT0034.dcm 380.848 7.18 528.012
CT0035.dcm 1.395.825 23.91 3.149.976
CT0051.dcm 118.713 2.41 208.402
CT0052.dcm 145.620 2.93 259.602
CT0055.dcm 127.395 2.62 208.416
CT0056.dcm 164.952 3.38 259.616
CT0059.dcm 193.416 3.83 362.378
CT0081.dcm 1.882.801 37.82 2.607.730
CT0110.dcm 3.196.659 65.76 4.725.954
CT-MONO2-8-abdo.dcm 124.563 2.28 262.940
CT-MONO2-16-ankle.dcm 175.696 2.34 525.436
CT-MONO2-16-brain.dcm 360.802 7.04 525.968
CT-MONO2-16-chest.dcm 145.248 3.01 145.136
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)e structure of the compressed file cannot be easily
interpreted as a DICOM file by using a general text editor,
such as Notepad or WordPad. In addition, Huffman coding
is able to compress and decompress with preserving any
information in the original DICOM file.

)ere is a limitation which is at one time; the technique
stops compressing when each symbol or node from the
compressed file has the same occurrence frequency (all
symbols have the same value of BFD).

Compression of the DICOM image can be conducted
only in the pixel data from the image without changing the
overall file structure, so the generated compressed file is still
be able to be directly read as the DICOM file in the com-
pressed pixel data size. )us, for future research, encryption
for the important information of DICOM files, such as
patient ID, name, and date of birth, is considered to
strengthen the secureness of the data.

Lastly, we also plan to further evaluate Huffman coding
implementation for inclusion in the popular dcm4HCEE
open PACS implementation. Such study will focus on
transfer time, compression, and decompression until the
image reading quality evaluation.
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