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Abstract

Logic relationship analysis is a data mining method that comprehensively detects item trip-

lets that satisfy logic relationships from a binary matrix dataset, such as an ortholog table in

comparative genomics. Thanks to recent technological advancements, many binary matrix

datasets are now being produced in genomics, transcriptomics, epigenomics, metage-

nomics, and many other fields for comparative purposes. However, regardless of presumed

interpretability and importance of logic relationships, existing data mining methods are not

based on the framework of statistical hypothesis testing. That means, the type-1 and type-2

error rates are neither controlled nor estimated. Here, we developed Logicome Profiler,

which exhaustively detects statistically significant triplet logic relationships from a binary

matrix dataset (Logicome means ome of logics). To test all item triplets in a dataset while

avoiding false positives, Logicome Profiler adjusts a significance level by the Bonferroni or

Benjamini-Yekutieli method for the multiple testing correction. Its application to an ocean

metagenomic dataset showed that Logicome Profiler can effectively detect statistically sig-

nificant triplet logic relationships among environmental microbes and genes, which include

those among urea transporter, urease, and photosynthesis-related genes. Beyond omics

data analysis, Logicome Profiler is applicable to various binary matrix datasets in general for

finding significant triplet logic relationships. The source code is available at https://github.

com/fukunagatsu/LogicomeProfiler.

Introduction

Recent technological advancements enabled us to obtain omics data from many samples for

comparative purposes. In case of comparative genomics, it is now routine to obtain genome

data from diverse species, and those data are frequently compared using a presence/absence

binary matrix of encoded genes, or an ortholog table whose rows and columns mean species
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and genes. Such binary matrix representation is generally applicable to compare various types

of omics data, such as genomics, transcriptomics, epigenomics, and metagenomics data across

different samples. For example, metagenomic data from multiple sampling points can also be

represented by a matrix whose rows and columns mean sampling points and genes [1]. There-

fore, development of data mining methods for comparative omics matrices is a research topic

of general importance in computational biology [2, 3].

Correlation analysis between two items is a typical method for analyzing comparative

omics matrices. For instance, correlation analyses of gene expression and phylogenetic profil-

ing matrices have estimated functions of function-unknown genes based on shared patterns of

expression and occurrence between genes with related functions [4–6]. Even outside of the

omics research fields, correlation analysis on ecology data matrices was also used to under-

stand ecological interrelationships between species such as cooperation and competition [7].

However, biological items such as genes and species are often in complex relationships among

more than two items, which cannot be revealed by such simple correlation analyses [8].

Logic relationship analysis is a method to discover relationships that fulfill logic-like

conditions among three items in binary data matrices. For example, in the condition that C is

present when A is not present but B is present and vice versa, the items A, B, and C (approxi-

mately) satisfy the logic condition C = ¬A ^ B. While regression analysis with interaction

terms can make a similar analysis for the logic condition C = A ^ B, the logic relationship anal-

ysis can also detect various logic patterns such as C = (¬A) ^ B as exemplified above. The

Logic Analysis of Phylogenetic Profiles (LAPP) method was the first logic relationship analysis

method, and its application to a phylogenetic profiling dataset succeeded to find triplet logic

relationships about cell motility and intracellular traffic [9]. Since then, the LAPP method and

its variants have been applied to various biological datasets such as gene co-expression and

pathway data [10–12]. However, because the LAPP method detects logic relationships based

on normalized mutual information, there is no guarantee that the detected logic relationships

are statistically significant. In other words, the type-1 and type-2 error rates were neither con-

trolled nor estimated in those studies.

In this study, we developed Logicome Profiler, which can exhaustively detect statistically

significant logic relationships from binary matrices. To test all item triplets in a dataset while

avoiding false positives, Logicome Profiler adjusts a significance level by the Bonferroni or

Benjamini-Yekutieli method for the multiple testing correction. After examining the statistical

property of the LAPP method, we applied Logicome Profiler to an ocean metagenomic dataset.

The detected triplet logic relationships included those among urea transporter, urease, and

photosynthesis-related genes in the marine microbial communities. Logicome Profiler was

developed to effectively detect statistically significant triplet logic relationships from various

comparative omics dataset, but is also applicable to any binary matrix dataset in general.

Materials and methods

Let D be a binary matrix dataset consisted of N samples and K items. Di,j, which is an element

of the sample i and the item j on the matrix, takes either 0 or 1. Here, 0 and 1 mean absence

and presence of the item in the sample, respectively. Logic relationship analysis considers 8

logic types, (1) C = A ^ B, (2) C = ¬(A ^ B), (3) C = A _ B, (4) C = ¬(A _ B), (5) C = A ^ ¬B,

(6) C = ¬A_B, (7) C = ¬(A = = B), and (8) C = (A = = B) (Fig 1). We defined li(A, B) as the i-th

logic type between A and B (1� i� 8). In addition, we defined |A| as the number of samples

that A is present.

Intuitive interpretation of those eight logic types is presented below for reference by taking

a comparative genomics case as an examples: (1) Both genes A and B are required for gene C;
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(2) Gene C can be replaced if both genes A and B are present; (3) Either gene A or B is required

for gene C; (4) If gene A or B exists, gene C is not neccessary; (5) Gene C is required for gene A

and gene B can replace gene A; (6) Gene C is not necessary if gene A exists but is necessary for

gene B, and gene A is not necessary if gene B exists; (7) Gene C is required only either gene A

or B exists; (8) Gene C exists only when both genes A and B exist or do not exist.

In addition, when an item is included in multiple detected logic relationships, it can be

used for constructing a “logic network”. For example, Sprinzak et al. constructed a gene associ-

ation network using gene triplets satisfying logic 1 and analyzed gene regulatory mechanisms

for stress responses [11].

The LAPP method

The LAPP method is the first data mining method for the logic relationship analysis [9]. This

method first calculates three uncertainty coefficients U(C|A), U(C|B), and U(C|li(A, B)) for all

possible combinations of item triplets and logic types, where U(X|Y) = (H(X) + H(Y) −H(X,

Y))/H(X). H denotes individual entropy or joint entropy in information theory. The numera-

tor of U(X|Y) is mutual information, and thus the uncertainty coefficient means normalized

mutual information in the range from 0 to 1. The large and small values mean that the value of

X is predicted from the value of Y with high and low accuracy, respectively. Then, the LAPP

method exhaustively detects triplet logic relationships that satisfy all of the following condi-

tions (a) U(C|li(A, B))> 0.6, (b) U(C|A) < 0.3 and (c) U(C|B) < 0.3. That means, when the

value of C is unpredictable from the value of the single item A or B but is predictable with high

accuracy from the logic relationship between A and B, this method detects the triplet logic rela-

tionship. While the setting of the threshold values differs for each existing study, the LAPP

method based on the uncertainty coefficients was the only method for the logic relationship

analysis. Because we could not obtain the LAPP software implemented by the authors of the

original article, we reimplemented this method and assessed its statistical property.

Algorithm of Logicome Profiler

Hypothesis testing of logic relationships. Logicome Profiler detects logic relationships

based on the framework of statistical hypothesis testing. We first describe the hypothesis test-

ing method for a logic relationship using the logic 1, C = A ^ B, as an example. Three condi-

tions used in the LAPP method can be interpreted as follows: (a) C is associated with A ^ B,

Fig 1. Venn diagrams and the logic formulas of 8 logic types.

https://doi.org/10.1371/journal.pone.0232106.g001
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(b) C is not associated with A, and (c) C is not associated with B. To make this approach statis-

tically sound, we can straightforwardly conduct the hypothesis test of the condition (a) using

the one-sided Fisher’s exact test (Fig 2). However, performing hypothesis tests of the condi-

tions (b) and (c) is difficult for the following reason. In the framework of the Fisher’s exact

test, the dependence of a variable to other variables can be statistically supported by rejecting

null hypotheses of independence. On the other hand, the independence can NOT be statisti-

cally supported, because acceptance of null hypotheses of independence just means failure of

rejection. Therefore, we re-wrote the conditions (b) and (c) as follows: (b’) C is associated with

A ^ B rather than A and (c’) C is associated with A ^ B rather than B. In other words, Logi-

come Profiler investigates whether the logic relationship between two items A and B can

explain the value of C more significantly than a single item A or B. These two conditions can

be tested using the one-sided Fisher’s exact test like the condition (a) (Fig 2). The three condi-

tions for all logic types used in Logicome Profiler are described in the S1 Text. We detected

logic relationships whose all three tests are statistically significant. Note that we need not con-

duct multiple testing correction in this situation, because performing multiple hypothesis tests

does not lead to the increase in false positives when all hypothesis tests must show statistical

significances.

We can perform the hypothesis tests of logic types represented by conjunctive forms (the

logics 1, 4 and 6) in the same way (S1 Fig). On the other hand, because logic types represented

by disjunctive forms (the logics 2, 3 and 5) cannot be tested in this way, we changed the logic

formulas to conjunctive forms by adding negation operators to both sides of the formulas. For

example, C = A _ B, which is the logic 3, is changed to ¬C = ¬A ^ ¬B. With this change, we

can conduct the hypothesis tests for the logics 2, 3 and 5.

In the Venn diagram, areas corresponding to the logic types from 1 to 6 differ from that of

a single term (A or B) or negation of a single term (¬A or ¬B) in only one area (Fig 1). There-

fore, in the hypothesis tests of the conditions (b’) or (c’), the difference of the association to C

between the single item and the logic relationship is clearly attributable to that area. On the

other hand, the areas corresponding to the logic types 7 and 8 differ from that of a single term

or negation of a single term in two areas. This means that it is difficult to identify the cause of

the differences even if the hypothesis tests of the conditions (b’) or (c’) show statistical signifi-

cances, and thus the interpretation of the results is difficult. Therefore, we excluded the logics

7 and 8 from the logic types analyzed by Logicome Profiler. The contingency tables for all logic

types used in Logicome Profiler are described in S1 Fig.

Multiple testing correction. To comprehensively detect statistically significant triplet

logic relationships, we have to conduct hypothesis tests for all candidate logic relationships. In

that case, the number of hypothesis tests is M = 4K(K − 1)(K − 2). When mulple tests are per-

formed simultaneously, the significance level has to be adjusted to avoid detection of many

Fig 2. The contingency tables for the hypothesis tests of logic 1, C = A ^ B.

https://doi.org/10.1371/journal.pone.0232106.g002
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false positives. In this study, we adjusted the significance level using the Bonferroni method,

which controls the family-wise error rate (FWER), and the Benjamini-Yekutieli method,

which controls the false discovery rate (FDR), for multiple testing correction. FWER is the

probability of finding one or more false positives when multiple tests are performed, and FDR

is the expected ratio of false positives in all rejected hypotheses. The Bonferroni and Benja-

mini-Yekutieli methods obtain adjusted p-values by multiplying M and
M logM

k by the original

p-values, respectively. Here, k is the rank of the hypothesis when sorted by the p-values in the

ascending order.

Datasets for performance evaluation

To evaluate the performance of Logicome Profiler, we applied Logicome Profiler to simulated

and empirical datasets. A simulated dataset contained 900 items that followed 300 logic rela-

tionships (50 for each logic type) that did not overlap each other. Then, for each logic relation-

ship, presence/absence of two items were randomly determined with equal probabilities.

Presence/absence of the third item was determined by strictly following the logic relationship

at a 90% probability or randomly at a 10% probability. Each simulated dataset contained 100

samples, and 100 datasets were prepared.

As an empirical dataset, we used a metagenomic dataset provided by Tara Oceans Project

[1]. This dataset includes metagenomic data from various water depth at 68 sampling points

representative of worldwide oceanic regions. We used 105 samples from the water surface and

the deep chlorophyll maximum layer. We used three matrices whose biological items are

orthologous genes based on eggNOG database [13], orthologous genes based on KEGG OC

database [14], and operational taxonomic units (OTUs). As the existence of each item for each

sample is represented as a continuous value in the dataset provided by the original paper, we

dichotomized these continuous values into binary values. We first normalized data so that the

sum of abundance of items for each sample is 100.0, and set the threshold value to 5 × 10−5.

Then, we removed the items that existed in over 85 or under 20 samples. This is because such

items rarely appear in detected logic relationships because the information contents of these

items are low. As a result, we obtained 797, 559, and 1580 items for the eggNOG ortholog data-

set, the KEGG OC ortholog dataset, and the OTU dataset, respectively.

Note that the obtained dataset organization is highly sensitive to threshold values for the

dichotomization. For example, when we changed the threshold value from 5 × 10−5 to 1 × 10−5

in the eggNOG dataset analysis, 797 and 1,821 OGs were identified, respectively, and only 48

OGs and 30 logic relationships (the significance level α was set to 0.001 for controlling FDR)

were in common between them. We argue that such dependency on threshold values is a natu-

ral and proper consequence, because (1) different thresholds have different biological mean-

ings (e.g., whether major or minor ecological functions are investigated) and (2) FWER and

FDR are controlled in either case regardless of the threshold values.

Results

Assessment of statistical property of the LAPP method

We first assessed statistical property of the LAPP method. The LAPP method cannot estimate

and control the type-1 and type-2 error rates, and there is no guarantee that the LAPP method

gives approximately constant error rates for any dataset size (number of samples). Accord-

ingly, the effect of the number of sample to the number of detected logic relationships should

be analyzed. We applied the LAPP method to the randomly sub-sampled eggNOG ortholog

datasets. The numbers of samples of the sub-sampled datasets were from 40 to 90, and we
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created 10 sub-sampled datasets and calculated the average number of detected logic relation-

ships for each number of samples. Fig 3 and S1 Table show how the number of detected logic

relationships depends on the number of samples in the LAPP method. Unlike expected results

in statistical analysis, the number of detected logic relationships in the LAPP method mono-

tonically decreased with the increasing number of samples. This result means that the error

rates of the LAPP method depend on dataset sizes, i.e., the LAPP method leads to large type-1

error rates when the dataset size is small but leads to large type-2 error rates when the dataset

size is large. In real application, a user cannot know whether a dataset size gives large type-1

error rates or large type-2 error rates, and thus the dependence of error rates on the dataset

size should make it difficult to interpret detection results. Therefore, a logic relationship analy-

sis method based on the framework of statistical hypothesis testing, which can control the

type-1 error rates, is definitely needed.

Performance evaluation of Logicome Profiler

We evaluated the statistical power of Logicome Profiler by applying it to the simulated and

empirical datasets. We first investigated whether Logicome Profiler can control FWER and

FDR using simulated datasets. In this analysis, we set the significance level α to 0.05. When we

controlled FWER based on the Bonferroni method, the empirical FWER was 0.03 and the

average sensitivity was 0.30. On the other hand, when we controlled FDR based on the Benja-

mini-Yekutieli method, the empirical FDR was 0.04 and the average sensitivity was 0.90. These

results show that Logicome Profiler can both fulfill the correction criteria for multiple testing

correction and be effective for sensitive detection of significant logic relationships. We also

examined numbers of detected logic relationships of Logicome Profiler using an empirical

dataset. In this analysis, we set the significance level α to 0.05 and 0.001 for controlling FWER

and FDR, respectively. Table 1 shows the numbers of detected logic relationships for both

methods. It is notable that, in all datasets, Logicome Profiler controlling FDR detected many

logic relationships although we set the significance level low. We finally examined the effect of

the number of samples on the statistical power of Logicome Profiler. We used the same

Fig 3. Dependence of the number of detected logic relationships on the number of samples. The x-axis and the y-

axis represent the numbers of samples and detected logic relationships, respectively. The LAPP method, Logicome

Profiler (FWER), and Logicome Profiler (FDR) are represented by blue, green and red lines, respectively. The error

bars represent the standard deviations.

https://doi.org/10.1371/journal.pone.0232106.g003
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evaluation method as the evaluation of the LAPP method. Fig 3 and S1 Table show how the

number of samples affects the numbers of detected logic relationships in Logicome Profiler.

We verified that Logicome Profiler showed a statistically favorable property that the number

of detected logic relationships monotonically increased with the increasing number of samples

unlike the LAPP method.

Then, we investigated basic properties of the results of Logicome Profiler. Hereafter, we

focus on Logicome Profiler controlling FDR because Logicome Profiler controlling FWER

detected only a few logic relationships. We first counted the number of detected logic relation-

ships for each logic type (Table 2). In all datasets, the logic relationships of logics 1, 3, and 5

were frequently detected, whereas those of logics 2 were less detected. We secondly examined

the occurrence frequency of each item in the detected logic relationships (S2 Fig). For all data-

sets, we found a tendency that a few items frequently appeared in the detected logic relation-

ships. We thirdly checked the relationships between the occurrence numbers of items in the

samples and those in the detection results (S3 Fig). As a result, there were no relationships in

all datasets. This result means that whether an item is in the detected logic relationships cannot

be predicted from the occurrence frequency of the item in the dataset.

Examples of the detected logic relationships

Here, we show some examples of the detected logic relationships to show the usefulness of

Logicome Profiler. We first visualized an example of detected logic relationships in the OTU

dataset for each logic type by the Venn diagram (Fig 4). The list of OTUs in these examples is

in Table 3. For example, in most cases of Fig 4A and 4C was present only when both A and B

were present, and C was absent when only either A or B was present. Therefore, this OTU trip-

let holded the logic 1 (C = A ^ B). As another example, in most cases of Fig 4E and 4C was

present only when A was present and B was absent, and thus this OTU triplet also holded the

logic 5 (C = A #x2227; ¬B). These results suggest the existence of various statistically significant

interspecific logic relationships.

Next, we investigated which genes tended to be enriched in the detected logic relationships.

Table 4 and S2 Table are the lists of frequently occurred genes in the detected logic relation-

ships of the KEGG OC ortholog dataset and the eggNOG ortholog dataset, respectively. In the

list of the KEGG OC ortholog dataset, we found that urea transport system genes such as urtA
were frequently observed. When we examined the detected logic relationships consisted of

these genes, we discovered that these genes tended to show the following logic relationship:

“urea transporter genes = urease genes ^ component genes of photosystems”.

Table 1. Numbers of detected logic relationships by Logicome Profiler.

Dataset the Bonferroni method the Benjamini-Yekutieli method

eggNOG 610 94855

KEGG OC 126 38555

OTU 6 25677

https://doi.org/10.1371/journal.pone.0232106.t001

Table 2. The number of the detected logic relationships for each logic type.

dataset Logic 1 2 3 4 5 6

eggNOG 19202 135 26823 6360 37114 5221

KEGG OC 14833 36 5240 2351 13436 2659

OTU 4036 42 6497 2962 10217 1913

https://doi.org/10.1371/journal.pone.0232106.t002
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Fig 5 shows the Venn diagram of “urtA = ureB ^ psbO” as an example of the above-men-

tioned formula. In most cases, while urtA was present when both ureB and psbO were present,

urtA was absent when only either ureB or psbO was present. The adjusted p-values of three

hypotheses in this logic relationships were 2.4 × 10−21 (the condition (a)), 1.8 × 10−11 (the con-

dition (b’)), and 2.4 × 10−6 (the condition (c’)), and thus logic 1 was certainly supported.

Because nitrogen assimilation is involved in photosynthetic efficiency [15] and urea is one of

the major nitrogen source in a group of cyanobacteria [16], the positive correlation relation-

ships among urtA, ureB and psbO are generally reasonable. On the other hand, there are cya-

nobacteria species that utilize other nitrogen sources such as nitrate, cyanate and fixed

nitrogen [15]. The presence of these species may lead to the presence of psbO in the absence of

both urtA and ureB. In addition, a group of bacteria can take urea in cytoplasm by passive

transportation depending on the concentration [17], and this may be the cause of the presence

of ureB in the absence of both urtA and psbO. We assumed that these are rationales behind the

Fig 4. Visualization of examples of the detected logic relationships in the OTU dataset by Venn diagrams. (A) logic 1 (C = A ^ B) (B) logic 2 (C = ¬
(A ^ B) (C) logic 3 (C = A _ B) (D) logic 4 (C = ¬(A _ B) (E) logic 5 (C = A ^ ¬B) (F) logic 6 (C = ¬A _ B).

https://doi.org/10.1371/journal.pone.0232106.g004

Table 3. The list of OTUs in Fig 4.

A B C

logic 1 Chloroplast HQ671986.1.1448 SAR324 EF573752.1.1474 Chloroplast EU268108.1.1451

logic 2 Myxococcales EF574964.1.1522 KI89A FJ744952.1.1345 Rhodospirillaceae HQ671902.1.1460

logic 3 Thaumarchaeota JF268338.1.1346 SAR11 HQ674219.1.1452 SAR11 EF646144.1.1435

logic 4 Acidimicrobiales HQ672763.1.1478 SAR11 FJ615107.1.1293 SAR116 EU795183.14183.15649

logic 5 SAR116 EF572060.1.1451 SAR202 AY534099.1.1476 OCS116 AACY023524552.82.1556

logic 6 SAR406 EF572866.1.1525 SAR86 EU800939.1.1503 SAR92 HQ672019.1.1489

https://doi.org/10.1371/journal.pone.0232106.t003
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detected logic relationships. In summary, Logicome Profiler can effectively identify biologi-

cally meaningful and important triplet logic relationships from comparative metagenomic

data.

Discussion

In this study, we proposed Logicome Profiler, which is a novel method for comprehensive

detection of statistically significant triplet logic relationships.

We envision three future software extensions of Logicome Profiler. The first is to directly

analyze data matrices consisting of continuous values. In this study, we dichotomized the con-

tinuous values into binary values based on a given threshold, but there would be two problems.

The first is that giving a biologically meaningful threshold value would be difficult in many

Table 4. The list of frequently occurred genes in the detected logic relationships in the KEGG OC ortholog

dataset.

KEGG ID gene name frequency

K09121 larC 1834

K05808 yhbH 1468

K02699 psaL 1310

K11959 urtA 1231

K11963 urtE 1156

K06995 unc 1109

K06898 larB 1087

K11961 urtC 1047

K00273 DAO 988

K00320 mer 980

https://doi.org/10.1371/journal.pone.0232106.t004

Fig 5. Visualization of “urtA = ureB ^ psbO” by a Venn diagram.

https://doi.org/10.1371/journal.pone.0232106.g005
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applications, and the second is that the association information among items may be lost due

to the dichotomization. As a method of itemset mining analysis of continuous values, Tatti

proposed a frequent pattern mining method based on an order statistics [18]. The application

of the order statistics to the logic relationship analysis may also be a solution for detection of

statistically significant logic relationships of continuous values.

The second is reducing false positives by removal of data biases derived from dependencies

among samples. The Fisher’s exact test assumes independence of samples among a dataset, but

the assumption often does not hold in biological data analysis. For example, there can be cate-

gorical covariates among samples or evolutionary relationships among species in phylogenetic

profiling analysis. Since these dependencies among samples can lead to detection of many false

positives, reduction of the data biases is important. In order to reduce the effect of categorical

covariates, the application of the Cochran-Mantel-Haenszel test [19] or the exact logistic

regression model [20] instead of the Fisher’s exact test would be effective. In addition, for the

elimination of the influence of evolutionary relationships, some previous papers proposed

usage of gain/loss of genes in branches of a reconstructed phylogenetic tree as items, instead of

presence/absence of genes in species [21, 22]. The integration of these methods would increase

the versatility of Logicome Profiler.

The third is the development of more sensitive detection approaches based on permutation

testing methods. The Bonferroni method can control the FWER for multiple testing correc-

tion, but this method can not reach the optimal significance level for controlling FWER. Per-

mutation testing methods such as the Westfall-Young method are alternative powerful

approaches for controlling FWER [23]. These methods require a lot of computation time but

have higher statistical power than the Bonferroni method, and thus several bioinformatics pro-

grams based on the permutation testing methods have been developed [24–26]. Logic relation-

ship analysis based on the permutation-based testing methods would be useful especially when

the number of samples of the dataset is small and a highly sensitive method is required.

Conclusion

Logicome Profiler is the first method for the logic relationship analysis based on the frame-

work of statistical hypothesis testing. For multiple testing correction, Logicome Profiler adjusts

the significance level by the Bonferroni or Benjamini-Yekutieli method. We verified that Logi-

come Profiler effectively detects biologically meaningful triplet logic relationships using an

ocean metagenomic dataset.

The knowledge discovery by Logicome Profiler is an important future perspective. Logic

relationship analysis has been applied to genomic data, but Logicome Profiler is also applicable

to any binary matrix data in general. Therefore, beyond omics data analysis or biological data

analysis, the applications to protein domain data, chemical compound data, market data or

natural language processing data are important research directions.
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