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Abstract: Preconception folic acid supplement use is a well-known method of primary prevention
of neural tube defects (NTDs). Obese women are at a higher risk for having a child with a NTD.
As different international recommendations on folic acid supplement use for obese women before
and during pregnancy exist, this narrative review provides an overview of epidemiology of folate
deficiency in obese (pre)pregnant women, elaborates on potential mechanisms underlying folate
deficiency, and discusses considerations for the usage of higher doses of folic acid supplements.
Women with obesity more often suffer from an absolute folate deficiency, as they are less compliant to
periconceptional folic acid supplement use recommendations. In addition, their dietary folate intake
is limited due to an unbalanced diet (relative malnutrition). The association of obesity and NTDs also
seems to be independent of folate intake, with studies suggesting an increased need of folate (relative
deficiency) due to derangements involved in other pathways. The relative folate deficiency, as a
result of an increased metabolic need for folate in obese women, can be due to: (1) low-grade chronic
inflammation (2) insulin resistance, (3) inositol, and (4) dysbiotic gut microbiome, which plays a role
in folate production and uptake. In all these pathways, the folate-dependent one-carbon metabolism
is involved. In conclusion, scientific evidence of the involvement of several folate-related pathways
implies to increase the recommended folic acid supplementation in obese women. However, the
physiological uptake of synthetic folic acid is limited and side-effects of unmetabolized folic acid in
mothers and offspring, in particular variations in epigenetic (re)programming with long-term health
effects, cannot be excluded. Therefore, we emphasize on the urgent need for further research and
preconception personalized counseling on folate status, lifestyle, and medical conditions.
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1. Rationale

In order to prevent neural tube defects (NTDs) in offsprings, women are advised to
take a 0.4 mg folic acid supplement from the moment they wish to get pregnant up until
the first trimester of pregnancy [1]. This advice applies to all women, except for women
with a history of a previous child with a NTD, who are advised to take a higher dose of
4-5 mg folic acid supplement [1].

A growing number of women is obese when trying to get pregnant, with an increased
risk of having a child with a NTD [2,3]. Meta-analyses showed a dose-response association
between maternal Body Mass Index (BMI) and NTDs, and the risk rapidly increased in
women with a BMI > 30 kg/ m? (Table 1) [4-6]. In addition, a BMI > 30 kg/ m?2, defined as
maternal obesity, is also associated with the severity of the NTD in the offspring [7,8].
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Table 1. Overview of three meta-analyses on the association between maternal obesity and NTD in offsprings.

Results (OR (95% CI))

Number

Years Included . Design Normal Severel
of Studies i y
Weight Overweight Obese Obese
Rasmussen January 12 Cohort and 1 (ref) 1.22 1.70 3.11
etal. 2008 [4] 2000-January 2007 case-control studies (0.99-1.49) (1.34-2.15)  (1.75-5.46)
Stothard January 1966-May 18 Cohort and 1 (ref) 1.87
et al. 2009 [5] 2008 case-control studies (1.62-2.15)
Huangetal. up to 15 December . 1.20 1.68
2017 [6] 2015 22 Case-control studies 1 (ref) o 130y (151-1.87)

Given the known association between inadequate maternal folate intake and NTD in
offsprings, and the increased risk of NTDs in obese women, the question arises whether
obese women more often have a folate deficiency [9]. There might be an absolute folate
deficiency from diet (folate) due to a suboptimal intake that is associated with obesity,
combined with the fact that obese women may be less compliant in taking supplements
(folic acid) [10-12]. On the other hand, obese women can have a relative folate deficient
status, caused by a state of chronic low-grade inflammation, which results in an increased
metabolic need of folate. Importantly, studies have shown that obese women had an
increased risk of NTDs, regardless of their folate intake [13,14]. There are no studies that
have assessed whether a high dose of folic acid results in less NTD pregnancies in obese
women. Therefore, the rationale to prescribe higher doses of folic acid supplementation
has to come from indirect evidence. Several underlying mechanisms have been suggested
as determinants in the causal pathway of a relative folate deficiency in obese women, such
as chronic inflammation and hyperinsulinemia [15]. However, an overview of causes of
folate deficiency in obese women, potential underlying (patho)physiological mechanisms
and how they might contribute to a higher risk of NTDs is lacking.

Moreover, different international recommendations on folic acid supplement use for
obese women before and during pregnancy are used [16,17]. Therefore, we provide an
overview of the epidemiology of folate deficiency in obese (pre)pregnant women, elaborate
on potential mechanisms underlying folate deficiency, and discuss considerations for advis-
ing higher doses of folic acid supplements. Moreover, we propose suggestions for clinical
practice making use of the current evidence, and suggest some areas for further research.

2. Epidemiology of Folate Deficiency in Obese (pre)Pregnant Women
2.1. Absolute Deficiency

Studies have shown that women with obesity have a lower intake of folate (Table 2).
Women with obesity are less likely to use preconceptional folic acid supplement compared
to normal weight women, 45.2% versus 60.4%, respectively [12]. They are also less likely to
use folic acid supplements on a daily base, 26% versus 33%, respectively [10]. Moreover,
women with obesity are less likely to receive enough folate through their diet than lean
individuals, i.e., relative malnutrition [18,19]. Both a lower intake of folic acid supplements
and a lower dietary intake of folate accounts for lower folate levels in serum, red blood
cells, and body fluids. Moreover, decreased folic acid intake is often due to unplanned
pregnancies and failed contraceptive methods prevalent in obese women [10].

Though it is clear that obese women have a lower intake of folate, obesity is associated
with other factors that are subsequently determinants of a lower intake of folate. Earlier
studies indicated that smoking, lifestyle, age, parity, educational level, income level, and
whether the pregnancy was planned were determinants of folate intake [20,21]. In a
multivariable model, maternal weight status was independently associated with adequate
use of folic acid, even after excluding women with an unplanned pregnancy [20].
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Table 2. Intake of folate and folic acid supplements in women, per weight category.

Results (% or Mean =+ SD)

Study . Sample
. Population . Outcome N 1
Design Size orma . :
Weight Overweight Obese p-Value
Masho Cohort Women with Daily intake
et al. stud singleton pregnancy  104.211 of folic acid 33% 29% 26% <0.0001
2016 [10] y living in USA supplement
Farah Cohort White European Use of folic
et al. stud women with a 288 acid 60% 60% 45% 0.029
2013 [12] y singleton pregnancy supplement
Non-pregnant .
. Folate intake
. >
Birdetal. — Cohort  womenaged 219 538 through diet 559 +12.7 557 +145 517+105  0.002
2015 [18] study years living in the

2.2. Relative Deficiency

Obese women had lower serum folate levels even after controlling for folate intake
through supplements and diet (3 = —0.26, 95% CI: —0.54, 0.02); p = 0.07) [22]. When compar-
ing non-obese and obese women with a similar folate intake, serum levels in obese women
tend to be lower than in non-obese women, suggesting the current recommendations of
folic acid supplement use could be subjected to review.

An increased need for folate is suggested to be caused by altered metabolic processes
and chronic low-grade inflammation that could eventually underlie the increased risk
for women with obesity on NTDs. Moreover, in women of higher weight categories, an
adequate intake of folic acid of 0.4 mg/day did not lower the risk of NTDs [13]. A similar
finding was reported by Parker et al., where women with obesity were at increased risk
of NTDs, irrespective of adequacy of folic acid intake following the current standard
‘one-fits-all” dosing regimens [14].

3. Theoretical Background
3.1. One-Carbon Metabolism

One-carbon metabolism is a complex of interlinking metabolic pathways that are
fundamental for molecular biological processes involved in cell multiplication, differentia-
tion, and programming [23]. It provides essential one-carbon moieties used as substrate
or cofactor of the linked folate and methionine pathways, as displayed in Figure 1 [24].
We focus on these pathways, however, one carbon metabolism comprises of a series of
metabolic pathways [25]. The main substrate of the folate pathway is tetrahydrofolate
(THF), which is converted into 5-methyltetrahydrofolate (5-MTHF). Together with homo-
cysteine, it is converted into methionine by methionine synthase (MS) using vitamin B12 as
cofactor [26]. The methionine pathway is essential for the provision of methyl groups after
transmethylation into S-adenosylmethionine (SAM), the most important methyl donor in
the cell [27].

One of the main products of one-carbon metabolism is the contribution to the biosyn-
thesis of nucleotides and epigenetic programming. Interruption of molecular biological
processes involved in neural tube development and dependent on one-carbon metabolism,
such as cell multiplication, differentiation, apoptosis and programming, can impair the
closure of the neural tube. In order to facilitate rapid DNA replication of the tissues
involved in the formation of the neural tube, a large pool of nucleotides is required for
DNA synthesis and methyl groups for epigenetic programming for neuroepithelial cells.
Inadequate supply of nucleotides and methyl groups blocks cellular replication, increases
DNA damage, and impairs epigenetic programming and as such the proper development
of the neural folds [28]. Given its central role in one-carbon metabolism, folate plays a key
role in the molecular biological processes involved in the development of NTDs.
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Figure 1. Folate related one-carbon metabolism. DHEF: dihydrofolate; DHFR: dihydrofolate
reductase; THF: tetrahydrofolate; MTHFR: methylene tetrahydrofolate reductase; 5-MTHEF: 5-
methyltetrahydrofolaat; MS: methionine synthase; SAM: S-adenosyl-methionine; SAH: S-adenosyl-
homocysteine; AHCY: S-adenosylhomocysteine hydrolase.

3.2. Folate

The most important dietary substrates and cofactors involved in one-carbon metabolism
include methionine and choline, together with the B vitamins, cobalamin, and folate. Fo-
late is an essential water-soluble B-vitamin and naturally occurs in fruits and vegetables.
Folate-rich foods include in particular leafy green vegetables, lentils, beans, and citrus
fruits. In general, the term folate refers to the natural forms in foods and body fluids, while
the term folic acid applies to the more stable but synthetic supplemental form. Folate is a
crucial mediator in the one-carbon metabolism, where it acts as a dietary methyl donor
together with methionine, betaine, and choline [23]. Folate derived from food needs to be
hydrolysed from polyglutamates to monoglutamates, before absorption takes place in the
jejunum [29]. This process leads to a lower bioavailability that varies between 30% and
98% [30,31]. Another source is synthetic folic acid, present in fortified foods and in various
supplements. The bioavailability of this form is commonly estimated at 85% [32]. Synthetic
folic acid is a monoglutamate and needs to be converted by dihydrofolate reductase (DHFR)
to be taken up in its the active form, THF, in the intestinal cells.

3.3. Epigenetics

Generally, epigenetics is defined as the alterations in the gene expression profile of
a cell that are not caused by changes in the DNA sequence [33]. Epigenetics is critical
to normal genome regulation and development. One-carbon metabolism is essential for
epigenetic modifications by providing methyl groups for the methylation of DNA and
associated (histone) proteins as well as RNA, for which an adequate folate supply is
important. With one-carbon metabolism being essential, it is plausible that folic acid plays
a role in epigenetics and its related plasticity of gene methylation. Indeed, periconceptional
folic acid supplement use has been shown to be associated with epigenetic changes [34].
Although, maternal intake of folic acid supplements and dietary folate are positively
associated with long interspersed nuclear elements (LINE-1) methylation, a surrogate
marker of global DNA methylation, transgenerational effects could not be demonstrated in
cord blood [35-37].
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Such epigenetic modifications, particularly where DNA methylation is involved,
have been proposed as plausible mechanisms underlying associations between folate and
various disease outcomes, such NTDs, cardiovascular diseases, and cancer [38].

4. Pathophysiology of Relative Deficiency of Folate in Obese Women
4.1. Impaired One-Carbon Metabolism

Hyperhomocysteinemia, conventionally described as a serum level above 15 micro-
mol/L, is a sensitive marker of an impaired one-carbon metabolism [39]. Considering
the pathways within the one-carbon metabolism, a folate deficiency and as such less sup-
ply of methyl groups, contributes to higher levels of homocysteine, and higher levels
of homocysteine lead to a higher demand for folate used for remethylation of homo-
cysteine [40]. Moreover, hyperhomocysteinemia is a risk factor for several poor health
outcomes, including, among others, neurological disorders, vascular diseases and repro-
ductive disorders [23,41,42]. Pregnancy complications such as preeclampsia, intra-uterine
growth restriction, and prematurity are associated with high maternal levels of homo-
cysteine [23,43,44]. Hyperhomocysteinemia is more common in women with obesity,
compared to non-obese individuals: two studies reported statistically significant differ-
ences in homocysteine levels between obese and non-obese women; 12.76 + 5.30 uM /L
versus 10.67 £+ 2.50 uM/L, respectively, and 10.2 pM/L [4.6-26.3] versus 8.9 [4.4-25.8]
respectively [45,46]. Suggested folate-related pathways that could underlie this finding are
discussed below. In addition, an overview of potential underlying (patho)physiological
pathways of folate deficiency and NTDs in obese women is displayed in Figure 2.

;= = =
|
I
Poor Lifestyle Epigenetics
Chronic Inflammation

Folate |

NTDs

Figure 2. Overview potential underlying (patho)physiological pathways of folate deficiency and
NTDs in obese women.

4.2. Physiology of Adipocytes

Adipose tissue is traditionally categorized into white and brown adipose tissue. Brown
adipose tissue is specialized in energy expenditure and thermogenesis [47,48]. White
adipose tissue is responsible for storing and releasing energy in the human body by
controlling lipogenesis and lipolysis, respectively. During the process of lipogenesis, free
fatty acids and glycerol are taken up from the blood stream and are stored as triglycerides
in adipocytes [49]. On the contrary, lipolysis is the mechanism by which triglycerides are
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catabolized into free fatty acids and glycerol that are released into the bloodstream where
they act as an energy source for other organs [50].

Obesity is characterized as an excessive growth of adipose tissue [51]. Furthermore,
obesity is known to cause both hypertrophy as hyperplasia of the adipocyte [52]. These
processes are associated with an infiltration of macrophages into the adipose tissue. This
promotes inflammation and introduces TNF« into the tissue [53]. Moreover, the expansion
of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia
development [54]. Subsequent inflammatory reactions inhibit preadipocyte differentiation
and initiate adipose tissue fibrosis [55]. Not all obese individuals develop adipose tissue
fibrosis followed by inflammation; however, obesity-related hypertrophic adipocytes may
induce inflammation by producing pro-inflammatory adipokines [56].

4.3. Pro-Inflammatory State

The obesity-related low-grade chronic inflammation is generated by the production of
pro-inflammatory cytokines, as IL-6 and TNF-«, and adipokines, as leptin [57]. Consump-
tion of excess energy may as well acutely induce inflammatory responses [58,59]. Hence, it
is thought that excess energy by overfeeding is another starting signal of inflammation,
causing overactivation of tissues involved in metabolism, like adipose tissue, liver, and
muscle, which in reaction to this stimulus provokes the inflammatory response [60,61].
Thus, besides continuous, low-grade chronic inflammation, there also might be addi-
tional, acutely induced inflammatory responses caused by excess supply of food. The
inflammation-related collateral tissue damage activates tissue repair responses, requiring
one-carbon moieties for synthesis of adequate amounts of proteins, lipids, nucleotides, and
others. Since the folate dependent one-carbon metabolism supports cell proliferation at the
detriment of B-vitamins, obesity-induced inflammation is associated with hyperhomocys-
teinemia and, thereby, folate deficiency. In addition, hyperhomocysteinemia is not only a
result of inflammation, but hyperhomocysteinemia will again promote inflammation due
to the excessive oxidative stress generated from high homocysteine levels [62].

4.4. Insulin Resistance

Adipose tissue regulates energy storage and release by lipogenesis and lipolysis.
Obesity is associated with an increased basal lipolysis, which might be caused by an
impaired sensitivity of adipocytes to insulin signaling, overexpression of the leptin gene in
adipocytes, and increased circulating levels of leptin [63]. By the increased rate of lipolysis,
higher amounts of fatty acids and glycerol are catabolized and enter the bloodstream.
Increased serum levels of fatty acids, non-esterified fatty acids (NEFAs) in particular,
are considered to be the most critical factor in inducing insulin resistance [50]. This is a
pathological condition in which the capacity of cells to respond to normal levels of insulin
is reduced. Increased NEFA levels are observed in persons with obesity and are associated
with insulin resistance. Moreover, insulin resistance establishes within hours after an acute
increase in plasma NEFA levels [64]. Beside the lipolysis-derived factors, the increased
release of inflammatory cytokines influences the development of insulin resistance as
well [65,66]. Especially, TNF-a and IL-6 cause an upregulation of potential mediators of
inflammation that contribute to insulin resistance.

Additionally, chronic inflammation in general is not only associated with hyperhomo-
cysteinemia and folate deficiency, but also with insulin resistance [67]. Although the exact
working mechanism is not unravelled yet, it is suggested that insulin resistance influences
activity of key enzymes in the folate dependent one-carbon metabolism, including 5,10-
methylenetetrahydrofolate reductase (MTHFR) and cystathione b-synthase (CBS) [68,69].
Furthermore, it has been demonstrated that insulin signaling is affected by high levels of
homocysteine, which is a condition associated with obesity [70,71]. Insulin signaling is
an essential process in glucose homeostasis, since it increases the uptake of glucose into
muscle and fat cells and reduces the synthesis of glucose in the liver. GLUT4 is one of the
most important insulin-regulated glucose transporters responsible for decreasing blood
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glucose concentrations by facilitating glucose uptake into muscle and adipose tissue [72].
In the absence of insulin, the majority of GLUT4 is sequestered in intracellular vesicles in
muscle and fat cells. When insulin levels increase, translocation of GLUT4 to the plasma
membrane is induced and diffusion of circulating glucose down its concentration gradient
into muscle and fat cells is facilitated. Homocysteine is one of the factors known to disrupt
insulin signaling by impeding the GLUT4 translocation or recruitment on the plasma
membrane and therefore reducing glucose uptake, which results in higher levels of glucose
in the blood plasma [67].

4.5. Hyperglycaemia

Insulin resistance forces the pancreatic (3-cells to produce more insulin to be able to
prevent hyperglycaemia. However, when the compensatory insulin production is no longer
sufficient, excessive amounts of glucose circulate in the blood plasma. This condition is
referred to as hyperglycaemia, which is a defining characteristic of diabetes mellitus [73].
Besides maternal obesity, diabetes mellitus is a known risk factor for NTDs. Both obesity
and diabetes mellitus are features of the metabolic syndrome [15]. The metabolic syndrome
is further characterized by other metabolic risk factors including dyslipidemia, chronic
hypertension, proinflammatory state, and prothrombotic state [74]. In the presence of 1 or 2
features of the metabolic syndrome, the fetus is on a 2-fold and 6-fold higher risk for NTD,
respectively [75]. While the increased risk of NTDs associated with obesity appears to be
independent of diabetes, a possible mechanism might be hyperglycemia due to insulin
resistance in obese women [15].

Glucose levels are monitored and regulated by the islets of Langerhans in the pan-
creas and glucose is an essential factor for aerobic metabolism. Evidence suggests that the
early developing embryo is dependent on maternal glucose metabolism, with detrimental
effects in case of disbalance and hyperglycemia [76]. Thus, at the time of neural tube
closure (around the fourth week of gestation), mothers with poorly regulated glucose levels
are likely to have an suboptimal in utero environment, causing abnormal organogene-
sis [43,77,78]. To date, the exact working mechanism has not been elucidated yet. Only a
few studies have reported evidence for this explanation, mostly focusing on the genetic
susceptibility related to hyperglycemia as a risk factor for NTDs. Previous animal studies
investigating molecular causes of NTDs in the embryos of diabetic mothers, demonstrated
that in mouse embryos, expression of Pax3 is suppressed beginning on embryonic day 8.5
and subsequently, neuroepithelial cells undergo apoptosis and NTDs occur at increased
frequency compared to embryos from nondiabetic pregnancies [79]. Moreover, in an em-
bryos mouse model, which demonstrates a homozygous loss of function mutation in the
Pax3 gene, NTDs can be rescued by either folic acid or thymidine supplementation [80,81].
This finding suggests that folic acid prevents NTDs by ensuring sufficient biosynthesis of
factors for cell proliferation. Furthermore, a recent review of randomized controlled trials
indicated that folic acid supplementation in non-pregnant populations, including women
and men, had potential benefits on insulin resistance and glycemic control [82]. The mecha-
nisms by which folic acid supplements lowers glucose levels and insulin resistance are still
unclear. One of the suggested explanations is that hyperhomocysteinemia increases vascu-
lar oxidative stress, which could relate to insulin resistance and impaired insulin secretion
during hyperglycemia [83,84]. As such, folate or folic acid supplements might decrease
oxidative stress and, thereby, could prevent hyperglycemia and its detrimental effects.

4.6. Inositol

Inositol has been the focus of a large number of studies and is also involved in both
folate uptake and glucose metabolism. Myo-inositol and D-chiro inositol are inositol
isomers. Myo-inositol is the predominant form, which can be produced by the human
body from D-glucose and is naturally present in foods, such as cereals, legumes, and
meat [85]. Both isomeric forms of inositol were found to have insulin-like properties,
acting as second messengers in the insulin intracellular pathway. Furthermore, both of
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these molecules are involved in increasing insulin sensitivity of different tissues, and
thereby, improving health outcomes associated with insulin resistant, such as diabetes
mellitus and reproductive disorders [86-88]. A randomized controlled trial showed that
myo-inositol supplementation, started in the first trimester, in obese pregnant women
reduced the incidence of gestational diabetes mellitus in the myo-inositol group compared
with the control group, 14.0% compared with 33.6%, respectively (p = 0.001; odds ratio
0.34, 95% confidence interval 0.17-0.68) [89]. This reduction was achieved by improving
insulin sensitivity.

Besides the insulin-like properties, an animal study demonstrated that myo-inositol is
capable of significantly reducing the incidence of spinal NTDs in curly tail mice, a genetic
model of folate-resistant NTDs [90]. Furthermore, in humans, significantly lower inositol
concentrations have been reported in the blood of mothers carrying NTD fetuses compared
with normal pregnancies, and mothers with low blood levels of inositol showed a 2.6-fold
increased risk of an affected offspring [91].

Moreover, inositol is suggested to have preventive effects on NTD occurrence in curly
tail mutant mouse [90]. Protection against diabetes-induced NTDs has been observed
as well in other rodent models [92]. Hence, the animal data support a distinct inositol-
dependent metabolic pathway that, when stimulated, can prevent NTDs.

4.7. Role of the Gut Microbiome

The gut microbiome can directly influence the folate status and via the cofactors
vitamin B12 en B2, which contribute to a relative folate deficiency. The gut microbiome is
the entirety of microorganisms, bacteria, viruses, protozoa, and fungi, and their collective
genetic material present in the gastrointestinal tract [93]. For this overview, we focus on
the bacterial microbiome. Gut bacterial microbiota are involved in a variety of essential
processes, including the fermentation of indigestible food components into absorbable
metabolites, the synthesis of essential vitamins, such as folate and vitamin B12, the removal
of toxic compounds, the strengthening of the intestinal barrier, and the stimulation and
regulation of the immune system [94-96]. Diversity is of great importance to a healthy
intestinal microbiome, since it ensures redundancy, with multiple microbes competent to
perform similar functions [97]. An imbalance in microbial populations, called dysbiosis,
is associated with several poor health outcomes, including, among others, inflammatory
bowel disease, neurological diseases, and diabetes [98,99]. Moreover, there is increasing
evidence, mainly from animal studies, that alterations in the intestinal microbiome lead to
metabolic and weight changes in the host [100,101].

An animal study found in genetically obese mice a 50% reduction in the abundance of
Bacteroidetes and a proportional increase in Firmicutes [102]. Moreover, it is noted that
changes affect the metabolic potential of the mouse gut microbiota. Previous research
indicated that the obese microbiome has an increased capacity to harvest energy from
the diet [101]. Furthermore, this trait is transmissible: colonization of germ-free mice
with an ‘obese microbiota’ results in a significantly greater increase in total body fat than
colonization with a lean microbiota’. Besides the role of the gut microbiota as a contributing
factor to the pathophysiology of obesity, it is also recognized as a source of B vitamins, in
particular of folate and vitamin B12. It is produced by the colonic microbiota, mainly as the
monoglutamate form of folate, the form that is absorbed at the highest rate. Thus, intestinal
bacteria are a source of folate [103]. Even though absorption of folate occurs primarily in
the duodenum and upper jejunum, the colon represents another depot of folate potentially
affecting the general folate status of the host.

Moreover, the composition of the intestinal microbiome contributes to the regulation of
intestinal permeability [104]. Short-chain fatty acids have been suggested as a mediator via
which intestinal microbiota might promote the integrity of the intestinal mucosa. A higher
intestinal permeability has been associated with obesity, leading to a ‘leaky gut’” with
suboptimal uptake of micronutrients [105]. Hypothetically, there might be a derangement
in the absorption of folate as well.
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5. Considerations for Advising Higher Doses of Folic Acid Supplements

Positive effects of folic acid supplement use on NTD birth prevalence rates in the
general population are shown in doses ranging from 0.36 mg (NTD occurrences) to 4 mg
(NTD recurrences) per day. However, after these randomized controlled trials, further
investigation into an optimal dose for preventive effects could not be performed anymore
due to ethical considerations [9,106-108].

The presence of unmetabolized folic acid, which accumulates in serum above doses
of 0.2 mg per day, is generally regarded as a marker of dihydrofolate reductase (DHFR)
saturation in its capacity to convert folic acid to tetrahydrofolate (THF) [109-112].

Various animal experiments showed that folic acid, especially when applied directly
into the brain, possess powerful excitatory and convulsive properties by unknown mecha-
nisms, although evidence suggests that unmetabolized folic acid might induce neurotoxic-
ity [113-115].

An observational study reported an increased risk of impaired psychomotor develop-
ment with the use of 5 mg of folic acid per day [116]. Daily intakes of 800 ug to 5 mg of folic
acid from supplements have been associated with an increased risk of cancer development
and mortality perinatally and later in life [117]. Since folate is an important methyldonor
for periconceptional epigenetic programming, high doses of folic acid can induce variations
in the epigenome of the offspring [34,118]. Until now, there is no conclusive evidence which
dose of folic acid supplement use causes adverse effects in either the pregnant woman or
the fetus [119].

There is only indirect evidence that obese women could benefit from an increased
dose of folic acid in the prevention of NTDs in the offspring, as discussed in the previous
sections. Hence, until the possible alterations in folate metabolism and corresponding
requirements of folic acid supplement use in obese women are clarified, an increased folic
acid supplementation dosage is only justified when harmful effects are ruled out.

6. Current Guidelines

In the previous sections, we described plausible folate-related pathways underlying
the increased risk of NTDs in the offspring of obese women. No study has performed a trial
where obese women are randomized to a high dosage versus a normal low dosage, and are
followed-up until birth outcomes, including NTDs. As both a relative folic acid deficiency
and insulin resistance are plausible mechanisms, direct evidence that an increased dosage
of folic acid prevents NTDs in obese women is lacking [120]. Therefore, current guidelines
are based on indirect evidence, which may explain the differences in these guidelines.
British and Australian guidelines recommend 5 mg/day of folic acid in obese women,
while American and Canadian guidelines do not mention special recommendations for
folic acid supplement use in obese women [16,17]. These differences in recommended
folic acid supplement use for obese women might be related to national folic acid food
fortification programs. In the United States and Canada, folic acid fortification of most
cereal grains is mandatory, while in the United Kingdom and Australia, this is only applied
to wheat flour. New guidelines should not only be based on substantial scientific evidence.
Local or national circumstances or customs, such as folic acid food fortification programs,
should also be taken into account.

7. Recommendations
7.1. Recommendations for Practice

Although there is insufficient evidence that it is effective and safe to increase the
recommended dose of folic acid supplement use for obese (pre)pregnant women in the
prevention of neural tube defects, we formulated the following recommendations for
clinical practice to improve absolute folate deficiency, either through supplement use or
dietary intake:

e  Be aware of a suboptimal absolute folate intake in obese women, both as a result of a
lack of compliance to folic acid supplement use as well as of a relative malnutrition due
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Preconception period

Preferred start of folic
acid supplement use

First day of last
menstrual period

to a folate deficient diet, as discussed in Section 2. More than half of pregnant women
reported to start using folic acid supplements after a positive pregnancy test, which
is on average after 5.5 weeks of gestation [121,122]. Since the closing of the neural
tube occurs between week 4 and 6 of pregnancy, the majority of pregnant women start
using folic acid supplements too late for the prevention of NTDs (Figure 3). Therefore,
the preconception period is the window of opportunity to determine and treat folate
deficiency or hyperhomocysteinemia in women with obesity and provide lifestyle
counseling to improve dietary folate intake and stimulate weight loss [123]. Addition-
ally, parameters of chronic inflammation and glucose metabolism could be measured
as a risk analysis. Face-to-face lifestyle counseling could be combined with an online
program, for example the evidence-based eHealth platform ‘Smarter Pregnancy’. This
eHealth intervention showed improvements in lifestyle behaviors, including folic acid
supplement use and nutritional intake, in the total study population as well as in the
subgroup of overweight and obese women [124]. Since unplanned pregnancies and
failed contraceptive methods are prevalent in obese women, this group is less likely
to attend preconception care. As presented in Figure 3, folic acid supplement use in
general should start before conception to have its full potential. Therefore, the general
practitioner could inform women, independent of their BMI, who, for example, stop
taking their contraceptives.

Obese women can be monitored by assessment of serum folate and red blood cell folate
during the periconceptional period, as well as plasma total homocysteine status. Based
on these parameters, folate status, one-carbon metabolism, and related pathways can
be improved by supplements or lifestyle counseling, the latter being preferred because
of no concerns about safety.

GESTATIONAL AGE

WEEK 4 WEEK 6

WEEK 0 WEEK 2 WEEK 5.5 WEEK 7 WEEK 10

Positive pregnancy test
Preanancytest  process of
Conception Usual start of folic neural tube First antenatal visit
acid supplement use closure

WEEK -2 WEEK 0 ) WEEK 3.5 WEEK 5 WEEK 8
WEEK 2 WEEK 4

TIME SINCE CONCEPTION

Figure 3. Illustration of the gap between recommended period of folic acid supplement use, and window of opportunity for

the health care provider to advice on folic acid supplement use.

7.2. Recommendations for Future Research

A preconceptional initiated intervention study to explore the etiology of insulin
resistance and chronic inflammation in obese women and the effects of increased folic
acid supplement use.

Modification of the intestinal microbiota to maintain intestinal permeability and
adequate uptake and production of essential nutrients is worth further research.
Further research should focus on the implementation of interventions to target ab-
solute folate deficiencies. Lifestyle programs have the potential to increase dietary
folate intake, folic acid supplement use, and overall lifestyle improvement among
obese women [124]. Wide implementation and evaluation of such interventions could
provide a powerful preventive measure.



Nutrients 2021, 13, 331 11 of 16

8. Conclusions

Women with obesity are at an increased risk of NTDs in their offspring and there is
substantial evidence that folate deficiency plays a significant role. However, clinical trials
to show the optimal dose of folic acid supplement use are lacking. Scientific evidence of
the involvement of several folate-related pathways implies to increase the recommended
folic acid supplement use in obese women. However, the physiological uptake of synthetic
folic acid is limited and side-effects in mothers and offspring, in particular variations in
epigenetic (re)programming with long-term health effects, cannot be excluded. Therefore,
we emphasize the urgent need for preconception personalized counseling on folate status,
lifestyle and medical conditions, in particular for women with obesity. Targets for further
research to substantiate folic acid recommendations in women with obesity are directed
towards homocysteine, glycemic control, and the microbiome. We recommend that folic
acid supplement use guidelines should be reconsidered when more scientific evidence
is available.
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