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Abstract

Diabetic nephropathy is one of the common microvascular complications of diabetes. Iron

death is a recently reported way of cell death. To explore the effects of iron death on diabetic

nephropathy, iron death score of diabetic nephropathy was analyzed based on the network

and pathway levels. Furthermore, markers related to iron death were screened. Using RNA-

seq data of diabetic nephropathy, samples were clustered uniformly and the disease was

classified. Differentially expressed gene analysis was conducted on the typed disease sam-

ples, and the WGCNA algorithm was used to obtain key modules. String database was

used to perform protein interaction analysis on key module genes for the selection of Hub

genes. Moreover, principal component analysis method was applied to get transcription fac-

tors and non-coding genes, which interact with the Hub gene. All samples can be divided

into two categories and principal component analysis shows that the two categories are sig-

nificantly different. Hub genes (FPR3, C3AR1, CD14, ITGB2, RAC2 and ITGAM) related to

iron death in diabetic nephropathy were obtained through gene expression differential analy-

sis between different subtypes. Non-coding genes that interact with Hub genes, including

hsa-miR-572, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153-3p and

hsa-miR-29c-3p, may be related to diabetic nephropathy. Transcription factors HIF1α,

KLF4, KLF5, RUNX1, SP1, VDR and WT1 may be related to diabetic nephropathy. The

above factors and Hub genes are collectively involved in the occurrence and development

of diabetic nephropathy, which can be further studied in the future. Moreover, these factors

and genes may be potential target for therapeutic drugs.

Introduction

Diabetic nephropathy is one of the most common microvascular complications of diabetes [1].

Once it develops to end-stage renal disease treatment is difficult, thus active and early
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prevention and treatment are of great significance to delay the progression of the disease. The

etiology and pathogenesis of diabetic nephropathy are still unclear. It is a multifactorially

induced disease with a combination of genetic background and some risk factors [2].

Iron homeostasis is an important factor in maintaining the normal function of kidney cells

[3]. Excessive iron deposition in kidney cells can cause tissue dysfunction [4]. The abnormal

accumulation of iron may promote the occurrence and development of diabetic nephropathy

by increasing oxidative/nutritional stress and reducing antioxidant capacity [5, 6]. The discov-

ery of iron death provides a new explanation for the role of iron overload in the pathogenesis

of the disease.

Iron death is a new type of programmed cell death characterized by iron-dependent lipid

hydrogen peroxide accumulation and loss of lipid repair enzyme Glutathione peroxidase 4

(GPX4) activity [7]. When iron death occurs, the low expression of ferritin 1 (Transferrin

receptor-1, FTH-1) and the overexpression of transferrin receptor 1 (Transferrin Receptor-1,

TFR-1) lead to excessive accumulation of ferrous ions [8]. The fenton reaction promotes the

production of a large number of reactive oxygen species (ROS) [8]. Meanwhile, the cystine/

glutamate reverse transport system (Xc-system) function is destroyed, leading to the consump-

tion of glutathione produced by the body and preventing GPX4 from exerting its normal anti-

oxidant capacity [9], which finally makes cell membranes, containing phospholipids,

extremely vulnerable to ROS attack. The final products of lipid peroxidation are malondialde-

hyde (MDA) and 4-hydroxynonenal (4-HNE) accumulate, which eventually leads to signifi-

cant cytotoxicity and induces cell iron death [10].

Studies have shown that diabetic nephropathy may be related to iron death. Animal studies

have found that [11], diabetic nephropathy models possess characteristic indications of iron

death, such as weakened antioxidant capacity, iron overload, and lipid peroxidation product

accumulation. Moreover, inhibition of iron death can delay the development of kidney pathol-

ogy in diabetic mice. Experiments in vitro have shown that both the iron death activator Era-

stin and high glucose can induce the iron death of glomerular mesangial cells [12]. The

induction of iron death is related to the up-regulation of long-chain acyl-CoA synthetase-4

(ACSL4), prostaglandin-endoperoxide synthas 2 (PTGS2), NADPH oxidase 1 (Nicotinamide

Adenine Dinucleotide Phosphate Oxidase 1, NOX1) and the down-regulation of GPX4 [13].

In patients with diabetic nephropathy, the iron death-related factors ACSL4, PTGS2, and

NOX1 were significantly increased, and GPX4 was significantly decreased [12]. The iron death

marker ACSL4 is mainly expressed in the renal tubules. Wang et al. found that the knockout

or overexpression of ACSL4 gene caused changes in the sensitivity of renal tubular epithelial

cells to iron death [14]. Furthermore, ACSL4 inhibitors can block the iron death of renal tubu-

lar cells and inhibit the production of pro-inflammatory cytokines, which finally relieves the

symptoms of diabetic nephropathy [14]. In renal tubular epithelial cells treated with TGF-β1,

the characteristics of iron death are obvious. A significant decrease in glutathione levels and

expression of cystine/glutamate reverse transport solute carriers (SLC7A11) and GPX4 are

observed [15]. Meanwhile, the lipid peroxidation is significantly increased and iron death

inhibitors can significantly improve TGF-β1-induced renal tubular epithelial cell death [15].

The above studies suggest that iron death plays an important role in the occurrence and devel-

opment of diabetic nephropathy, but the underlying mechanism is still unclear.

Recent studies have used bioinformatics methods to identify genes related to iron death.

These studies can help identify potential disease-related key genes [16], predict disease progno-

sis models [17], discover potential biomarkers and therapeutic targets [18], and provide new

strategies for individualized treatment. Liang et al. found that most genes related to iron death

are differentially expressed between liver cancer and adjacent normal tissues, and iron death-

related gene markers can be used to predict the prognosis of liver cancer [19]. Zhu et al. found

PLOS ONE Bioinformatics of iron death genes in DN

PLOS ONE | https://doi.org/10.1371/journal.pone.0259436 November 4, 2021 2 / 21

Technology Research Fund, No. 201901D211485).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0259436


that iron death-related genes that may be involved in esophageal adenocarcinoma have impor-

tant value in predicting osteosarcoma [20].

Based on the above research, in order to explore the influence of iron death factor on dia-

betic nephropathy, this study clustered the diseases based on iron death factor to obtain differ-

ent disease subtypes. Based on the analysis of differentially expressed genes between different

subtypes, the key modules of the disease were screened, and finally the key genes related to

iron death in diabetic nephropathy were obtained. Further, a multi-factor regulatory network

for key genes was constructed and their regulatory relationship with transcription factors (TF)

and non-coding RNA (ncRNA) was also analyzed. The flow chart of bioinformatics analysis of

this article was presented in Fig 1. This study provides a basis information for exploring the

potential molecular mechanisms in the development of diabetic nephropathy.

Results

Diabetic nephropathy dataset and iron death factor

RNA-seq data GSE96804 was selected as the gene expression data related to diabetic nephropa-

thy. This dataset includes 41 diabetic nephropathy patients and 20 normal control patients,

Fig 1. Flow chart of the bioinformatics analysis.

https://doi.org/10.1371/journal.pone.0259436.g001
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from which the transcriptome between the glomerulus and the glomerulus not affected by

tumor nephrectomy is compared (Table 1). Ferroptosis genes (60 genes, summarized in

Table 2) were selected from previous report [19].

The expression distribution of iron death factors in diabetic nephropathy

dataset

Extracting the iron death gene expression data from the diabetic nephropathy-related gene

expression data set and analyzing the differential expression according to the sample type (dia-

betic nephropathy group and normal control group) and gender (male and female). Analyzed

by sample types, there were 44 iron death genes in diabetic nephropathy group and normal

control group with expression differences (p<0.05) (Fig 2A). Analyzed by genders, no differ-

ence in the expression of iron death gene was observed between men and women (Fig 2B).

Types of diabetic nephropathy samples

Consistent clustering of diabetic nephropathy samples was conducted based on the expression

data of the iron death factor. The cluster started from the number of category k = 2 and the

number of category increased one by one until it reached the set maximum (k = 6). The most

appropriate number of clusters was chosen, according to results presented in Fig 3A and 3B. A

curve with a smaller CDF descending slope was selected in Fig 3A and a higher CDF value was

chosen in Fig 3B. In this study, k = 2 is the most appropriate parameter. The heat map for clus-

ter with k = 2 was draw (Fig 3C).

According to the results of consistent clustering, disease samples can be divided into two

categories. There are 41 disease samples, among which Group1 contains 19 samples and

Group2 contains 22 samples.

Analysis of differential gene expression in samples of diabetic nephropathy

Based on the results of disease sample typing, different types of samples were screened for dif-

ferentially expressed genes. The result was presented as a volcano map (Fig 4A). A total of

3169 differentially expressed genes were screened, of which 1496 genes were upregulated and

1673 were downregulated. Overlapping analysis of differentially expressed genes and iron

death genes revealed that 16 of the 60 iron death genes were differentially expressed in diabetic

nephropathy, which are shown in Fig 4A. In this study, a total of 30905 gene expression differ-

ences were analyzed, and 3169 differentially expressed genes were screened. Among the 60

iron death genes, 16 were differentially expressed in diabetic nephropathy, and the differen-

tially expressed genes were enriched, with an enrichment ratio of 2.6 (16 /60:3169/30905 =

2.6). Among them, CD44, ALOX5, ACSL4, FANCD2, RPL8, SAT1, HSPB1, SLC7A11, TFRC,

PTGS2, FADS2, and TP53 are highly expressed in Group1, and NQO1, EMC2, ACSF2, MT1G

are relatively lowly expressed in Group1. The expression heat map is shown in Fig 4B.

Principal component analysis based on differentially expressed genes

In order to test the effect of disease classification, principal component analysis was performed

based on the differentially expressed genes between different types of samples, and a bubble

Table 1. RNA-seq expression profile data set from GEO database.

DatasetID Platform Test Control

GSE96804 GPL17586 41 20

https://doi.org/10.1371/journal.pone.0259436.t001
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Table 2. Iron death factors.

Ferrotosis-related genes Name

ACSL4 acyl-CoA synthetase long-chain family member 4

AKR1C1 aldo-keto reductase family 1 member C1

AKR1C2 aldo-keto reductase family 1 member C2

AKR1C3 aldo-keto reductase family 1 member C3

ALOX15 arachidonate 15-lipoxygenase

ALOX5 arachidonate 5-lipoxygenase

ALOX12 arachidonate 12-lipoxygenase

ATP5MC3 ATP synthase membrane subunit c locus 3

CARS cysteinyl tRNA synthetase

CBS cystathion ine beta synthase

CD44 CD44 molecule

CHAC1 ChaC glutathione- specific gamma-glutamyl cyclotransferase 1

CISD1 CDGSH iron sulfur domain 1

CS citrate synthase

DPP4 dipeptidyl-dippeptidase-4

FANCD2 fanconi anemia comple mentation group D2

GCLC glutamate-cysteine ligase catalytic subunit

GCLM glutamate-cysteine ligase modifier subunit

GLS2 glutaminase 2

GPX4 glutathio ne peroxidase 4

GSS glutathione synthetase

HMGCR 3-hydroxy-3- methylglutaryl-CoA reductase

HSPB1 heat shock protein beta 1

CRYAB heat shock protein beta 5

LPCAT3 lysophosp hatidylcholine acyltransferase 3

MT1G metallothionein-1G

NCOA4 nuclear receptor coactiva tor 4

PTGS2 prostagla ndin-endoperoxide synthase 2

RPL8 ribosomal protein L8

SAT1 spermidine/spermine N1-acetyltra nsferase 1

SLC7A11 solute carrier family 7 member 11

FDFT1 farnesyl-diphosphate farnesyltransferase 1

TFRC transferrin receptor

TP53 tumor protein 53

EMC2 ER membrane protein complex subunit 2

AIFM2 apoptosis inducing factor mitochondria associated 2

PHKG2 phospho rylase kinase, g2

HSBP1 heat-shock 27-k Da protein 1

ACO1 aconitase 1

FTH1 ferritin heavy chain 1

STEAP3 six-transm embrane epithelial antigen of prostate 3

NFS1 cysteine desulfurase

ACSL3 acyl-CoA synthetase long-chain family member 3

ACACA acetyl-CoA carboxylase alpha

PEBP1 phosphatidy lethanolamine-binding protein 1

ZEB1 zinc finger E-box-binding homeobox 1

SQLE squalene monooxygenase

(Continued)
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chart was drawn (Fig 4C). It can be seen from the figure that there are obvious differences

between samples of different types.

Gene function enrichment analysis

The GO function and KEGG pathway enrichment analysis of differentially expressed genes

were performed. The GO biological process enrichment analysis yielded 1315 enrichment cat-

egories, including cell migration, cell differentiation, extracellular matrix production, cell pro-

liferation, cell activation regulation, and cell chemotaxis, cell-matrix adhesion, coagulation,

urogenital system development and other biological processes. KEGG pathway enrichment

analysis yields 73 enrichment pathways, including PI3K-Akt signaling pathway, AGE-RAGE

Table 2. (Continued)

Ferrotosis-related genes Name

FADS2 fatty acid desaturase 2/acyl-CoA 6-desaturase

NFE2L2 nuclear factor, erythroid 2 like 2

KEAP1 kelch-like ECH- associated protein 1

NQO1 quinone oxidoreductas e-1

NOX1 NADPH oxidase 1

ABCC1 ATP binding cassette subfamily C member 1

SLC1A5 solute carrier family 1 member 5

GOT1 glutamic-oxa loacetic transaminase 1

G6PD glucose-6-phosphate dehydrogenas e

PGD phosphoglycerate dehydrogenas e

IREB2 iron response element-binding protein 2

HMOX1 heme oxygenase 1

ACSF2 acyl-CoA synthetase family member 2

https://doi.org/10.1371/journal.pone.0259436.t002

Fig 2. Heat maps of iron death factor expression clustered by sample type (A) and gender (B).

https://doi.org/10.1371/journal.pone.0259436.g002
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signaling pathway, FoxO signaling pathway, Rap1 signaling pathway, Chemokine signaling

pathway, ECM-receptor interaction and so on. Taking the top 20 most significant enrichment

categories and pathways, respectively and the results were plotted in Fig 5.

Differential gene co-expression analysis

Extracting the expression data of differentially expressed genes in samples of diabetic nephrop-

athy patients for co-expression analysis. First, the soft threshold is selected for subsequent co-

expression network construction (Fig 6A). The principle is to make the constructed network

more in line with the characteristics of the scale-free network. The R-square was set as 0.8 (Fig

6A). Using WGCNA to construct the co-expression network module and visual display of the

gene correlation in the modules. A total of 9 co-expression modules were obtained. The num-

ber of genes in each module is at least 30. The results were displayed in a hierarchical clustering

diagram (Fig 6B). The number of module genes is between 76 and 1154, of which 8 genes were

not clustered into any module and were marked in gray. Performing trait correlation analysis

between the module and the disease sample typing results, and extracting the most relevant

module Brown as the key module. Finally, this module contains 464 genes (Fig 6C).

Hub gene screening

The human protein interaction database (String) was used to analyze the protein interaction of

key module genes. The PPI network diagram is shown in Fig 7A. A total of 177 protein interac-

tion pairs were obtained and 22 genes with protein interaction number� 6 were selected as

candidate key genes. At the same time, the candidate key genes were screened by module gene

significance, and 92 genes with Module Membership� 0.8 and Gene significance� 0.7 were

screened as candidate key genes (Fig 7B). Taking the intersection of two sets of candidate key

genes and drawing a Venn diagram, and the 6 genes (FPR3, C3AR1, CD14, ITGB2, RAC2, and

ITGAM) with overlapping candidate key genes was used as Hub genes (Fig 7C).

Hub gene correlation analysis and expression differences in different types

The expression data of Hub gene in diabetic nephropathy samples were extracted for correla-

tion analysis, and the results showed that the expression of Hub genes were highly correlated

(Fig 8A). At the same time, the expression level comparison and difference analysis were

Fig 3. Cluster classification results of diabetic nephropathy samples.

https://doi.org/10.1371/journal.pone.0259436.g003
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Fig 4. Differential gene expression analysis diagram and principal component analysis. (A) Volcano map. The

green dots, down-regulated differential genes; the red dots, up-regulated differential genes; the gray dots, genes that are

not differentially expressed. Sixteen of the iron death genes are among the differentially expressed genes. (B) Heat map

of differential gene expression. The abscissa represents gene clustering. The more the genes are expressed in the same

amount in the sample, the closer they are in the figure. The ordinate represents the clustering of samples. The more the

gene expression levels are the same among samples, the closer they are in the picture. The color scale represents the

abundance of gene expression. The red presents up-regulation and the blue presents the down-regulation. (C)

Principal component analysis based on differentially expressed genes.

https://doi.org/10.1371/journal.pone.0259436.g004
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performed, and the results showed that the expression levels of all Hub genes in Group2 were

higher than those in Group1 (Fig 8B).

Hub gene multi-factor regulatory network

TF and ncRNA play important roles in regulating the expression and function of protein-cod-

ing genes. Using principal component analysis to find out the main regulators that interact

with the Hub gene. After principal pivot analysis, 17 main regulatory ncRNAs were obtained,

all of which were miRNAs, and 11 main regulatory TFs were obtained (Fig 9). Analyzing the

functions of miRNA and TF in previous studies, it was found that the non-coding genes hsa-

miR-572 [21], hsa-miR-29a-3p [22], hsa-miR-29b-3p [23], hsa -miR-208a-3p [24], hsa-miR-

153-3p [25], hsa-miR-29c-3p [26] may be related to diabetic nephropathy and transcription

factors HIF1α [27], KLF4 [28], KLF5 [29], RUNX1 [30], SP1 [31], VDR [32], WT1 [33] may be

related to diabetic nephropathy.

Discussion

Diabetic nephropathy is one of the most common microvascular complications of diabetes. It

is characterized by proteinuria and progressive decline in renal function. The pathological fea-

tures include the deposition of extracellular matrix in the glomerulus and tubular interstitium,

and the death of glomerulus and renal tubule cells [34], which eventually leads to end stage

renal disease (ESRD). Diabetic nephropathy accounts for approximately 16.4% of ESRD cases

in China [35]. Therefore, it is important to clarify the pathogenesis of diabetic nephropathy

and formulate therapeutic interventions.

Iron death is a newly discovered form of cell death in recent years. It is characterized by

lipid hydroperoxides accumulation induced cell death, which is different from apoptosis,

necrosis and autophagy on the phenotypes of morphology, biochemistry and genetics [36].

Previous studies have reported that iron death is related to various kidney diseases such as

Fig 5. Gene function enrichment analysis: GO function enrichment analysis (A) and KEGG pathway enrichment analysis (B).

https://doi.org/10.1371/journal.pone.0259436.g005
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Fig 6. Gene co-expression analysis. Soft threshold screening (A), hierarchical clustering graph (B) and trait

association analysis result graph (C).

https://doi.org/10.1371/journal.pone.0259436.g006
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Fig 7. Hub gene screening. Protein interaction screening candidate key genes (A), Modular gene significance

screening candidate key genes (B) and the Venn diagram (C).

https://doi.org/10.1371/journal.pone.0259436.g007
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polycystic kidney disease, acute kidney injury and renal clear cell carcinoma [37–40]. How-

ever, its regulatory role in diabetic nephropathy is still unclear.

This study is based on the iron death gene to classify diabetic nephropathy samples, which

is helpful to analyze the heterogeneity of diabetic nephropathy. Our result showed that the

Fig 8. Hub gene correlation analysis and expression differences in different types. Hub gene correlation analysis

(A). Differential analysis of Hub gene expression in different types (B).

https://doi.org/10.1371/journal.pone.0259436.g008
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expression of iron death factor was different between the diabetic nephropathy group and the

normal control group. Based on the expression data of the iron death factor, consistent cluster

analysis of disease samples was conducted and the disease samples can be divided into two cat-

egories. Principal component analysis showed that the two types are significantly different.

Gene differential expression analysis showed that 16 of the 60 iron death genes were differen-

tially expressed and were enriched among differentially expressed genes. Based on the differen-

tial genes, the key disease modules were screened. Finally six Hub genes related to iron death

in diabetic nephropathy were obtained, including FPR3, C3AR1, CD14, ITGB2, RAC2 and

ITGAM.

Formylpeptide Receptor (FPR) is a G protein-coupled receptor [41]. Activation of FPR3

regulates cell proliferation, apoptosis and angiogenesis, and may also trigger signal cascade

reaction through ligand-receptor binding on immune cells, which leads to new gene transcrip-

tion, mediator release or cell migration [42]. Inflammation mediates the angiogenesis of prolo-

ferative diabetic retinopathy (PDR), and FPR antagonists can inhibit the inflammation and

neovascularization caused by the PDR vitreous body [43]. There is no research to clarify the

role of FPR3 in inflammation and immunity of diabetic nephropathy, but the intervention of

FPR3 may become a new treatment strategy for diabetic nephropathy. As the receptor of com-

plement C3a, C3AR1 is a key mediator of inflammation and participates in cellular inflamma-

tory response [44]. Studies have found that the synthesis of complement C3 in renal tubular

epithelial cells of mice with unilateral ureteral obstruction increases, and the expression of

complement receptor C3AR1 in mesenchymal cells increases [45]. Moreover, the expression

of C3AR1 in kidney tissue is closely related to the severity of kidney injury [46]. Based on the

results of previous studies and this study, it is speculated that C3AR1 can be used as a target

for both diagnosis and treatment. CD14 is a high-affinity lipopolysaccharide (LPS) receptor

that binds to Toll-like family receptors to activate the immune response induced by LPS [46].

Fig 9. Hub gene multi-factor regulatory network. Colors and shapes indicate different factor types. Green is hub

gene mRNA, pink is transcription factor, and purple is non-coding gene miRNA.

https://doi.org/10.1371/journal.pone.0259436.g009
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CD14 also can induce interleukin (IL), tumor necrosis factor -α (Tumor Necrosis Factor-α,

TNF-α) and other related inflammatory factors and chemokine expression, which ultimately

effectively regulate cell proliferation, transformation and apoptosis [47]. CD14 is expressed in

proximal tubular epithelial cells and distal nephron epithelial cells in kidney tissue [48]. Studies

have found that the number of circulating CD14 monocytes in patients with kidney disease is

significantly reduced [49]. The number of CD14 monocytes is negatively correlated with the

severity of the disease and positively correlated with renal function [49].

Type 2 diabetic nephropathy patients have pro-inflammatory CD14+ and CD16+ monocyte

disorder [50]. This abnormal immune function may be related to the activation of nuclear fac-

tor kappa-B (NF-κB)/Toll-Like Receptor 4 (TLR4) inflammatory signaling pathways [50].

Based on the above studies, it is speculated that the chronic immune inflammatory response,

mediated by CD14, may be involved in the progression of diabetic nephropathy. ITGAM and

ITGB2 belong to the integrin family. Integrin β2 (ITGB2), namely CD18, can bind to the adhe-

sion molecules on the surface of endothelial cells (such as intercellular cell adhesion molecule-

1 (ICAM-1)) to mediate the interaction between leukocytes and endothelial cells. And its cyto-

plasmic region can be connected with a variety of cytoskeleton proteins to participate in signal

transduction [51]. ITGAM encodes the α chain of integrin αMβ2 (CD11b). CD11b can form

leukocyte adhesion molecule β2 integrin with CD18, namely macrophage differentiation anti-

gen-1 (Mac-1) [52]. The expression of Mac-1 and ICIAM-1 in the proliferative diabetic retina

indicates that adhesion molecules play a role in the pathogenesis of diabetic microvascular

complications [53]. Ras-related C3 botulinum toxin substrate (Ras-related C3 botulinum toxin

substrate, Rac) is a small molecule Rho-GTPase and it plays an important role in regulating

cell proliferation, sugar metabolism, cell motility, superoxide production, cellular immunity

and other biological processes [54, 55]. Studies have found that RAC2 can be used as a bio-

marker for the prognosis of renal clear cell carcinoma and promote the progression of renal

clear cell carcinoma [56]. However, its role in the pathogenesis of diabetic nephropathy

remains to be studied.

The above-mentioned key genes related to iron death in diabetic nephropathy are mainly

related to the immunity and inflammation of diabetic nephropathy. Chronic immune inflam-

mation occupies an important position in the pathogenesis of diabetic nephropathy. And there

is a parallel relationship between the degree of immune inflammation and the degree of kidney

damage [57]. A variety of inflammatory factors and chemokines recruit and activate the local

microenvironmental immune status of the kidney, mediate pathological changes such as glo-

merular stromal proliferation and basement membrane thickening and damage the normal

structure and function of the glomerulus, which finally promotes the occurrence and develop-

ment of diabetic nephropathy [58].

The post-transcriptional regulation of protein-coding genes by ncRNAs has always been

thought to be related to the occurrence of diabetic nephropathy, but mechanism of its regula-

tion role on diabetic nephropathy-related genes is still unclear. In this study, Pivot analysis was

used to further conclude that the main regulators interacting with the Hub genes are transcrip-

tion factors and miRNAs. According to the analysis of published literature, the non-coding

genes hsa-miR-572, hsa-miR-29a-3p, hsa-miR-29b-3p, hsa-miR-208a-3p, hsa-miR-153-3p and

hsa-miR-29c-3p may be related to diabetic nephropathy. And transcription factors HIF1α,

KLF4, KLF5, RUNX1, SP1, VDR, WT1 may be also related to diabetic nephropathy. The above

factors and Hub genes are collectively regulated and involved in the occurrence and develop-

ment of diabetic nephropathy. Moreover, these factors and genes may be potential target for

therapeutic drugs.

When the human genome is transcribed, many regulatory non-coding RNAs (ncRNAs) are

produced, including MicroRNAs, LncRNAs, circRNAs, etc. ncRNAs regulate gene expression
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at different physiological levels and affect the epigenetic characteristics of kidney disease [59].

With the development of computational biology and sequencing technology, a large number

of ncRNAs have been discovered, which play an important role in many biological activities

such as epigenetic regulation. With the increase in the amount of biological sequencing data,

predicting the association between non-coding RNA and disease through bioinformatics anal-

ysis will help provide directions for further biological experiments [60]. This study uses sys-

tems biology methods, combined with WGCNA, crossover genes, and module analysis-based

functions and pathways to determine the biological processes and signal pathways related to

iron death in diabetic nephropathy, as well as genes and molecular networks related to iron

death in DN. This study will provide new possibilities for understanding the molecular mecha-

nism of diabetic nephropathy and provide a basis for subsequent research on the correlation

between diabetic nephropathy and iron death.

This study analyzed the biomarkers of iron death genes in diabetic nephropathy based on

bioinformatics technology. This research promotes the understanding of the pathogenesis of

diabetic nephropathy at the RNA level and the development of potential drug targets for clini-

cal treatment, which ultimately provides guidance for disease diagnosis, treatment, prognosis

and prevention. Computational models have become an important means of identifying new

RNA-disease associations. Establishing a computational model to predict and quantify the

association between human non-coding RNA and disease can effectively find the most rele-

vant RNA-disease for experimental verification and reduce the time and cost of biological

experiments [61]. In addition, computational models can also be used to predict the potential

functions of non-coding RNAs, identify new genes, and construct potential regulatory net-

works between non-coding RNAs and other molecules at different levels [61]. Many computa-

tional models have been applied to bioinformatics research, such as LncRNA-miRNA

interaction prediction [60, 62, 63], LncRNA-disease association prediction [64], miRNA-dis-

ease association prediction [65, 66] and circRNA-disease association prediction [67]. In the

future, it is a hot topic worthy of further research that the establishment of effective computa-

tional models to integrate different biological information and to make full use of different

types of data sources to systematically study the relationship between circRNAs, miRNAs,

LncRNAs and human diseases.

Materials and methods

Data collection and preprocessing

Gene expression data related to diabetic nephropathy was obtained from RNA-seq database

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE96804). Ferroptosis genes were

selected from previous report [19].

The expression distribution of iron death factor in the diabetic

nephropathy

Extracting the expression data of iron death genes from the GSE96804 data set and using the

Limma package for differential expression analysis. FC stands for fold change, which repre-

sents the ratio of expression levels between the two sets of samples, and log base 2 of FC is

log2FC. FDR stands for False Discovery Rate, which is obtained by correcting the p-value of

the significance of the difference. In the differential expression analysis, the Benjamini-Hoch-

berg correction method was used to correct the significance p-value obtained from the hypoth-

esis test during transcriptome sequencing, and finally FDR was used as the key indicator for

the screening of differentially expressed genes. Generally, FDR<0.01 or 0.05 is taken as the
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default standard. In this study, FDR<0.05 and |log2FC|>0.3 were set as the threshold to screen

high-confidence differentially expressed genes. Differential expression analysis was performed

by sample type (diabetic nephropathy group and normal control group) and gender (male and

female).

Typing of diabetic nephropathy samples

Using the ConsensusClusterPlus package to perform consistent clustering of disease samples

based on the iron death factor expression data. Cluster analysis was initiated with the cluster

number set to 2 and then the number of cluster was increased one by one until the specified

maximum number of category was reached. Finally, evaluating and selecting the most suitable

number of cluster and then drawing a heat map of the expression model.

Differential gene expression analysis

Based on the typing results of diabetic nephropathy samples, different types of samples were

analyzed for differential gene expression. The differentially expressed genes were screened

using the Limma package, with the parameters of FDR<0.05 and |log2FC|>0.3. Then, the vol-

cano maps and expression heat maps were drawn. Finally, the difference gene and the iron

death gene were overlapped and analyzed.

Principal component analysis based on differentially expressed genes

In order to test the effect of diabetic nephropathy classification, principal component analysis

was performed based on the differentially expressed genes between different types of samples.

Gene function enrichment analysis

Using R clusterProfiler, with FDR<0.05 as the screening threshold, GO biological process and

KEGG pathway enrichment analysis were performed on the above differentially expressed

genes. Both GO BP analysis and KEGG pathway enrichment analysis were conducted using

the clusterProfiler package in R, and p<0.05 was used as the threshold to screen the signifi-

cantly enriched GO and KEGG categories. Finally, top 20 most significant gene functions were

selected and plotted.

Gene co-expression analysis

Extracting the expression data of the differentially expressed genes in the samples of diabetic

nephropathy patients and using the WGCNA algorithm for co-expression analysis. Weighted

Correlation Network Analysis (WGCNA, Weighted correlation network analysis) is a systems

biology method used to describe gene correlation patterns between different samples. This

method can be used to identify highly coordinated gene sets, and identify candidate biomarker

genes or therapeutic targets based on the interconnectivity of the gene sets and the association

between gene sets and phenotypes. Weighting refers to the power operation of the correlation

value, and the power value is the soft threshold [68]. First, the soft threshold is selected. The

principle is to make the constructed network more in line with the characteristics of the scale-

free network. Setting R-square = 0.8 and the number of genes in each module is at least 30.

Moreover, the results are displayed in a hierarchical clustering tree. Performing trait correla-

tion analysis between the module and the disease sample typing results, and extracting the

most relevant module Brown as the key module.
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Hub gene screening

Using the human protein interaction database (String) to analyze the protein interaction of

key module genes. Screening the interactions with a comprehensive score> 900 to obtain pro-

tein-protein interactions, and screening genes with protein interactions� 6 as candidate key

genes. Furthermore, using Cytoscape to draw PPI network diagram. Meanwhile, candidate

key genes were screened by module gene significance, and the genes with Module Mem-

bership�0.8 and Gene significance�0.7 were used as candidate key genes. Finally, the overlap-

ping part of the two sets of candidate key genes is regarded as the Hub genes.

Correlation analysis and expression differences in different types of Hub

genes

First, extracting the expression data of Hub genes in disease samples and performing correla-

tion analysis. Secondly, calculating correlation coefficient and significance and drawing analy-

sis graph. Finally, performing expression comparison and difference analysis.

Hub gene multi-factor regulatory network

Using RAID v2.0 (www.rna-society.org/raid2/) database to predict non-coding gene-gene

(protein) interaction. Using TRRUST V2 (www.grnpedia.org/trrust) database to predict tran-

scription factor- Gene (protein) interaction. Using principal component analysis method,

based on TRRUST V2 database and RAID v2.0 database to find out the main regulatory factors

that interact with the Hub gene (p<0.05). Using Cytoscape to plot the results.
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