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Abstract

Background: The problem of silent multiple comparisons is one of the most difficult statistical
problems faced by scientists. It is a particular problem for investigating a one-off cancer cluster
reported to a health department because any one of hundreds, or possibly thousands, of
neighbourhoods, schools, or workplaces could have reported a cluster, which could have been for
any one of several types of cancer or any one of several time periods.

Methods: This paper contrasts the frequentist approach with a Bayesian approach for dealing
with silent multiple comparisons in the context of a one-off cluster reported to a health
department. Two published cluster investigations were re-analysed using the Dunn-Sidak method
to adjust frequentist p-values and confidence intervals for silent multiple comparisons. Bayesian
methods were based on the Gamma distribution.

Results: Bayesian analysis with non-informative priors produced results similar to the frequentist
analysis, and suggested that both clusters represented a statistical excess. In the frequentist framework,
the statistical significance of both clusters was extremely sensitive to the number of silent multiple
comparisons, which can only ever be a subjective "guesstimate". The Bayesian approach is also subjective:
whether there is an apparent statistical excess depends on the specified prior.

Conclusion: In cluster investigations, the frequentist approach is just as subjective as the Bayesian
approach, but the Bayesian approach is less ambitious in that it treats the analysis as a synthesis of
data and personal judgements (possibly poor ones), rather than objective reality. Bayesian analysis
is (arguably) a useful tool to support complicated decision-making, because it makes the uncertainty
associated with silent multiple comparisons explicit.

Background
Health departments and other agencies are regularly
asked by the public to investigate a one-off cluster of
cancer cases; or less commonly birth defects or other
health problems. [1-3] The concern is usually that an
environmental agent in a neighbourhood, school or
workplace is responsible, and that if nothing is done

there will be more cases of cancer. These concerns are
legitimate and it is part of good and empathetic public-
health practice to respond to them. [1-3]

All cases of cancer have causes; the key question is
whether the cases in a reported cluster are due to a
common cause. [4] If a common cause is identified, then
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actions can be taken to protect or improve the public's
health. There are several examples of this, including
angiosarcoma of the liver and vinyl chloride, clear cell
vaginal cancer in daughters of women who took di-ethyl
stilbestriol, and Kaposi sarcoma and HIV. [5] However,
there are numerous reports of clusters to health depart-
ments each year and 50 years of cluster investigations
show that if a common cause is not apparent from
environmental or other investigations, then only rarely is
a common cause subsequently identified. [1-3,5]

If a common cause cannot be identified, then an
additional question the public often wants answered is
whether the cluster is explainable as a chance event or
whether it truly represents a statistical excess. [6] If there
is a statistical excess, then this could be used as a
justification for allocating resources to more in-depth
and costly investigations or perhaps to a case-control
study to assess putative exposures in a group of people
with characteristics similar to those from whom the
cluster arose.

Assessing whether there is a statistical excess is not
straightforward for a variety of reasons; prominent
among these is that the boundaries of the cluster in
time, space, and person are usually defined after the
event (the Texas sharp-shooter problem). [4] This is a
particular example of the problem of silent multiple
comparisons, which is among the most difficult statis-
tical problems faced by scientists. [7]

Visible multiplicities, such as occur with pre-specified
subgroup analyses or sequential monitoring of trials are
difficult enough, but at least in these circumstances the
researchers (and users of the research) know how many
multiple comparisons were under consideration. Much
more difficult are silent multiplicities such as occur with
publication bias [8] or reporting bias, [9] where users of
the research do not know how many multiple compar-
isons should be considered.

The Texas sharp-shooter problem is an example of silent
multiplicity because any one of hundreds, or possibly
thousands, of neighbourhoods, schools, or workplaces
could have reported the cluster, which could have been
for any one of several types of cancer or any one of
several time periods. Although many scientists consider
it important to adjust for these silent or implied multiple
comparisons, the number to adjust for can only be a
subjective "guesstimate".

Given these difficulties, some critics of traditional cluster
investigations have suggested that assessment of whether
the cluster represents a statistical excess is irrelevant and that
investigators should concentrate on environmental and

other investigations to identify a common cause. [4] Others
have argued that the role of health departments (or other
agencies) is to resolve the cluster to the satisfaction of the
community and that most communities want to know
whether the cluster represents a statistical excess. [6,10] Not
surprisingly, all the cluster investigation protocols (that we
could locate) include a step that assesses the statistical
significance of the cluster. [11-14]

The aim of this paper is to contrast the frequentist
approach (p-values, confidence intervals) with a Baye-
sian approach (credible intervals) for assessing the role
of chance in cluster investigations (i.e., whether the
cluster represents a statistical excess). Our main claim is
that the Bayesian approach makes the uncertainty
associated with silent multiple comparisons explicit
and when used with a portfolio of priors is a useful
statistical tool to inform complicated decision-making.

Methods
Standardized incidence ratio (SIR)
In cluster investigations, it is of interest to knowwhether the
rate associated with the cluster is higher than the rate for the
rest of the population. The usual way of reporting such a
comparison is to use the standardized incidence ratio:

SIR = O
E

where, O is the observed number of cases reported for
the cluster, and E is the expected number of cases that
would have occurred if the age-specific rates for the
entire population (say a state or country) applied to
the neighbourhood, workplace or school reporting the
cluster. Age-specific rates for an entire population are
usually obtained from the relevant population-based
cancer registry.

Case studies
To compare and contrast frequentist versus Bayesian
methods, we used observed and expected values from two
clusters from Australia. The first is a cluster of leukaemia
cases from the Illawarra area (observed = 12, expected =
3.49; SIR = 3.44). [15] The second is a cluster of breast
cancer cases at the Australian Broadcasting Corporation
(ABC) studios in Brisbane (observed = 10, expected = 1.6;
SIR = 6.25). [16] In both situations, these were one-off
clusters reported by concerned members of the public to
the local health department for investigation.

Frequentist calculations
To make statistical inferences about the SIR within the
frequentist framework we used p-values and confidence
intervals based on an exact relationship between the chi-
squared distribution and the Poisson distribution. [17]

BMC Medical Research Methodology 2009, 9:30 http://www.biomedcentral.com/1471-2288/9/30

Page 2 of 7
(page number not for citation purposes)



Because of the discrete nature of the Poisson distribu-
tion, we calculated two-sided p-values as twice the
probability associated with the upper tail, so that the
threshold of p = 0.05 corresponded to whether 95%
confidence interval included the null value (SIR = 1.0).
Common ways to adjust for multiple comparisons
within the frequentist framework include the Bonferroni
and Dunn-Sidak adjustments. [18,19] We used the
Dunn-Sidak adjustment in this paper, that is:

p p n
adjusted unadjusted= − −1 1( )

where n is the number of multiple comparisons.

Alternatively the confidence interval can be made wider
using:

a aadjusted unadjusted= − −1 1 1( ) / n

where 1 - aunadjusted is the percentage coverage for the
confidence interval, which is usually specified as 95%.

Bayesian calculations
We used a method based on the Gamma distribution,
which is the conjugate for the Poisson distribution.
Conjugate distributions are those where the distribu-
tional form of the posterior is the same as that of the
prior, but with updated parameters that depend on
the data at hand. This is convenient in that it simplifies
the calculations, which can be done in a spreadsheet (see
Additional file 1).

The Gamma distribution has the form:

f x x e x xx( | , )
( )

;a b b a

a
a b= > <− −

Γ
1 0 0 0for   if 

If the prior distribution for the SIR is specified as Gamma
(a, b) then, the posterior distribution for the SIR is
Gamma(a + O, b + E). Here, as before, O is the observed

number of cases reported for the cluster and E is the
expected number of cases. [14]

When a < 1, the Gamma distribution is exponentially
shaped and asymptotic to both the vertical and
horizontal axes. When a = 1, the Gamma distribution
is the same as an Exponential distribution. For a > 1, the
Gamma distribution assumes a uni-modal shape, and
for values of a less than about 20 it has an obvious skew
to the right, as shown by mode < median < mean (Table
1). As a increases, the skewness (and variance) decreases
and the distribution becomes more symmetric and the
mode, median and mean approach the same value.

Because the Gamma distribution is skewed for small values
of a (say < 20), we used the mode, (a - 1)/b, as the measure
of the average SIR, rather than the mean or the median. For
consistency, we also used the mode as the measure of the
average of the posterior distribution. We specified the prior
average (mode) as SIR = 1, which indicates that the cases in
the cluster do not have a common cause. Our uncertainty
about whether the cases in the cluster have a common cause
is reflected in the variance (spread) of the Gamma
distribution; smaller variances as reflected by narrower
95%prior intervals (Table 1)meanmore certainty that there
is not a common cause.

A Gamma(0.001, 0.001) is a standard way of specifying
a non-informative Gamma prior. [20] The 95% credible
interval obtained after specifying a non-informative
prior will be similar to the 95% confidence interval
obtained from a frequentist analysis; which is why some
statisticians consider that frequentist analysis is a
particular type of Bayesian analysis where the prior
information is zero. In the context of cluster investiga-
tions, a non-informative prior implies that nothing is
known about possible values of the SIR, other than the
observed and expected values.

However, values of the SIR greater than 10 are unlikely,
given that a "strong" association in non-communicable

Table 1: Characteristics of selected Gamma distributions with mode = 1

a b Standard deviation Mode Mean Median 95% prior interval

1.46 0.46 2.63 1.00 3.17 2.49 (0.22, 10.0)
2.17 1.17 1.26 1.00 1.85 1.58 (0.25, 5.0)
2.68 1.68 0.97 1.00 1.60 1.40 (0.29, 4.0)
3.84 2.84 0.69 1.00 1.35 1.24 (0.36, 3.0)
5.23 4.23 0.54 1.00 1.24 1.16 (0.41, 2.5)
8.64 7.64 0.38 1.00 1.13 1.09 (0.51, 2.0)
12.92 11.92 0.30 1.00 1.08 1.06 (0.58, 1.75)
24.04 23.04 0.21 1.00 1.04 1.03 (0.67, 1.5)
77.93 76.93 0.11 1.00 1.01 1.01 (0.80, 1.25)

Mode, Mean, Median and 95% prior interval for the SIR. Priors used in this paper are in bold.
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disease epidemiology is typically characterised as one where
the exposure increased the risk of disease by about 10-fold
(e.g., smoking and lung cancer) [21] and most positive
associations are not nearly as strong (e.g., 1.5–4.0).

To explore subjective beliefs about whether the cases in a
cancer cluster might be due to common cause (in the
absence of an identified exposure) we specified three
priors, all with mode = 1.0 and 95% prior intervals of
decreasing width (0.22 to 10.0; 0.29 to 4.0; 0.67 to 1.5)
reflecting increasing certainty that the cases do not have a
common cause. These are given in bold in Table 1.

There are a multitude of reasonable priors that could have
been specified. We chose these three because they typify
three general situations thatmight occur if environmental or
other investigations did not identify a common cause, but of
course other priors could be used. The (0.67, 1.5) prior is the
most sceptical of the three (i.e., the most certain that the
cases in the cluster do not have a common cause) and could
be used in a situation where environmental or other
investigations had all but ruled out a common cause. The
(0.29, 4.0) prior could be used if environmental and other
investigations raised the distinct possibility that there might
be a common cause (but as yet had failed to identify one).
Finally, the (0.22, 10.0) prior would only occasionally be a
sensible choice (given that a common cause had not already
been identified by environmental or other investigations)
because it is onlyminimally sceptical and only specifies that
SIRs > 10.0 are unlikely. We have included it because it
provides a useful reference point and might occasionally be
justifiable if there was a very strong suspicion of a common
(but as yet unidentified) causal factor that was common to
all the cases.

Adjustments, for silent multiple comparisons can be
made within a Bayesian framework however, as per the
frequentist framework, they require that the number of
multiple comparisons is known. [22,23] Empirical-Bayes

adjustments for multiple comparisons are also possible,
[24] but they require data to calculate SIRs for all of the
sub-units that make up the multiple comparisons. This
might be feasible if there was a cluster reported from a
small geographic area and there were data available for
all other similar geographic areas in the state or country
(and perhaps other cancer sites and time periods).
However, it is not feasible for most clusters, especially
those reported from worksites or schools.

Unlike the frequentist approach, the Bayesian approach
provides an alternative way of addressing the issue of
multiple comparisons. The reasoning is as follows: if we
regard the prior as our subjective belief or degree of
uncertainty (independent of the observed and expected
values) that the cases in a cluster are due to a common
cause, then we could regard such a prior as taking into
account the silent multiple comparisons.

Results and Discussion
Frequentist approach
Table 2 shows the adjusted confidence intervals for
the Illawarra and ABC clusters for different numbers of
silent multiple comparisons in the frequentist frame-
work. The frequentist approach to silent multiple
comparisons is to guess the number of silent compar-
isons and adjust the confidence interval accordingly. For
the Illawarra cluster is it the number of other cities in
Australia with a factory that produces benzene? This is
about 50 and would mean that the cluster did represent
a statistical excess (adjusted confidence interval of 1.16
to 7.71 does not include the null value of 1.0; adjusted
p-value = 0.028). Or, should it be the number of other
local government areas in Australia? This is 647 and
would mean the cluster did not represent a statistical
excess (adjusted confidence interval: 0.87 to 8.91,
adjusted p-value = 0.304). A further consideration is
whether we should adjust for other types of cancers or
other time-periods.

Table 2: Frequentist confidence intervals and p-values adjusted for silent multiple comparisons, Illawarra and Brisbane ABC cancer
clusters

Illawarra, leukaemia observed = 12,
expected = 3.49 SIR = 3.44

Brisbane, ABC, breast cancer observed = 10,
expected = 1.6 SIR = 6.25

Number of comparisons Confidence interval (p-value) Confidence interval (p-value)

1 1.78, 6.01 (0.00056) 3.00, 11.49 (0.000014)
10 1.30, 7.27 (0.0056) 2.11, 14.10 (0.00014)
100 0.99, 8.40 (0.0548) 1.55, 16.44 (0.0014)
500 0.83, 9.13 (0.2456) 1.27, 17.98 (0.0071)
1000 0.77, 9.44 (0.4309) 1.16, 18.62 (0.0142)
5000 0.65, 10.14 (0.9403) 0.96, 20.08 (0.0689)
10000 0.61, 10.43 (0.9964) 0.89, 20.69 (0.1331)
40000 0.53, 11.0 (>0.9999) 0.76, 21.90 (0.4353)
50000 0.52, 11.1 (>0.9999) 0.74, 22.09 (0.5104)
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For the ABC cluster, the final report of the Scientific
Investigation Panel adjusted for an estimated 40,000
groups of 150 women based on the size of the Australian
female population 15–64 years of age. [16] This is not
necessarily wrong, but as for the Illawarra cluster, it
highlights the subjective nature of the analysis. Specifi-
cally, why not just adjust for the number of groups of
150 women in the city of Brisbane, where the workplace
was located? Perhaps we should also adjust for different
time periods and different types of cancer?

Bayesian approach
For our case studies, non-informative priors produced
results similar to the frequentist analysis, and suggest that
both clusters represented a statistical excess (Table 3).
More sceptical priors (reflecting more certainty the cases
in the cluster do not have a common cause) shrink the
posterior mode more towards 1.0 and make it more likely
that the 95% credible interval will include the null value
of SIR = 1.0 (Figure 1 & Table 3). An appropriate choice
for the prior is a matter of judgement and depends on the
particular circumstances of the cluster.

In cases where there is a difference of opinion it is
possible to use multiple priors and interpret the poster-
ior intervals in light of the different priors. Sceptical and
enthusiastic experts may still disagree about whether the
cluster represents a statistical excess, but the different
priors hopefully serve to make their prejudice explicit.
Using multiple priors can also be a useful sensitivity
analysis, and can help to show the influence of the prior.
This influence is also shown by the change from the
observed SIR to the posterior mean SIR. For the Illawarra
cluster concern centred around a local coke by-products
plant (which is a major industrial source of benzene);
ambient air concentrations of benzene were estimated to

have averaged 3 ppb since 1970, or about one-
thousandth of the level at which leukaemia risk has
been identified in occupational studies. [15] Arguably, a
sceptical prior with 95% interval (0.67, 1.5) appropri-
ately captures the tone of the Steering Committee's
report, which all but ruled out a common cause. This
gives a 95% credible interval of 0.95 to 1.84; which
includes the null value of 1.0 and we would conclude
that there is no statistical excess. For the ABC cluster, the
Scientific Investigation Panel concluded that it was
highly unlikely that the cases were caused by exposure,
during work on the site, to radio frequency electro-
magnetic fields, extremely low frequency electromag-
netic fields, ionising radiation or chemicals known or
suspected to cause breast cancer. [16] However, the Panel
was concerned that there might be an unidentified
common cause related to the site because the cases were
relatively young women who were long-term employees
at the site. In the face of this concern, management
decided to evacuate the site.

Our assessment of the ABC cluster report is that the
Panel would have assigned a larger value to the
probability (independent of the observed and expected
values) that the cases had a common cause, than the
Steering Committee would have for the Illawarra cluster.
A reasonable prior might be the (0.29, 4.0) prior, which
gives a 95% credible interval of 1.21 to 3.03, suggesting
that there is a statistical excess and that further
investigations are warranted.

We think there are two main advantages of the Bayesian
approach, the most important of which is that it makes
uncertainties associated with silent multiple compar-
isons explicit and incorporates the uncertainty into the
statistical analysis. It is easy to see from the sensitivity
analysis in Table 3 that conclusions depend on prior
beliefs. This explicitly shows that-in the absence of an
identified exposure, disagreement among experts is
likely, even after thorough and complete investigation
of the cluster.

The second advantage of the Bayesian approach is that
it allows other uncertainties, such as uncontrolled
confounding, to be incorporated into the analysis. For
example, the ABC investigation considered other con-
founders (e.g., alcohol consumption, body mass index,
number of children) in a qualitative way, but could not
account for them statistically because such data were
not available from the population-based cancer registry.
[16] If an expert believed that the excess number of
breast cancer cases was because of uncontrolled con-
founding, then a sceptical (0.67, 1.5) prior could be
used, giving a 95% credible interval of 0.96 to 1.91.
Another, more complicated approach, would be to also

Table 3: Bayesian analyses for the Illawarra and Brisbane, ABC
cancer clusters

Illawarra,
Leukaemia

Brisbane, ABC,
Breast cancer

Uninformative prior
posterior mode 3.15 5.62
95% credible interval (1.78, 5.64) (3.00, 10.67)

95% prior interval (0.22, 10.0)
posterior mode 3.15 5.08
95% credible interval (1.84, 5.45) (2.82, 9.22)

95% prior interval (0.29, 4.0)
posterior mode 2.55 3.56
95% credible interval (1.53, 4.28) (2.04, 6.27)

95% prior interval (0.67, 1.5)
posterior mode 1.32 1.36
95% credible interval (0.95, 1.84) (0.96, 1.91)
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put a prior on the expected number of cases, which
would require the use of specialised Bayesian software
such as WinBUGS. [25]

Limitations of this study
Some statisticians might claim that a limitation of the
approach used in this paper is that we used priors based
on the Gamma distribution. Software exists that allows
specification of more complicated priors that might be
considered more realistic (e.g., WinBUGS [25]). For
example, it is possible to use a completely different kind
of prior, such as a mixture of two distributions, one with
a point-mass in probability at SIR = 1 for the null
hypothesis, and another more diffuse prior that captures
the alternative. [26] However, we agree with Greenland's
argument that such complicated priors are unnecessary
for everyday, observational epidemiology, which he
accurately describes as semi-quantitative inference
about an adjusted risk ratio. [21] In our experience, the

computational convenience and simplicity that comes
with using the Gamma prior is important for routine
work done by health departments.

Another limitation of this study is that we focused on
simple data comprising the observed and expected
number of cases in a one-off cluster. For richer data
with details on multiple locations and spatial informa-
tion it is advisable to use spatial analyses to put the
reported cluster into a geographical context. [26-28]

Conclusion
The connection between statistics and science has been
described as a form of naïve inductive reasoning, [29]
which is a view that all scientists seeing the same data
would come to the same conclusions. This might be true
for a large well-conducted randomised trial, which might
eliminate uncertainty and force agreement among
experts who might not have agreed before the trial.

.1 .25 .5 1 2 4 10

ASR

Prior

Likelihood

Posterior

Illawarra; 95% prior CI = (0.22,10.0)

.1 .25 .5 1 2 4 10

ASR

Illawarra; 95% prior CI = (0.29,4.0)

.1 .25 .5 1 2 4 10

ASR

Illawarra; 95% prior CI = (0.67,1.5)

.1 .25 .5 1 2 4 10

ASR

ABC; 95% prior CI = (0.22,10.0)

.1 .25 .5 1 2 4 10

ASR

ABC; 95% prior CI = (0.29,4.0)

.1 .25 .5 1 2 4 10

ASR

ABC; 95% prior CI = (0.67,1.5)

Figure 1
Posterior distributions for the SIR for three different priors and likelihoods for the Illawarra and ABC clusters.
Dashed lines show the Gamma posterior, solid lines the likelihood, and dotted lines the Gamma prior.
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Statistical analysis of cluster investigations stray from
this ideal to a large, but unknown extent and some
experts are sceptical about the existence of a true
statistical excess for clusters (in the absence of an
identifiable cause). [6] The Bayesian framework allows
this sort of prejudice to be displayed explicitly in the
prior. On the other hand, if an investigation committee
believes that there is a distinct possibility that the cases
might have a common cause (perhaps because all the
cases are in an unusual age group, as was the case with
the ABC cluster), then this can also be displayed
explicitly in the prior, which like any aspect of a
statistical analysis should be scrutinised and rejected as
warranted.

In this way, the subjective Bayesian approach is much
less ambitious and less confident than the frequentist
approach. The Bayesian approach treats the analysis as a
synthesis of data and personal judgements (possibly
poor ones), rather than an objective reality. With its
portfolio of priors, the Bayesian approach makes
uncertainty explicit and is a helpful way of presenting
the statistical analysis of a reported cluster.
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