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Barufatti Grisolia1*

1 Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, UFGD,

Dourados, Mato Grosso do Sul, Brazil, 2 Departamento de Zootecnia, Faculdade de Ciências Agrárias e
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Abstract

Zebu cattle (Bos taurus indicus) are highly adapted to tropical regions. However, females

reach puberty after taurine heifers, which affects the economic efficiency of beef cattle

breeding in the tropical regions. The aims of this study were to establish associations

between the haplotype alleles of the bovine genome and age at first calving (AFC) in the

Nelore cattle, and to identify the genes and quantitative trait loci (QTL) related to this pheno-

type. A total of 2,273 Nelore cattle (995 males and 1,278 females) genotyped using the Illu-

mina BovineHD BeadChip were used in the current study. The association analysis

included females with valid first calving records as well as open heifers. Linkage disequilib-

rium (LD) analysis among the markers was performed using blocks of 5, 10, and 15 mark-

ers, which were determined by sliding windows shifting one marker at a time. Then, the

haplotype block size to be used in the association study was chosen based on the highest r2

average among the SNPs in the block. The five HapAlleles most strongly associated with

the trait (top five) were considered as significant associations. The results of the analysis

revealed four genomic regions related to AFC, which overlapped with 20 QTL of the repro-

ductive traits reported previously. Furthermore, there were 19 genes related to reproduction

in those regions. In conclusion, the use of haplotypes allowed the detection of chromosomal

regions associated with AFC in Nelore cattle, and provided the basis for elucidating the

mechanisms underlying this trait.
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2. Introduction

Indicine cattle (Bos taurus indicus) are well-adapted to tropical environments, because of attri-

butes like heat tolerance and partial tick resistance. However, as a general rule, indicine heifers

present inferior reproductive performances, regarding the onset of puberty, in comparison

with taurine cattle (Bos taurus taurus) [1]. Such late onset of puberty negatively affects the eco-

nomic efficiency of beef cattle breeding and restricts the genetic improvement of cattle [2], and

is, thus, becoming a key concern in the tropical countries. In Brazil, where beef production is

primarily based on indicine breeds, Nelore heifers selected for growth reach the onset of

puberty at about 23 months [3]. Anticipating this stage would increase the producer’s profit-

ability and can benefit the world beef supply, because Nelore cattle have huge importance in

the global beef market [4].

Age at first calving (AFC) is usually utilized in breeding programs as an indicator trait of

female sexual precocity, because this information can be easily obtained; the use of this infor-

mation is directly related to shortening generation intervals and increasing genetic gains [5, 6].

However, selection cannot easily affect AFC because it is a sex-limited trait, is measured after

maturity, and its heritability range from low to moderate (0.09 to 0.28) [7–11]. For these type

of traits, genome-wide information might allow improving genetic gains through genomic

selection [12]. In addition, genome-wide information could be used in association studies

(GWAS) to identify candidate regions associated with AFC, and improve our understanding

of the genetic basis of sexual precocity in indicine cattle. This knowledge could then be used to

improve the accuracy of genomic predictions by using more informative markers and discard-

ing those that generate noise during the predictions.

The use of individual single nucleotide polymorphisms (SNPs) to perform GWAS have

some limitations because of the small effect of single markers, which usually do not reach strin-

gent significance thresholds, and also because of the incomplete linkage disequilibrium (LD)

between the SNPs and causal variants [13, 14]. On the contrary, the use of a block of SNPs

(haplotypes) may provide more robust association analysis, because it improves the resolution

of associations and facilitates the approximation of associated markers and possible causal

mutations by increasing the LD [15–17].

The aim of this study was to scan for genomic regions associated with AFC in a Nelore cat-

tle population using haplotype allele information, in order to highlight the QTL/genes and

genetic mechanisms underlying this trait.

3. Material and methods

3.1. Ethical statement

The present study was exempt of the local ethical committee evaluation as genomic DNA was

extracted from stored hair and semen samples of animals from commercial herds.

3.2. Samples

The genotypes used in the current study were provided by the Zebu Genome Consortium
(ZGC). The full data consisted of 2,273 Nelore samples (995 males and 1,278 females) of differ-

ent Brazilian herds, born between 1968 and 2008. All samples were genotyped with Illumina

BovineHD (~777,000 SNPs).

The association analyses were carried out by considering deregressed estimated breeding

values (dEBV) for AFC as response variables, according to Garrick et al. [18].

Prior to deregression, the estimated breeding values (EBV) was obtained for the dataset by

considering both the calving and the noncalving (open heifers) females. Open heifers had

GWAS and reproductive traits in Nelore cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0201876 August 8, 2018 2 / 14

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. The specific roles of these authors

are articulated in the ‘author contributions’ section.

Competing interests: Haroldo H. R. Neves is an

employee of GenSys Consultores Associados S/S

Ltda. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0201876


predicted records that were obtained by adding a penalty of two months to the maximum

value of AFC in their respective contemporary groups. Consideration of open heifers was

aimed to avoid bias in the estimation of genetic parameters and EBVs [19, 20]. This procedure

is based on the assumption that open heifers could have calved if they were bred for longer

breeding seasons [20, 21]. The contemporary groups were defined by the concatenation of

herd code, year and season of birth, management group identifications (from birth to weaning

and from weaning to yearling), and farm (birth, weaning and yearling).

Variance components and EBV were obtained using the DMU software [22]. In the analysis

of AFC, a single-trait animal model was fitted, including the fixed effect of contemporary

groups and the age of dam as covariates (linear and quadratic effects), as well as a random

direct genetic effect and a random residual term. For each animal, the reliabilities of the EBVs

were computed based on the corresponding estimates of prediction error variance.

Only genotyped animals that had dEBV with associated reliabilities greater than 25% were

kept for further analysis (S1 Dataset), such, that a set of 1,189 animals was considered for asso-

ciation analyses (S2 Dataset). The dEBV average for this samples was equal to -2 (ranging from

-46.7 to 60.6) days and reliabilities equal to 0.59 (ranging from 0.25 to 0.94).

3.3. Quality control

Genomic data were subjected to quality control (QC) measures, including the maintenance of

autosomal markers with minor allele frequencies (MAF) >2%, Hardy-Weinberg equilibrium

(HWE) significance at P> 10−5 based on Fisher’s exact test, and an SNP call rate> 95%. The

following filters were used for sample exclusion: identity by state (IBS) analysis > 95% and the

samples in which less than 90% of the genotypes were determined were discarded. The QC

was conducted using the GenABEL package, version 1.8–0 [23] of the R software (version

3.2.1) [24].

3.4. Genotype phasing

Haplotype assembly requires the identification of the chromosome (maternal or paternal) in

which a certain allele is located. Therefore, the haplotype phase was determined using the

SHAPEIT software version 2.r837 [25], considering all genotyped animals (N = 2,273).

3.5. Linkage disequilibrium

LD between markers was analyzed to determine the number of SNPs per haplotype block,

because high-LD markers minimize the occurrence of recombination within the blocks [26].

Therefore, LD was estimated as the squared correlation of allelic frequencies (r2), following

Hill and Robertson [27]:

r2 ¼
ðfreq:AB � freq:ab � freq:Ab � freq:aBÞ
ðfreq:A � freq:a � freq:B � freq:bÞ

2

ð1Þ

where, freq.A, freq.a, freq.B and freq.b denote the frequencies of A, a, B, and b alleles, respec-

tively; and freq.AB, freq.ab, freq.Ab and freq.aB denote the frequencies of the haplotypes AB,

ab, Ab and aB in the population, respectively.

LD between markers was performed using blocks of 5, 10, and 15 markers with a sliding

window for each SNP. The window size that resulted in stronger LD was chosen to perform

the association study. LD was analyzed using the Plink software, version 1.9 [28, 29].
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3.6. Haplotypes

With the phased haplotypes of autosomal chromosomes, the haplotypes were constructed with

blocks size chosen based on high r between the SNPs in the LD analysis and sliding window of

one marker. The R package GHap v1.2.1 [30] was used to build the haplotype blocks (Hap-

Block) and identify alleles (HapAllele). Therefore, genotypes were scored as 2, 1, or 0, corre-

sponding with the presence of two copies, one copy, or the absence of the HapAllele,

respectively. The genomic position in the association analysis was based on the average dis-

tance between the first and last SNPs in a HapBlock. HapAlleles with allele frequency lower

than 3% were excluded.

3.7. Association analysis

Since dEBV reliability varies across individuals, weighted analyses are required to account for

heterogeneous variances. The weights were obtained as proposed by Garrick et al. [18]:

w ¼ ð1 � h2Þ= cþ
1 � r2

r2

� �

� h2

� �

ð2Þ

where h2 is the heritability of the trait (0.092) estimated using the complete database of AFC

recording, r2 is the dEBV reliability, and c is a constant that can assume values from 0 to 1. We

assumed that c was equal to 0.5.

Statistical analyses were performed using the ghap.lmm and ghap.assoc functions of the

GHap package. First, the variance was estimated using the maximum-likelihood method and

the following mixed linear model:

y ¼ Xbþ Zuþ e ð3Þ

where y is the vector of dEBV, X is the incidence matrix relating elements in y to fixed effects b
(intercept), Z is the incidence matrix for random effects u (animal), and u is a vector of ran-

dom effects ~ N (0, Kσu2), where K is HapAllele relationship matrix, and e is a random residual

vector (with variance-covariance Wσe2), assuming independence of the residuals.

The estimated residuals from the model (3) were considered as adjusted observations for

covariance and polygenic effects, these values were adjusted via Genomic Control [31] and

were used in the least squares regression analysis to test the association between each haplotype

allele and the phenotype.

3.8. Analysis of genomic regions

A genome-wide threshold level at 5 × 10−5 was selected for this study, as used by Lander and

Kruglyak [32]. For Hapalleles with distances less than 1 Mb or those that overlapped, only the

one with the lower P value was chosen. The 1 Mb sequence windows that flanked the signifi-

cant regions of the top five haplotypes were explored using the bovine genome assembly of

UMD version 3.1.

The BioMart tool (Ensembl release 89) [33] and the Cattle QTLdb (release 32) [34] were

used to search for candidate gene and cataloged QTL, respectively, surrounding the regions of

significant haplotype alleles. The results associated with the examined genes were revised using

available scientific literature; the Mouse Genome Informatics (MGI) [35], String v.10.5 [36],

and GeneCards: The Human Gene Database [37] provided information regarding the contri-

bution and involvement of orthologous genes associated with AFC.

GWAS and reproductive traits in Nelore cattle
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Due to the large number of genes in the region of these HapAlleles and a involvement of

some of them in various metabolic pathways, we have discussed only those that have been pre-

viously described in association with reproductive traits, as well as performed by Xu et al. [38].

4. Results

After filtering through quality control analyses, 511,375 SNPs and 1,189 individuals remained

in the analysis. LD analysis indicated that the average of r2 between adjacent markers for the

blocks of 5, 10, and 15 SNPs (S1 Fig) were 0.37, 0.32, and 0.30, respectively. Thus, the block

sizes of 5 SNPs were chosen to perform association studies.

The haplotyping procedure generated 507,384 HapBlocks and 2,238,795 HapAlleles with

allele frequency higher than 3%. The mean number of alleles per block ranged from 4.37 (BTA

1) to 1.19 (BTA 25). The distribution of the number of haplotype blocks per chromosome is

shown in S1 Fig.

The results of GWAS between each Hapalleles and AFC in terms of – log10 (P value) are

shown in Fig 1, where 68 haplotype alleles with P value < 5 × 10−5 were obtained (more details

included in S1 Table). The five most significant regions selected for genomic exploration were

in the detected peaks of BTA3 (BTA for Bos taurus chromosome), BTA5, BTA6, BTA21 and

BTA26 (Table 1).

In total, 90 QTL (S2 Table) and 65 candidate genes (S3 Table) were present in these top five

regions. Among these, 19 genes were related to previously described reproductive traits

(Table 2). Some of the genes that were identified were associated with embryonic implantation

in the uterus, development of reproductive organs in females and regulation of progesterone

secretion.

Within the top five regions, we found several QTL that were related to reproductive traits

(Table 3), and considering the QTL with AFC linkage, we can highlight the age at puberty,

daughter pregnancy rate, and conception rate.

5. Discussion

Most of the studies involving haplotypes generated based on the sliding windows have been

applied to map alleles associated with human diseases [39]. The use of haplotypes instead of

Fig 1. Manhattan plot of the genomic-wide association analysis of the –log10 (p-value) of haplotype alleles and

AFC trait. Each point in the graph represents a haplotype allele, arrows indicates de top five significant genomic

regions and respective genes. The dashed line represent–log10(5 x 10−5) threshold.

https://doi.org/10.1371/journal.pone.0201876.g001
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single markers gives putative advantages, the effects of individual SNPs being too small to

overcome the stringent significance threshold [14].

The size of the haplotypes might interfere with the success of the analysis, because long

blocks lead to the inclusion of non-informative SNPs and increase in the number of rare alleles,

whereas short blocks might ignore the informative markers and reduce the power of the associ-

ation analysis [40, 41]. The use of blocks with 5 SNPs was shown to be appropriate, with regards

to the size and average of LD between the adjacent markers. Moreover, the detection of signifi-

cant signals in the regions of BTA3, BTA5, BTA6 and BTA26, where known candidate genes

and QTL of reproductive traits are located, reinforces the suitability of this block size.

The BAG3, DMBX1, and PRDX3 genes were annotated in the MGI database [35] with bio-

logical function related to abnormalities in fat deposition. Knockout of the BAG3 genes (cell

death suppressor interaction Bcl-2 (Bis)) and DMBX1 (transcription factor) gave rise to mice

with low fat deposition and severe thinness [42, 43]. The PRDX3 gene is highly expressed in

the adipocytes and the suppression or knockout of this gene resulted in obese phenotype in

rats and humans [44]. These genes can be pointed out by GWAS because of the positive or

Table 1. Top five regions of the GWAS with haplotypic blocks, indicating the chromosomal localization (Chr), start and end positions, the respective SNPs, size

and p-values.

BTA Start (bp) End (bp) SNP start SNP end Size (bp) P-value
3 99,936,110 99,959,169 rs133273360 rs133299434 23,059 1.07 x10-5

5 49,183,430 49,201,226 rs136746086 rs136437853 17,796 2.65 x10-5

6 91,649,597 91,663,333 rs134333101 rs135909163 13,736 1.53x10-5

21 15,189,159 15,193,691 rs42466473 rs42465819 4,532 1.36 x10-5

26 39,765,858 39,773,044 rs110416149 rs41648222 7,186 1.37 x10-5

https://doi.org/10.1371/journal.pone.0201876.t001

Table 2. Summary of the genes present in 1-MB windows centered on the haplotypes that were top five significant haplotype alleles.

Gene Ensembl ID Position

(BTA:start–end [bp])

Description

U6 ENSBTAG00000043170

ENSBTAG00000042928

3:99,562,453–99,562,559

5:48,996,775–48,996,881

U6 spliceosomal RNA

CYP4A11 ENSBTAG00000037890 3:99,806,666–99,820,784 Cytochrome P450, family 4, subfamily A, polypeptide 22

CYP4A22 ENSBTAG00000013481 3:99,918,428–99,933,505 Cytochrome P450, family 4, subfamily A, polypeptide 22

CYP4B1 ENSBTAG00000011976 3:99,937,185–99,957,408 Cytochrome P450 family 4 subfamily B member 1

EFCAB14 ENSBTAG00000000097 3:100,020,902–100,054,984 EF-hand calcium binding domain 14

DMBX1 ENSBTAG00000009625 3:100,217,682–100,223,303 Diencephalon/mesencephalon homeobox 1

LOC513210 ENSBTAG00000037858 3:100,285,863–100,300,972

FAAH ENSBTAG00000007507 3:100,317,761–100,338,715 Fatty acid amide hydrolase

NSUN4 ENSBTAG00000015891 3:100,351,395–100,374,287 NOP2/Sun RNA methyltransferase family member 4

WIF1 ENSBTAG00000014758 5:48,917,722–49,009,466 WNT inhibitory factor 1

BTC ENSBTAG00000004237 6:91,430,305–91,480,129 Betacellulin

PARM1 ENSBTAG00000015919 6:91,597,122–91,723,390 Prostate androgen-regulated mucin-like protein 1

RCHY1 ENSBTAG00000007189 6:92,061,508–92,076,962 Ring finger and CHY zinc finger domain containing 1

CACUL1 ENSBTAG00000022808 26:39,292,197–39,356,979 CDK2 associated cullin domain 1

PRDX3 ENSBTAG00000008731 26:39,672,044–39,681,392 Peroxiredoxin 3

GRK5 ENSBTAG00000007981 26:39,702,550–39,930,993 G protein-coupled receptor kinase 5

RGS10 ENSBTAG00000002647 26:39,976,325–40,017,296 Regulator of G protein signaling 10

TIAL1 ENSBTAG00000004080 26:40,041,404–40,060,834 TIA1 cytotoxic granule associated RNA binding protein like 1

BAG3 ENSBTAG00000013641 26:40,118,556–40,141,989 BCL2 associated athanogene 3

https://doi.org/10.1371/journal.pone.0201876.t002
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negative genetic correlation between body weight and reproductive traits, such as AFC and

heifer pregnancies [45], in addition to the proximity of BAG3 (830 kb) and PRDX3 (383 kb)

with the QTL affecting daughter pregnancy rate. Nelore heifers with early fat deposition can

have decreased growth rate, with the nutritional resources directed for reproduction, thus pre-

senting better reproductive performance than that of the heifers of greater weight.

The eIF gene family acts at several stages of translation during protein synthesis. Although

there were no reports of association between eIFs and reproductive traits, functional search in

String v10.5 identified the interaction of this family with the genes TIAL1, CACUL1, and

NSUN4. The TIAL1 gene (also known as TIAR) encodes protein member of the RNA binding

family, acting on post-transcriptional regulation. In rodents, changes in the expression of

TIAL1 severely affects the development of primordial germ cells of gametes (cells that differen-

tiate into sperm and oocytes), being orthologous in cattle [46]. CACUL1 (or CAC1) acts on the

activation of the CDK2 gene involved in cell proliferation processes [47]. In the experiments

using mice, inactivation of CDK2 gave rise to sterile animals, thereby proving to be essential

for the development of germ cells in males and females [48]. It is worth mentioning that these

two genes are close to the QTL associated with daughter pregnancy rate in BTA26, wherein

TIAL1 is located at 753 kb and CACUL1 is located at only 4kb, corroborating the idea that

these genes have roles in AFC variation. In this context, the NSUN4 gene has been reported to

be differentially expressed in mouse oocytes. NSUN4 is a candidate gene involved in the associ-

ation with cumulus cells, responsible for oocyte viability and embryonic developmental com-

petence [38], which could possibly explain their association with AFC in the current study.

Further interaction between the LOC513210 and FAAH genes was found. LOC513210
belongs to the olfactory gene family that was associated with precocity in Nelore cattle in a pre-

vious study[49]. The physiological explanation is that these genes with olfactory function also

Table 3. QTL related to reproductive traits that were located in 1-Mb windows near haplotypes.

QTL description Position

(BTA:start–end [bp])

QTLdb ID PubMed ID

Calving ease 3:84,669,155–102,513,835 15173 21183059

Calving index 3:84,669,155–102,513,835 15172 21183059

Stillbirth 3:84,669,155–102,513,835 15174 21183059

Stillbirth 3:99,853,456–101,636,723 30488 22888914

Calving ease (maternal) 5:49,553,247–51,015,255 106488 27328805

Calving ease 5:48,080,259–48,993,294 24565 24906442

Age at puberty 5:49,485,934–49,485,974 29989 22100599

Interval to first estrus after calving 5:49,399,050–49,399,090 30162 22100599

Stillbirth 5: 49,350,626–51,029,985 30495 22888914

Calving to conception interval 6:87,658,297–92,845,663 126853 28109604

Interval to first estrus after calving 6:87,658,297–92,845,663 126854 28109604

Conception rate 6:91,677,962–91,678,002 57143 23759029

Daughter pregnancy rate 6:91,677,962–91,678,002 57130 23759029

Early embryonic survival 6:91,677,962–91,678,002 57089 23904513

Calving ease (maternal) 26: 39,288,039–39,288,079 52924 21831322

Daughter pregnancy rate 26:39,288,039–39,288,079 52925 21831322

Stillbirth (maternal) 26:39,288,039–39,288,079 52926 21831322

Calving ease 26:39,288,039–39,288,079 52942 21831322

Stillbirth 26: 39,288,039–39,288,079 52944 21831322

Calving ease 26: 39,601,498–41,709,612 15227 21183059

https://doi.org/10.1371/journal.pone.0201876.t003
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act on germ cells [49, 50]. The expression of the FAAH gene occurs in the uterine epithelial

cells and in the myometrium during the estrous cycle in rats. Adjustments in the expression of

the FAAH gene are carried out by sex hormones and determine the success of uterine receptiv-

ity for the implantation of the embryo [51]. In heifers, sheep, and women, the decrease in

FAAH gene expression has been associated with abortions [52–54]. In cows, the inactivation of

FAAH can lead to infertility [54].

The CYP4A22 gene was found to be associated with precocity in Brahman heifers in previ-

ous studies [55, 56]. CYP4A22 belongs to the cytochrome P450 family and is involved in fat

metabolism. Nguyen et al. [56] have suggested that this gene acts in response to the progester-

one hormone. This hypothesis explains the involvement of CYP4A22 (having function in the

pituitary gland) in the mechanisms of ovarian feedback established with during puberty. Using

String, it was possible to detect a relationship between CYP4A22 and CYP4A11, which was the

last one associated with perinatal modifications in target tissues that is necessary for the pro-

gression of pregnancy [57].

In addition to CYP4A22, the PARM1 gene has also been previously reported to be associated

with precocity in heifers [58, 59]. PARM1 is expressed in the ovaries and encodes proteins

involved in cell proliferation the, is regulated by androgens [60]. The PARM1 gene was also

associated with daughter pregnancy rate of Holstein sires [61], and is located within two QTL

that are essential for AFC, conception rate, and daughter pregnancy rate. This gene also partici-

pates in the regulation of luteinizing hormone and controls progesterone levels in rats [62, 63].

The genes RGS10, WIF1 and CYP4B1 were reported to be essential for the embryo implan-

tation process in the uterus and for pregnancy viability [64–67]. RGS10, located 688 kb close to

the daughter pregnancy rate QTL, had its expression identified in the pig endometrium.

RGS10, which is orthologous in cattle and pigs, can lead to changes in the endometrium during

the estrous cycle that can lead to successful embryo implantation [65]. WIF1 is located 476 kb

away from the age at puberty QTL. This gene encodes the regulatory protein of canonical

WNT molecules, involved in cell proliferation, differentiation, and migration [66, 68]. Expres-

sion studies in the endometrial tissue of heifers suggested the activity of the WIF1 gene as a

molecule moderator, important for the implantation and development of the embryo [66, 67].

The BTC gene, localized on the BTA6, 197 kb away from the QTL affecting conception rate

and daughter pregnancy rate, is essential for oocyte maturation and development, and fertili-

zation [69]. BTC acts as the mediator of luteinizing hormone effects [70], which regulates func-

tions related to puberty, such as oocyte maturation and ovulation [71].

Gurgan et al. [72], aiming to identify markers capable of predicting the quality of human

oocytes detected the presence of the RCHY1 gene as a possible hormone regulator involved in

follicular development, further emphasizing that this gene is close (383 kb) to the conception

rate and daughter pregnancy rate QTL.

In a transcriptomic study using granulosa cells from the ovarian follicles of heifers, the

GRK5 gene was detected in association with the maturation of granulosa cells [73]. These cells

are important for the hormonal regulation occurring in the gonads and for viability of the

female gamete [73, 74]. It is noteworthy that this gene is found 414 kb of daughter pregnancy

rate QTL.

The EFCAB14 gene encodes a calcium ion binding protein and belongs to the EF-hand cal-

cium binding gene family. There are still no reports available in the literature on the biological

pathways in which genes from this domain (domain 14) are involved. However, this gene fam-

ily has been associated with reproductive traits in women and cattle [75, 76].

Another candidate gene, located in the BTA3 and BTA5, encodes the U6 spliceosomal

RNA, and had paralogous genes associated with AFC in a different population of Nellore

GWAS and reproductive traits in Nelore cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0201876 August 8, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0201876


cattle, as reported in a previous study [77]. In BTA5, this gene is close (498 kb) to an important

QTL related to AFC, which is the age at puberty QTL.

There were no known genes or QTL related to the reproductive traits among the eight QTL

and four genes annotated in the vicinities of the significant haplotypes of BTA21 (S2 and S3

Tables). This may be due either to the lack of knowledge regarding the functions of these genes

or the existence of non-annotated genes in this region. It is noteworthy that the present study

detected association in regions different from that reported by previous studies on the Nelore

breed [77–79]. This can be because of herd particularities, such as the extent of LD, allelic fre-

quencies, sample size, and statistical approaches [79], in addition to the use of haplotypes in

the current study.

The number of significant peaks dispersed across the genome (Fig 1) confirms the poly-

genic nature of the trait AFC. Therefore, the current study was able to reveal genomic regions

putatively associated with the reproductive performance of cattle.

The proximity of the QTL with the association regions and the involvement of QTL in

reproductive traits (e.g., calving ease, daughter pregnancy rate, calving rate, embryonic sur-

vival, stillbirth, and conception rate) support the results obtained for the examined genes.

Moreover, our results support the involvement of the identified regions in AFC.

6. Conclusion

The use of haplotypes allowed the detection of chromosomal regions associated with AFC. In

these regions, genes and QTL related to reproduction were found. These results provide the

basis for further studies that aim to elucidate the mechanisms underlying the roles of the exam-

ined genes during AFC expression.

Thus, a better understanding of this mechanism will allow the use of specific genotypes as a

guide in animal genetics improvement programs, and will enable the construction of cheaper,

low-density panels for the evaluation of specific genotypes that are advantageous to selection.
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submetidos ao estresse calórico in vitro. Acta Vet Brasilica. 2008; 2(3):85–88.

75. Peddinti D, Nanduri B, Kaya A, Feugang JM, Burgess SC, Memili E. Comprehensive proteomic analysis

of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.

BMC Syst Biol. 2008; 2(1):19.

76. Zhou L, Li R, Wang R, Huang H-x, Zhong K. Local injury to the endometrium in controlled ovarian hyper-

stimulation cycles improves implantation rates. Fertil Steril. 2008; 89(5):1166–1176. https://doi.org/10.

1016/j.fertnstert.2007.05.064 PMID: 17681303

77. Nascimento AV, Matos MC, Seno LO, Romero AR, Garcia JF, Grisolia AB. Genome wide association

study on early puberty in Bos indicus. Genet Mol Res. 2016; 15(1):1–6.

78. Costa RB, Camargo GM, Diaz ID, Irano N, Dias MM, Carvalheiro R, et al. Genome-wide association study

of reproductive traits in Nellore heifers using Bayesian inference. Genet Sel Evol. 2015; 47(1):47–67.

79. Regatieri IC, Boligon AA, Costa RB, Souza FRP, Baldi F, Takada L, et al. Association between single

nucleotide polymorphisms and sexual precocity in Nellore heifers. Anim Reprod Sci. 2017; 177:88–96.

https://doi.org/10.1016/j.anireprosci.2016.12.009 PMID: 28011117

GWAS and reproductive traits in Nelore cattle

PLOS ONE | https://doi.org/10.1371/journal.pone.0201876 August 8, 2018 14 / 14

https://doi.org/10.1016/j.fertnstert.2007.05.064
https://doi.org/10.1016/j.fertnstert.2007.05.064
http://www.ncbi.nlm.nih.gov/pubmed/17681303
https://doi.org/10.1016/j.anireprosci.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/28011117
https://doi.org/10.1371/journal.pone.0201876

