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Abstract
Introduction: A new generation of large-scale studies is using neuroimaging to inves-
tigate adolescent brain development across health and disease. However, imaging 
artifacts such as head motion remain a challenge and may be exacerbated in pediatric 
clinical samples. In this study, we assessed the scan–rescan reliability of multimodal 
MRI in a sample of youth enriched for risk of mental illness.
Methods: We obtained repeated MRI scans, an average of 2.7 ± 1.4 weeks apart, 
from 50 youth (mean age 14.7 years, SD = 4.4). Half of the sample (52%) had a diagno-
sis of an anxiety disorder; 22% had attention-deficit/hyperactivity disorder (ADHD). 
We quantified reliability with the test–retest intraclass correlation coefficient (ICC).
Results: Gray matter measurements were highly reliable with mean ICCs as follows: 
cortical volume (ICC  =  0.90), cortical surface area (ICC  =  0.89), cortical thickness 
(ICC = 0.82), and local gyrification index (ICC = 0.85). White matter volume reliabil-
ity was excellent (ICC = 0.98). Diffusion tensor imaging (DTI) components were also 
highly reliable. Fractional anisotropy was most consistently measured (ICC = 0.88), 
followed by radial diffusivity (ICC = 0.84), mean diffusivity (ICC = 0.81), and axial 
diffusivity (ICC = 0.78). We also observed regional variability in reconstruction, with 
some brain structures less reliably reconstructed than others.
Conclusions: Overall, we showed that developmental MRI measures are highly reli-
able, even in youth at risk for mental illness and those already affected by anxiety and 
neurodevelopmental disorders. Yet, caution is warranted if patterns of results cluster 
within regions of lower reliability.
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1  | INTRODUC TION

A new generation of large-scale studies (Alexander et al., 2017; 
Casey et al., 2018) is using neuroimaging techniques to investigate 
adolescent brain development across health and disease. These tre-
mendous undertakings, often called “biobanks” for the wealth of 
biological data that they collect, are particularly focused on mental 
health. A primary goal includes identifying developmental trajec-
tories of psychiatric illness which in turn might help improve early 
detection and guide intervention (Alexander et al., 2017; Casey 
et al., 2018). Such research is highly valuable, as epidemiologic stud-
ies show that 75% of psychiatric disorders begin early in the lifes-
pan, prior to age 24 (Kessler et al., 2005; Kim-Cohen et al., 2003). 
However, identifying clinically useful brain markers of illness, or 
“biomarkers,” hinges on the reliability of the MRI data.

Reliability is the ability of a measurement to provide consistent 
results under similar circumstances. Imaging artifacts, such as head 
motion, remain a challenge to reliability (Reuter et al., 2015), and 
there are concerns that measurement error may be exacerbated in 
pediatric clinical samples (Ducharme et al., 2016). Functional MRI 
studies have begun to address within-subject reliability in youth as 
motion can have a profound effect on functional connectivity es-
timates (Van Dijk, Sabuncu, & Buckner, 2012; Vetter et al., 2017). 
However, a large body of imaging research deals with brain struc-
ture, and here too image artifacts are of concern. It has been shown 
that head motion in healthy volunteers can resemble cortical gray 
matter atrophy (Reuter et al., 2015). Children and adolescents might 
be particularly sensitive to scanner noise and may have difficulty 
remaining still for the duration of the sequences. One study exam-
ining pediatric MRI data has shown that low-quality data can affect 
inferences regarding the developmental trajectories of cortical mat-
uration (Ducharme et al., 2016). These findings necessitate the as-
sessment of the reliability of MRI data in participants who are not 
merely undergoing normal development but are also showing exter-
nalizing and internalizing symptoms or are at increased familial risk 
for mental illness (Rasic, Hajek, Alda, & Uher, 2014).

In this study, we assessed the scan–rescan reliability of multi-
modal MRI in a sample of youth at risk for mental illness, includ-
ing those already experiencing psychopathology. We measured 
common structural imaging metrics reported in the literature and 
quantified regional reliability based on widely used brain atlases. We 
also compared the reliability of structural measures to published es-
timates from samples of healthy adults.

2  | MATERIAL S AND METHODS

2.1 | Participants

We recruited 53 youth (mean age 14.7 years, SD = 4.4) at familial risk 
for mental illness from FORBOW study, a longitudinal study enriched 
for sons and daughters of parents with mental illness (Uher et al., 
2014). Offspring at familial risk for mental illness and participants 

from control families were invited to complete the MRI study. 
Participants were scanned twice, an average of 2.7  ±  1.4  weeks 
apart. Exclusion criteria were personal history of (i) psychotic illness, 
(ii) any serious medical or neurologic disorders, or (iii) MRI contrain-
dications. The study protocol was approved by the Research Ethics 
Board of the Nova Scotia Health Authority. Participants provided 
written informed consent. For children who did not have capacity to 
make a fully informed decision, a parent or guardian provided writ-
ten informed consent and the child provided assent.

2.2 | Parent assessment

We used the Schedule for Affective Disorders and Schizophrenia 
(SADS-IV; Endicott & Spitzer, 1978) and the Structured Clinical 
Interview for DSM-5 (SCID-5; First, 2015) to establish diagnoses of 
mental disorders according to DSM-IV and DSM-5.

2.3 | Offspring assessment

Participating youth were interviewed using the Kiddie Schedule 
for Affective Disorders and Schizophrenia, Present and Lifetime 
Version (K-SADS-PL; Kaufman et al., 1997) by assessors blind to 
parent psychopathology. Diagnoses were confirmed in consensus 
meetings with a psychiatrist. Full-scale intelligence quotient (FSIQ) 
was assessed using the Wechsler Abbreviated Scale of Intelligence 
(Wechsler, 2011).

2.4 | Socioeconomic status (SES)

Socioeconomic status was captured as a composite variable (range 
0–5) indexing: (i) maternal and (ii) paternal levels of education (iii) 
family household annual income, (iv) ownership of primary resi-
dence, and (v) ratio of bedrooms to residents in household, as previ-
ously described (MacKenzie et al., 2017; Zwicker et al., 2019). Higher 
numeric value reflects higher SES.

2.5 | MRI acquisition

Images were acquired with a 3T General Electric Discovery MR750 
scanner equipped with a 32-channel MR Instruments RF head coil. 
Scanning took place at the Biomedical Translational Imaging Centre 
(BIOTIC), Halifax, Nova Scotia. Each participant was positioned su-
pine in the MRI scanner with the head supported by foam padding 
to reduce movement. Earplugs were provided to minimize scanner 
noise. We collected a 3D T1-weighted (T1w) Brain Volume imaging 
(BRAVO) sequence with whole-brain coverage, 1 mm3 isotropic res-
olution, matrix = 224 × 224, field of view (FOV) = 224 mm, 168 sagit-
tal slices at 1 mm thickness, repetition time (TR) = 5.9 ms, echo time 
(TE) = 2.2 ms, inversion time (TI) = 450 ms, flip angle = 12°, receiver 
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bandwidth = ±62.5, number of excitations (NEX) = 2, autocalibrating 
reconstruction for cartesian imaging (ARC) phase acceleration = 2, 
ARC slice acceleration = 1, no phase wrap, scan duration = 5 min 
42 s.

In addition, we collected a T2-weighted fluid attenuated inver-
sion recovery (FLAIR) sequence using a T2 prep contrast option 
(T2PREP) with identical coverage, resolution and acquisition orienta-
tion to the T1w sequence, TE = 98 ms, TR = 5,100 ms, TI = 1,427 ms, 
echo train length (ETL)  =  250 echoes, flip angle  =  90°, receiver 
bandwidth = ±62.5 kHz, NEX = 1, with prospective motion correc-
tion (PROMO) enabled (White et al., 2010), ARC phase = 2.5, ARC 
slice = 1, scan duration = 5 min.

Whole-brain axial–oblique diffusion-weighted images were 
also acquired using a single-shot spin-echo EPI pulse sequence, 
gradient directions = 30, b-value = 1,000 s/mm2, three b = 0 im-
ages interleaved every 15 volumes, TR  =  8,000  ms, TE  =  66.7, 
FOV  =  216  mm, slice thickness  =  2  mm, number of slices 76, 
matrix  =  108  ×  108, voxel  =  23  mm isotropic, receiver band-
width = ±250 kHz, ASSET phase acceleration factor = 2, phase-en-
code direction = AP, scan duration = 4 min 32 s. For the purposes 
of estimating and correcting susceptibility-induced distortions, 
we also acquired a second whole-brain axial–oblique diffu-
sion-weighted sequence with matching parameters except only 8 
volumes at b = 0 and with opposite phase-encoding direction = PA, 
scan duration = 64 s.

2.6 | MRI processing

Scans were processed with the Human Connectome Project 
(HCP) Minimal Preprocessing Pipeline (Glasser et al., 2013). The 
HCP pipeline is a well-documented set of scripts developed to 
analyze high-quality multimodal MRI data. It leverages the most 
widely used open-source MRI processing software: FreeSurfer 
6 (RRID:SCR_001847) (Fischl, 2012) and the FMRIB Software 
Library (FSL, RRID:SCR_002823) (Jenkinson, Beckmann, Behrens, 
Woolrich, & Smith, 2012). We have optimized the pipeline for our 
data by matching it to our acquisition parameters and by replac-
ing the MNI template with a pediatric template for registration. 
The modified pipeline is available and freely accessible on https://
github.com/GitDr​o/Youth​Relia​bilit​y/tree/maste​r/HCP_custom_
pipeline. We used the NIHPD pediatric atlas (NIHPD Objective 1 
atlases [4.5–18.5 years], RRID:SCR_008794) (Fonov et al., 2011) to 
minimize registration bias in our developmental cohort. In order to 
measure cortical folding, we ran the local gyrification index (LGI) 
analysis, the details of which can be found in the validation paper 
(Schaer et al., 2008) and on the https://surfer.nmr.mgh.harva​
rd.edu/fswik​i/LGI.

For gray matter reliability, we examined 34 cortical regions of 
interest per hemisphere based on the FreeSurfer default Desikan–
Killiany atlas (Desikan et al., 2006). Thus, we measured cortical 
gray matter volume, cortical surface area, cortical thickness, and 
LGI/cortical folding in 68 parcellations per individual at each time 

point. Quality control was done both manually early in the process-
ing stream and later with an automated supervised-learning tool 
on the FreeSurfer segmented output. Manual quality ratings of T1-
weighted and T2-weighted images were performed by authors VD 
and HVG. Automated quality control was done with the Qoala-T tool 
(Klapwijk, Kamp, Meulen, Peters, & Wierenga, 2019). https://github.
com/Qoala​-T/QC is an automated machine learning model used to 
classify the quality of FreeSurfer output. Six scans from three par-
ticipants were excluded after the combined quality control (largely 
due to excess motion), bringing the total number of participants in 
the analysis to 50.

For white matter reliability, we examined white matter volume 
and diffusion tensor imaging (DTI) metrics based on the 20-structure 
JHU DTI-based white-matter tractography atlas (Mori, Wakana, Zijl, 
& Nagae-Poetscher, 2005). Data inclusion required absolute and rel-
ative motion to be under one and a half times the voxel size. Briefly, 
the processing was done in three steps: (i) creating binary maps of 
the 20 tracts in MNI152-space, (ii) registering each binary map into 
subject diffusion–space by combining and applying the nonlinear 
warps from MNI152 to NIHPD space, and NIHPD space to subject 
T1-weighted space, and the rigid-body linear transform from subject 
T1-weighted space to subject diffusion–space, (iii) using “fslstats” to 
report each metric; white matter volume, fractional anisotropy (FA), 
mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity 
(RD) for each tract.

2.7 | Statistical analysis

We used RStudio (R Version 3.6.2; RStudio version 1.2.5033; 
RStudio Team, 2019) to calculate the intraclass correlation coeffi-
cient (ICC) for the processed scan–rescan datasets. Reliability is the 
ability of a measurement to provide consistent results under simi-
lar circumstances. Test–retest reliability assesses stability under 
repeated tests, quantifying the extent to which measurements can 
be replicated. The ICC indexes both correlation and agreement be-
tween measurements (Koo & Li, 2016) and is commonly used to 
quantify reliability. We wanted to capture the variation in meas-
urements taken by MRI and introduced in postprocessing, on the 
same participant under the same conditions weeks apart. We used 
ICC (1,1) for calculating scan–rescan reliability implemented in the 
https://cran.rproj​ect.org/web/packa​ges/ICC/index.html (Version 
2.3.0; Wolak, Fairbairn, & Paulsen, 2012) which estimates the ICC 
and confidence intervals using the variance components form a 
one-way ANOVA. We examined averaged ICC and the regional 
(parcellated) ICC for all measures and classified reliability accord-
ing to generally defined criteria (Cicchetti, 1994): poor (<0.40), fair 
(0.41–0.59), good (>0.59–0.74), and excellent (>0.74). The code, 
data and analysis, is available https://github.com/GitDr​o/Youth​
Relia​bility in a reproducible R notebook. We also repeated the 
analysis on a subsample of the participants scanned again twice, 
on average 14  months following their initial pair of scans (see 
Tables S1–S10).

info:x-wiley/rrid/RRID:SCR_001847
info:x-wiley/rrid/RRID:SCR_002823
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
info:x-wiley/rrid/RRID:SCR_008794
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://github.com/Qoala-T/QC
https://github.com/Qoala-T/QC
https://cran.rproject.org/web/packages/ICC/index.html
https://github.com/GitDro/YouthReliability
https://github.com/GitDro/YouthReliability
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3  | RESULTS

3.1 | Demographic and clinical characteristics

We present results from 100 scans collected from 50 youth (64% 
female) imaged several weeks apart (M = 2.70, SD = 1.36). The age 
range was 9–25 years old (M = 14.7, SD = 4.4). The majority of the 
participants have a family history of mental illness: 25 (50%) with a 
family history of major depressive disorder, 13 (26%) with a family 
history of bipolar disorder, and 2 (4%) with a family history of schizo-
phrenia. Ten participants (20%) were recruited from control families. 
A large proportion of the scanned youth have been affected by men-
tal illness: 26 participants (52%) had been diagnosed with an anxi-
ety disorder, 13 (26%) had been diagnosed with major depressive 

disorder, and 11 (22%) have had a diagnosis of attention-deficit/hy-
peractivity disorder (ADHD).

The sample was predominantly white (90%), with a minority 
(10%) comprised of indigenous and black youth. The composite SES 
indicator was normally distributed (M  =  3.1, SD  =  1.31). Full-scale 
intelligence quotient (FSIQ) for the sample was in the normal range 
(M = 103, SD = 12.9).

3.2 | Cortical volume

We observed “excellent” scan–rescan ICC for cortical gray mat-
ter volume (M  =  0.90, 95% CI [0.84, 0.94]) averaged across the 
Desikan atlas regions (Figure  1a). The results were consistent 

F I G U R E  1  Reliability of cortical gray matter measures. Scan–rescan reliability of Desikan–Killiany regions. Intraclass correlation 
coefficient (ICC) values: poor (<0.40), fair (0.41–0.59), good (>0.59–0.74), and excellent (>0.74). (a) Cortical gray matter volume. (b) Cortical 
surface area. (c) Cortical thickness. (d) Local gyrification index
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across the left hemisphere (M = 0.92, 95% CI [0.86, 0.95]) and the 
right hemisphere (M = 0.89, 95% CI [0.82, 0.93]). As indicated by 
the high mean ICC, the reliability for most of the structures (65 out 
of 68; 96%) was classified as “excellent.” However, there was some 
regional variation (Table  S1). The left supramarginal gyrus vol-
ume was the most reliably reconstructed, with near-perfect ICC 
(ICC = 0.99, 95% CI [0.98, 0.99]). The volume of the left temporal 
pole was the least reliably measured (ICC  =  0.47, 95% CI [0.23, 
0.66]), with the ICC dipping into the “fair” classification and the 
lower bound of the confidence interval crossing the “poor” thresh-
old. The contralateral right temporal pole was the next least reli-
ably measured structure (ICC = 0.55, 95% CI [0.33, 0.72]). The only 
other structure with a designation below “excellent” was the right 
frontal pole, for which the ICC was only “fair” (ICC = 0.58, 95% CI 
[0.36, 0.74]). Cortical volume is a composite measure comprised of 
cortical surface area and cortical thickness; thus, we proceeded to 
examine the reliability of its components.

3.3 | Cortical surface area

Averaged across the Desikan atlas regions, the ICC for cortical sur-
face area (M = 0.89, 95% CI [0.82, 0.93]) was also deemed “excel-
lent” overall (Figure 1b). Similar degree of reliability was attained 
both in the left hemisphere (M  =  0.91, 95% CI [0.85, 0.95]) and 
the right hemisphere (M = 0.87, 95% CI [0.79, 0.92]). Just as with 
the volumetric results, the left supramarginal gyrus showed the 
highest ICC (ICC = 0.99, 95% CI [0.98, 0.99]). However, the ICCs 
for 12% of the Desikan regions were classified as “good” or “fair” 
(Table S2). The bilateral temporal poles were the least reliably re-
constructed structures (left; ICC = 0.65, 95% CI [0.45, 0.78], right; 
ICC  =  0.47, 95% CI [0.23, 0.66]). The frontal poles also showed 
lower ICCs than most structures (left; ICC = 0.69, 95% CI [0.51, 
0.81], right; ICC = 0.70, 95% CI [0.53, 0.82]). The left insula, en-
torhinal cortex, and medial orbitofrontal cortex were classified 
as “good” with respective ICCs of 0.72, 0.71, 0.64, 95% CI [0.55, 
0.83], [0.55, 0.83], [0.45, 0.78]. Finally, the right caudal middle 
frontal gyrus ICC confidence interval ranged from “fair” to “excel-
lent” (ICC = 0.70, 95% CI [0.53, 0.82]).

3.4 | Cortical thickness

Across the Desikan atlas, the mean ICC for cortical thickness was 
“good” to “excellent” (M = 0.82, 95% CI [0.71, 0.89]). The results were 
consistent across the left hemisphere (M = 0.83, 95% CI [0.73, 0.90]) 
and the right hemisphere (M = 0.81, 95% CI [0.69, 0.88]). The regional 
variability was more apparent than for other measures (Figure 1c), 
with 24% of the atlas below the “excellent” reliability designation 
(Table S3). Cortical thickness reconstruction was most reliable in the 
left superior frontal gyrus (ICC = 0.95, 95% CI [0.91, 0.97]). Once 
again, the temporal pole reconstruction was least reliable bilaterally 
(left; ICC = 0.38, 95% CI [0.12, 0.60], right; ICC = 0.41, 95% CI [0.16, 

0.62]). Of note, two additional regions had the lower bound of the 
confidence interval cross into “poor” reliability. This included the 
right entorhinal cortex (ICC = 0.60, 95% CI [0.39, 0.75]) and the left 
medial orbitofrontal cortex (ICC = 0.56, 95% CI [0.34, 0.73]).

3.5 | Cortical folding (LGI)

We also found “excellent” scan–rescan ICC (M = 0.85, 95% CI [0.75, 
0.91]) for the measurement of cortical folding (Figure 1d). The aver-
age ICC across the right hemisphere was “excellent” (M = 0.85, 95% 
CI [0.76, 0.91]) and “good” to “excellent” across the left hemisphere 
(M = 0.84, 95% CI [0.74, 0.90]). Regional reliability was fairly con-
sistent, with most structures displaying “excellent” reconstruction, 
and the rest (eight structures) achieving “good” ICCs. None of the 
confidence intervals dipped into the “poor” classification (Table S4). 
Cortical folding reconstruction was most reliable in the right pre-
central gyrus (ICC = 0.95, 95% CI [0.92, 0.97]). As expected by now, 
the bilateral frontal (left; ICC  =  0.62, 95% CI [0.41, 0.76], right; 
ICC = 0.66, 95% CI [0.48, 0.79]) and temporal poles (left; ICC = 0.63, 
95% CI [0.43, 0.77], right; ICC = 0.68 95% CI [0.50, 0.81]) had the 
comparably lowest ICC estimates in measures of regional gyrifica-
tion. The gyrification measurement of entorhinal cortex was also 
among the least reliable (left; ICC = 0.65, 95% CI [0.45, 0.78], right; 
ICC = 0.71, 95% CI [0.54, 0.82]), however, still “fair” to “excellent.”

3.6 | White matter volume

We observed remarkable reliability of white matter volume meas-
urements averaged across the JHU white-matter tractography 
atlas (M  =  0.98, 95% CI [0.97, 0.99]). Near-perfect reliability was 
observed in the reconstruction of the cingulum near the cingulate 
gyrus (ICC = 0.99, 95% CI [0.99, 1.00]) and other white matter tracts 
(Table S5). The lowest regional reliability was observed in the cingu-
lum near the hippocampus (ICC = 0.96, 95% CI [0.93, 0.98]), which 
was nevertheless categorized as “excellent.”

3.7 | Diffusion tensor imaging (DTI) measures

3.7.1 | Fractional anisotropy (FA)

Next, we examined white matter FA, which is often used to index mi-
crostructural integrity. Scan–rescan ICCs were “excellent” averaged 
across the JHU atlas (M = 0.88, 95% CI [0.79, 0.93]), Figure 2. The left 
superior longitudinal fasciculus was measured most reliably across 
scan sessions (ICC = 0.95, 95% CI [0.91, 0.97]). The forceps minor, 
also known as the anterior forceps, runs bilaterally and had the low-
est reliability estimates for FA (ICC = 0.76, 95% CI [0.61, 0.86]). The 
test–retest ICCs for all regions of the atlas fell into the “excellent” 
range; however, a number of the regions had the lower confidence 
interval overlap with the “good” threshold (Table S6).
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3.7.2 | Radial diffusivity (RD)

Radial diffusivity has been previously used as a proxy measure for 
myelin damage or demyelination. In our study, we found the measure 
to be, on average, of “good” to “excellent” reliability (M = 0.84, 95% 
CI [0.73, 0.90]). The forceps major, also known as the posterior for-
ceps, was the white matter fiber bundle with the highest RD reliabil-
ity (ICC = 0.94, 95% CI [0.90, 0.97]). The right hippocampal cingulum 
bundle had the lowest scan–rescan reliability (ICC = 0.69, 95% CI 
[0.52, 0.81]). Of note, the lower confidence interval around the ICC 
was “fair” for five white matter tracts (Table S7).

3.7.3 | Mean diffusivity (MD)

Mean diffusivity summarizes the average diffusion properties of a 
voxel and can be sensitive to pathology such as edema and necro-
sis, among others. Overall, mean atlas-averaged ICCs were “good” 
to “excellent” (M = 0.81, 95% CI [0.69, 0.89]). Based on the lower CI 
bounds, six white matter tracts overlap with the “fair” reliability clas-
sification (Table S8). Among those are the bilateral cingulum bundles 
surrounding the hippocampus (left; ICC = 0.65, 95% CI [0.46, 0.79], 
right; ICC =  0.63, 95% CI [0.43, 0.77]) and the corticospinal tract 
(left; ICC = 0.69, 95% ICC [0.52, 0.81], right; ICC = 0.66, 95% CI [0.48, 
0.79]). Once again, the highest scan–rescan reliability was observed 
in the measurement of the forceps minor (ICC = 0.91, 95% CI [0.85, 
0.95]) and forceps major (ICC = 0.93, 95% CI [0.89, 0.96]).

3.7.4 | Axial diffusivity (AD)

Axial diffusivity measures water diffusion along the principal axis 
of diffusion and may be correlated with axonal injury. AD had the 
lowest average ICC of the DTI scalars in our study (M = 0.78, 95% 
CI [0.65, 0.87]). While the overall ICC can be classified as “good” to 

“excellent,” there is some regional variability of note (Table S9). The 
right hippocampal cingulum bundle had the lowest scan–rescan ICC, 
with the lower confidence interval crossing into the “poor” classifi-
cation (ICC = 0.53, 95% CI [0.30, 0.70]). Nevertheless, some regions 
stood out for their excellent scan–rescan reliability, such as the for-
ceps major (ICC = 0.93, 95% CI [0.88, 0.96]) and the bilateral ante-
rior thalamic radiation (left; ICC = 0.90, 95% CI [0.84, 0.94], right; 
ICC = 0.90, 95% CI [0.83, 0.94]).

4  | DISCUSSION

In this paper, we report the reliability of nine MRI-derived measures 
of cortical and white matter morphology and integrity based on 100 
scans from 50 youth. Despite the high prevalence of anxiety and 
ADHD disorders in our young sample, we found good to excellent 
reliability for all measures. White matter volume was most consist-
ently reconstructed with a scan–rescan ICC of 0.98 averaged across 
the white matter atlas. Axial diffusivity was the least reliable, with 
an average ICC of 0.78 across scan sessions. We also observed re-
gional variability in reconstruction, with many structures showing 
excellent stability across measures, and some showing poor to fair 
reconstruction. This analysis might be of particular interest for hy-
pothesis driven studies focusing on select regions of interest, and for 
exploratory and predictive multivariate studies to cross reference 
the pattern of findings to their reported reliability distributions.

The excellent reliability of gray matter measures should be in-
terpreted in the context of prior work. While the reliability of func-
tional MRI data in youth has received some attention (Thomason 
et al., 2011; Vetter et al., 2017), literature examining the reliability of 
structural MRI data remains sparse. Therefore, we interpret the con-
sistency of our data by comparing it to similar work in adult samples. 
Iscan and colleagues (Iscan et al., 2015) reported a comparable anal-
ysis to ours. Their study included 40 healthy controls (age 18–65), 
scanned twice, whose MRI images were processed in FreeSurfer. 

F I G U R E  2  Scan–rescan reliability of 
diffusion tensor imaging (DTI) measures
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Overall, 25 individuals passed their thorough quality control. In the 
approved scans, reported ICCs for cortical thickness/ surface area/ 
volume were 0.81, 0.87, and 0.88; remarkably similar to our values 
of 0.82, 0.89, and 0.90. The closeness of these values carries two 
messages: (i) It is possible to collect highly reliable MRI data from 
young people with anxiety and/or ADHD, and (ii) after proper quality 
control, the reliability can compare to that attained from scans of 
healthy adults.

We extended our gray matter analysis to investigate the reli-
ability of cortical folding (LGI), an important neurodevelopmental 
marker that is essential to the optimization of axonal wiring and the 
functional organization of the brain (Klyachko & Stevens, 2003). 
With an ICC of 0.85, cortical folding was of excellent reliability, 
ranking between measures of cortical thickness and cortical surface 
area. Cortical folding reliability was slightly lower than what was re-
ported (ICC = 0.94) in a recent paper (Madan & Kensinger, 2017). 
The difference can be attributed to several factors, as the prior work 
focused on healthy adults who were scanned either 10 times or with 
a sequence specifically optimized for brain morphology research. To 
our knowledge, the current study is the first to report on the reliabil-
ity of this morphological measure in a pediatric risk sample.

Out of all the cortical gray matter measures, cortical thickness 
had the lowest ICC overall and had the most structures categorized 
to be of poor reliability based on their lower bound confidence in-
terval. The average thickness of the cortical mantle is 2.5 mm (Fischl 
& Dale, 2000) which is close to the 1 mm spatial resolution of most 
scan sequences. Thereby cortical thickness measurements may be 
particularly sensitive to motion artifacts even in high-quality data 
(Alexander-Bloch et al., 2016).

The structures with the least reliable cortical thickness recon-
structions were the temporal pole, frontal pole, medial orbitofron-
tal gyrus, and the entorhinal cortex. The temporal and frontal poles 
also exhibited reduced reconstruction consistency in analysis of gray 
matter volume and surface area, and are known to be problematic in 
the literature (Klapwijk et al., 2019). The medial orbitofrontal gyrus 
and entorhinal cortex are localized to the inferior aspect of the brain, 
and their location makes them particularly affected by susceptibil-
ity gradients from air-filled cavities, the bone–tissue interface, and 
orbital artifacts. However, the orbitofrontal and entorhinal cortices 
are both essential to fundamental aspects of memory and cognition 
and have been implicated in a wide range of disorders (Baiano et al., 
2008; Rolls & Grabenhorst, 2008). Our results suggest the need for 
stringent quality control and adequately powered samples in future 
studies of the cortical thickness of these areas.

In contrast, white matter volume had the highest reconstruc-
tion reliability in our study. The near-perfect ICC, both regionally 
and overall, makes the measure particularly suitable for longitudinal 
research. However, the assessment of white matter microstructure 
with diffusion tensor imaging (DTI) was more variable. DTI is widely 
used to infer white matter microstructure, structural connectivity, 
and axonal health. Our results ranged from good to excellent (ICC 
0.78–0.88) for the four DTI measures, with axial diffusivity (AD) 
being the least reliable and fractional anisotropy (FA) the most 

reliable. This mirrors the relative interest attained for these mea-
sures in the research community. AD may be a correlate of axonal 
injury (Budde, Xie, Cross, & Song, 2009); however, the measure 
is less widely used than FA which has been the most popular cor-
relate of white matter integrity (Soares, Marques, Alves, & Sousa, 
2013). Regionally, none of the lower confidence intervals for FA ICCs 
crossed below the good into the fair or poor classification.

Across all DTI measures, the only region with the lower bound 
confidence interval in the poor classification was the hippocampal 
cingulum bundle. This white matter tract, along with the cingulum 
cingulate bundle, had the lowest scan–rescan reliability estimates 
for AD, MD, and RD. The cingulum bundle is a large white matter 
tract interconnecting the frontal, parietal, medial temporal, and 
other areas and has been implicated in a spectrum of neuropsychi-
atric disorders (Bubb, Metzler-Baddeley, & Aggleton, 2018). Its size 
and midline positioning might make it particularly susceptible to mo-
tion artifacts and spatial misregistration errors, and thus, a similar 
warning akin to low reliability areas of cortical thickness applies here 
as well.

Lower scan–rescan reliability also applied to the corticospinal 
tract. Interpreting these findings in the context of prior research 
might be illuminating. Investigations of the underlying reliability of 
white matter measures in pediatric samples have mainly been re-
stricted to small samples, specific illness, or a limited number of 
white matter tracts (Alhamud, Taylor, Laughton, Kouwe, & Meintjes, 
2015; Bonekamp et al., 2007; Carlson et al., 2014). However, a re-
cent paper has examined FA reliability in a well-powered sample 
comprising of both an adult and an adolescent group (Acheson et al., 
2017). Similar to our results, the authors found that in adolescents, 
the lowest reliability was observed in the corticospinal tract. This 
observation held in adults, signifying low reliability of the cortico-
spinal tract across development. The corticospinal tract is a white 
matter motor pathway, and thus, the reliability concerns might not 
be immediately relevant to psychiatric research.

Lastly, our structural MRI reliability estimates were higher than 
those reported in functional MRI literature. An early account pro-
vided the first empirical evidence of the longitudinal reliability of 
resting state fMRI in children (Thomason et al., 2011). The authors 
obtained positive ICC values for the majority of brain voxels, indi-
cating stability within participants across measurements. The first 
group to investigate the reliability of resting state fMRI in clinical 
developing groups observed fair (>0.40) to good (>0.70) ICC in the 
short term (Somandepalli et al., 2015). The authors noted higher ICC 
in typically developing children compared to those with ADHD. A 
more recent report examined reliability in adolescent fMRI within 
a 2-year period (Vetter et al., 2017). The investigators found both 
variability and stability, with the reliability results dependent on 
task domain and region of interest. For example, whole-brain ICC 
was lower (0.44) in cognitive control paradigms and higher (0.74) in 
reward paradigms. There was great variability across regions of in-
terest, with ICCs ranging from poor (0.19) to excellent (0.84). Two re-
cent meta-analyses suggest that even these modest fMRI reliability 
values are potentially optimistic.
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One meta-analysis examined a decade of test–retest reliability 
work surrounding functional connectivity. The authors concluded 
that most functional connections exhibited “poor” ICC of 0.29 (95% 
CI [0.23, 0.36]; Noble, Scheinost, & Constable, 2019). Another re-
cent meta-analysis examined test–retest reliability of common task-
based fMRI measures (Elliott et al., 2020). Echoing the previously 
mentioned findings, their work revealed poor to fair overall reliabil-
ity (ICC = 0.40) across 90 studies. However, it is worth noting that 
contrasting the reliability of structural and functional MRI is not an 
apples-to-apples comparison. The excellent structural reliability we 
report in this manuscript is based on the consistent reconstruction 
of a priori anatomically defined regions. Functional reliability deals 
with spatial, temporal, and frequency domains that often try to map 
onto fluid brain processes. Nevertheless, the discrepancy between 
the two modalities is worth acknowledging as it can have practical 
applications, such as sample size requirements for biomarker discov-
ery (Elliott et al., 2020).

4.1 | Limitations

There are several limitations to this study. Sample size is of con-
cern, not in respect to accurately estimating reliability but to 
problems of scale. Our approach of manual ratings for raw data 
followed by automated quality assessment for processed data 
can become resource intensive for large-scale projects, such as 
the modern biobanks collecting tens of thousands of scans. Our 
relatively small number of excluded scans would grow substan-
tially in those samples and could potentially vary between groups 
of interest, for example, those with or without psychopathology. 
Nevertheless, this is actively being addressed with behavioral in-
terventions before or during scanning, with optimized sequences 
utilizing prospective motion correction, as well as at the study de-
sign phase with oversampling of at-risk youth.

We were also restricted to a single scan site, and data were 
acquired on the same scanner at all time points. In our study, we 
found that results generalized to the same scanner over a year later 
(Table  S10). However, large collaborative efforts are often made 
possible by acquisitions on scanners from different manufactur-
ers at sites that may be continents apart (Thompson et al., 2014). 
This can increase variability that confounds the effects of interest. 
Nevertheless, these challenges are being overcome with the stan-
dardization of scanning parameters and statistical techniques that 
correct for site differences (Chen et al., 2014). Lastly, beyond site 
differences, variations in data analysis methods are more likely to 
have a stronger effect on neuroimaging results, but are also being 
addressed (Nichols et al., 2017).

Another limitation is our choice of parcellation scheme for as-
sessing regional reliability of cortical areas and white matter tracts. 
The construction of an accurate map of the major subdivisions of 
the human brain is a century-old endeavor with an accompanying 
and equally long debate on what constitutes a boundary. There are 
other parcellations than the one used in this paper that are more 

biologically grounded, accounting for cortical architecture, topog-
raphy, and functional connectivity (Glasser et al., 2016). However, 
given that it is impossible to exhaustively test each parcellation, we 
decided to focus on those most likely to be commonly used in the 
field. The Desikan atlas has over 5,000 citations on PubMed, and the 
JHU atlas has almost 2,000. They come default or preinstalled with 
commonly used MRI software, including FreeSurfer and FSL, respec-
tively. Thus, these atlases are the starting point for a great number 
of neuroimaging researchers and a basis of comparison for those on 
the cutting edge who choose to use newer or custom parcellations.

5  | CONCLUSIONS

In conclusion, while researchers should be cognizant of regional vari-
ability in reconstruction, pediatric MRI brain data are highly reliable 
overall. Furthermore, the high reliability was established in youth at 
risk for mental illness or those already affected by anxiety and neu-
rodevelopmental disorders. This bodes well for work investigating 
the neurodevelopmental markers of mental illness at an early stage, 
before medication, drug use, and other confounds take a persistent 
toll on the brain. Confidence in the data quality of high-risk youth 
samples is also a prerequisite for improved diagnosis and develop-
ment of personalized prevention strategies based on brain markers.

ACKNOWLEDG MENTS
The authors would like to thank the participating families and ac-
knowledge the contributions of the FORBOW research team (see 
http://www.forbow.org). We would also like to thank Anna Minarik 
and Anna Nazarova for their help in the lab.

CONFLIC T OF INTERE S T
None of the authors have any conflicts of interest to declare.

AUTHOR CONTRIBUTIONS
V. Drobinin, M. Schmidt, C. Bowen, and R. Uher designed the study. 
V. Drobinin, H. Van Gestel, C. Helmick, and R. Uher acquired the 
data, which V. Drobinin and R. Uher analyzed. V. Drobinin wrote the 
article, which all authors reviewed. All authors approved the final 
version to be published and can certify that no other individuals not 
listed as authors have made substantial contributions to the paper.

DATA AVAIL ABILIT Y S TATEMENT
The data that support the findings of this study are openly available 
in Zenodo at https://doi.org/10.5281/zenodo.3627320 (Drobinin, 
2020).

ORCID
Vladislav Drobinin   https://orcid.org/0000-0003-4018-6850 
Carl A. Helmick   https://orcid.org/0000-0002-1389-968X 
Matthias H. Schmidt   https://orcid.org/0000-0001-5356-780X 
Chris V. Bowen   https://orcid.org/0000-0002-2390-0453 
Rudolf Uher   https://orcid.org/0000-0002-2998-0546 

http://www.forbow.org
https://doi.org/10.5281/zenodo.3627320
https://orcid.org/0000-0003-4018-6850
https://orcid.org/0000-0003-4018-6850
https://orcid.org/0000-0002-1389-968X
https://orcid.org/0000-0002-1389-968X
https://orcid.org/0000-0001-5356-780X
https://orcid.org/0000-0001-5356-780X
https://orcid.org/0000-0002-2390-0453
https://orcid.org/0000-0002-2390-0453
https://orcid.org/0000-0002-2998-0546
https://orcid.org/0000-0002-2998-0546


     |  9 of 10DROBININ et al.

R E FE R E N C E S
Acheson, A., Wijtenburg, S. A., Rowland, L. M., Winkler, A., Mathias, C. 

W., Hong, L. E., … Dougherty, D. M. (2017). Reproducibility of tract-
based white matter microstructural measures using the ENIGMA-DTI 
protocol. Brain and Behavior, 7(2), e00615. https://doi.org/10.1002/
brb3.615

Alexander, L. M., Escalera, J., Ai, L., Andreotti, C., Febre, K., Mangone, 
A., … Milham, M. P. (2017). An open resource for transdiagnostic 
research in pediatric mental health and learning disorders. Scientific 
Data, 4(1), 170181. https://doi.org/10.1038/sdata.2017.181

Alexander-Bloch, A., Clasen, L., Stockman, M., Ronan, L., Lalonde, F., 
Giedd, J., & Raznahan, A. (2016). Subtle in-scanner motion biases au-
tomated measurement of brain anatomy from in vivo MRI: Motion 
Bias in Analyses of Structural MRI. Human Brain Mapping, 37(7), 
2385–2397. https://doi.org/10.1002/hbm.23180

Alhamud, A., Taylor, P. A., Laughton, B., van der Kouwe, A. J. W., & 
Meintjes, E. M. (2015). Motion artifact reduction in pediatric dif-
fusion tensor imaging using fast prospective correction: Motion 
Artifact Reduction in Pediatric DTI. Journal of Magnetic Resonance 
Imaging, 41(5), 1353–1364. https://doi.org/10.1002/jmri.24678

Baiano, M., Perlini, C., Rambaldelli, G., Cerini, R., Dusi, N., Bellani, M., … 
Brambilla, P. (2008). Decreased entorhinal cortex volumes in schizo-
phrenia. Schizophrenia Research, 102(1–3), 171–180.

Bonekamp, D., Nagae, L. M., Degaonkar, M., Matson, M., Abdalla, W. M. 
A., Barker, P. B., … Horská, A. (2007). Diffusion tensor imaging in chil-
dren and adolescents: Reproducibility, hemispheric, and age-related 
differences. NeuroImage, 34(2), 733–742.

Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingu-
lum bundle: Anatomy, function, and dysfunction. Neuroscience & 
Biobehavioral Reviews, 92, 104–127. https://doi.org/10.1016/j.neubi​
orev.2018.05.008

Budde, M. D., Xie, M., Cross, A. H., & Song, S.-K. (2009). Axial diffusiv-
ity is the primary correlate of axonal injury in the experimental au-
toimmune encephalomyelitis spinal cord: A quantitative pixelwise 
analysis. Journal of Neuroscience, 29(9), 2805–2813. https://doi.
org/10.1523/JNEUR​OSCI.4605-08.2009

Carlson, H. L., Laliberté, C., Brooks, B. L., Hodge, J., Kirton, A., Bello-
Espinosa, L., … Sherman, E. M. S. (2014). Reliability and variability 
of diffusion tensor imaging (DTI) tractography in pediatric epi-
lepsy. Epilepsy & Behavior, 37, 116–122. https://doi.org/10.1016/j.
yebeh.2014.06.020

Casey, B. J., Cannonier, T., Conley, M. I., Cohen, A. O., Barch, D. M., 
Heitzeg, M. M., … Dale, A. M. (2018). The adolescent brain cogni-
tive development (ABCD) study: Imaging acquisition across 21 
sites. Developmental Cognitive Neuroscience, 32, 43–54. https://doi.
org/10.1016/j.dcn.2018.03.001

Chen, J., Liu, J., Calhoun, V. D., Arias-Vasquez, A., Zwiers, M. P., Gupta, C. 
N., … Turner, J. A. (2014). Exploration of scanning effects in multi-site 
structural MRI studies. Journal of Neuroscience Methods, 230, 37–50. 
https://doi.org/10.1016/j.jneum​eth.2014.04.023

Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for 
evaluating normed and standardized assessment instruments in 
psychology. Psychological Assessment, 6(4), 284–290. https://doi.
org/10.1037/1040-3590.6.4.284

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., 
Blacker, D., … Killiany, R. J. (2006). An automated labeling system 
for subdividing the human cerebral cortex on MRI scans into gyral 
based regions of interest. NeuroImage, 31(3), 968–980. https://doi.
org/10.1016/j.neuro​image.2006.01.021

Drobinin, V. (2020). Reliability of youth MRI data, code and analysis. 
Zenodo. https://doi.org/10.5281/zenodo.3627320

Ducharme, S., Albaugh, M. D., Nguyen, T.-V., Hudziak, J. J., Mateos-
Pérez, J., Labbe, A., … Brain Development Cooperative Group 
(2016). Trajectories of cortical thickness maturation in normal 

brain development–The importance of quality control procedures. 
NeuroImage, 125, 267–279.

Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, 
S., … Hariri, A. R. (2020). What is the test-retest reliability of common 
task-fMRI measures? New empirical evidence and a meta-analysis. 
BioRxiv, 681700. https://doi.org/10.1101/681700. https://www.
biorx​iv.org/conte​nt/10.1101/681700v3

Endicott, J., & Spitzer, R. L. (1978). A diagnostic interview: The sched-
ule for affective disorders and schizophrenia. Archives of General 
Psychiatry, 35(7), 837–844. https://doi.org/10.1001/archp​
syc.1978.01770​31004​3002

First, M. B. (2015). Structured clinical interview for the DSM (SCID). In R. 
L. Cautin, & S. O. Lilienfeld (Eds.), The encyclopedia of clinical psychol-
ogy (pp. 1–6). Hoboken, NJ: John Wiley & Sons, Inc. 

Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774–781. https://doi.
org/10.1016/j.neuro​image.2012.01.021

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human 
cerebral cortex from magnetic resonance images. Proceedings of the 
National Academy of Sciences of the United States of America, 97(20), 
11050–11055. https://doi.org/10.1073/pnas.20003​3797

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & 
Collins, D. L. (2011). Unbiased average age-appropriate atlases 
for pediatric studies. NeuroImage, 54(1), 313–327. https://doi.
org/10.1016/j.neuro​image.2010.07.033

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., 
Yacoub, E., … Van Essen, D. C. (2016). A multi-modal parcellation 
of human cerebral cortex. Nature, 536(7615), 171–178. https://doi.
org/10.1038/natur​e18933

Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., 
Andersson, J. L., … Jenkinson, M. (2013). The minimal preprocess-
ing pipelines for the Human Connectome Project. NeuroImage, 80, 
105–124. https://doi.org/10.1016/j.neuro​image.2013.04.127

Iscan, Z., Jin, T. B., Kendrick, A., Szeglin, B., Lu, H., Trivedi, M., … 
DeLorenzo, C. (2015). Test–retest reliability of freesurfer measure-
ments within and between sites: Effects of visual approval process. 
Human Brain Mapping, 36(9), 3472–3485. https://doi.org/10.1002/
hbm.22856

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & 
Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782–790. https://doi.
org/10.1016/j.neuro​image.2011.09.015

Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … 
Ryan, N. (1997). Schedule for affective disorders and schizophrenia 
for school-age children-present and lifetime version (K-SADS-PL): 
Initial reliability and validity data. Journal of the American Academy 
of Child and Adolescent Psychiatry, 36(7), 980–988. https://doi.
org/10.1097/00004​583-19970​7000-00021

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & 
Walters, E. E. (2005). Lifetime prevalence and age-of-onset dis-
tributions of DSM-IV disorders in the national comorbidity survey 
replication. Archives of General Psychiatry, 62(6), 593. https://doi.
org/10.1001/archp​syc.62.6.593

Kim-Cohen, J., Caspi, A., Moffitt, T. E., Harrington, H., Milne, B. J., & 
Poulton, R. (2003). Prior juvenile diagnoses in adults with mental 
disorder: Developmental follow-back of a prospective-longitudi-
nal cohort. Archives of General Psychiatry, 60(7), 709. https://doi.
org/10.1001/archp​syc.60.7.709

Klapwijk, E. T., van de Kamp, F., van der Meulen, M., Peters, S., & 
Wierenga, L. M. (2019). Qoala-T: A supervised-learning tool for qual-
ity control of FreeSurfer segmented MRI data. NeuroImage, 189, 116–
129. https://doi.org/10.1016/j.neuro​image.2019.01.014

Klyachko, V. A., & Stevens, C. F. (2003). Connectivity optimization and 
the positioning of cortical areas. Proceedings of the National Academy 
of Sciences of the United States of America, 100(13), 7937–7941. 
https://doi.org/10.1073/pnas.09327​45100

https://doi.org/10.1002/brb3.615
https://doi.org/10.1002/brb3.615
https://doi.org/10.1038/sdata.2017.181
https://doi.org/10.1002/hbm.23180
https://doi.org/10.1002/jmri.24678
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1016/j.neubiorev.2018.05.008
https://doi.org/10.1523/JNEUROSCI.4605-08.2009
https://doi.org/10.1523/JNEUROSCI.4605-08.2009
https://doi.org/10.1016/j.yebeh.2014.06.020
https://doi.org/10.1016/j.yebeh.2014.06.020
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.dcn.2018.03.001
https://doi.org/10.1016/j.jneumeth.2014.04.023
https://doi.org/10.1037/1040-3590.6.4.284
https://doi.org/10.1037/1040-3590.6.4.284
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.1016/j.neuroimage.2006.01.021
https://doi.org/10.5281/zenodo.3627320
https://doi.org/10.1101/681700
https://www.biorxiv.org/content/10.1101/681700v3
https://www.biorxiv.org/content/10.1101/681700v3
https://doi.org/10.1001/archpsyc.1978.01770310043002
https://doi.org/10.1001/archpsyc.1978.01770310043002
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1073/pnas.200033797
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.1016/j.neuroimage.2010.07.033
https://doi.org/10.1038/nature18933
https://doi.org/10.1038/nature18933
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1002/hbm.22856
https://doi.org/10.1002/hbm.22856
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1097/00004583-199707000-00021
https://doi.org/10.1097/00004583-199707000-00021
https://doi.org/10.1001/archpsyc.62.6.593
https://doi.org/10.1001/archpsyc.62.6.593
https://doi.org/10.1001/archpsyc.60.7.709
https://doi.org/10.1001/archpsyc.60.7.709
https://doi.org/10.1016/j.neuroimage.2019.01.014
https://doi.org/10.1073/pnas.0932745100


10 of 10  |     DROBININ et al.

Koo, T. K., & Li, M. Y. (2016). A guideline of selecting and reporting in-
traclass correlation coefficients for reliability research. Journal of 
Chiropractic Medicine, 15(2), 155–163. https://doi.org/10.1016/j.
jcm.2016.02.012

MacKenzie, L. E., Patterson, V. C., Zwicker, A., Drobinin, V., Fisher, H. 
L., Abidi, S., … Uher, R. (2017). Hot and cold executive functions 
in youth with psychotic symptoms. Psychological Medicine, 47(16), 
2844–2853. https://doi.org/10.1017/S0033​29171​7001374

Madan, C. R., & Kensinger, E. A. (2017). Test–retest reliability of brain 
morphology estimates. Brain Informatics, 4(2), 107–121. https://doi.
org/10.1007/s4070​8-016-0060-4

Mori, S., Wakana, S., van Zijl, P. C. M., & Nagae-Poetscher, L. M. (2005). 
MRI atlas of human white matter. Amsterdam, the Netherlands: 
Elsevier.

Nichols, T. E., Das, S., Eickhoff, S. B., Evans, A. C., Glatard, T., Hanke, 
M., … Yeo, B. T. T. (2017). Best practices in data analysis and shar-
ing in neuroimaging using MRI. Nature Neuroscience, 20(3), 299–303. 
https://doi.org/10.1038/nn.4500

Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-re-
test reliability of functional connectivity: A systematic review and 
meta-analysis. NeuroImage, 203, 116157. https://doi.org/10.1016/j.
neuro​image.2019.116157

Rasic, D., Hajek, T., Alda, M., & Uher, R. (2014). Risk of mental illness in 
offspring of parents with schizophrenia, bipolar disorder, and major 
depressive disorder: A meta-analysis of family high-risk studies. 
Schizophrenia Bulletin, 40(1), 28–38. https://doi.org/10.1093/schbu​
l/sbt114

Reuter, M., Tisdall, M. D., Qureshi, A., Buckner, R. L., van der Kouwe, A. 
J. W., & Fischl, B. (2015). Head motion during MRI acquisition re-
duces gray matter volume and thickness estimates. NeuroImage, 107, 
107–115. https://doi.org/10.1016/j.neuro​image.2014.12.006

Rolls, E. T., & Grabenhorst, F. (2008). The orbitofrontal cortex and be-
yond: From affect to decision-making. Progress in Neurobiology, 86(3), 
216–244. https://doi.org/10.1016/j.pneur​obio.2008.09.001

RStudio Team (2019). RStudio: Integrated development environment for R. 
Retrieved from http://www.rstud​io.com/

Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J.-P. 
(2008). A surface-based approach to quantify local cortical gyrifica-
tion. IEEE Transactions on Medical Imaging, 27(2), 161–170. https://doi.
org/10.1109/TMI.2007.903576

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's 
guide to diffusion tensor imaging. Frontiers in Neuroscience, 7, 31. 
https://doi.org/10.3389/fnins.2013.00031

Somandepalli, K., Kelly, C., Reiss, P. T., Zuo, X.-N., Craddock, R. C., Yan, C.-
G., … Di Martino, A. (2015). Short-term test–retest reliability of rest-
ing state fMRI metrics in children with and without attention-deficit/
hyperactivity disorder. Developmental Cognitive Neuroscience, 15, 
83–93. https://doi.org/10.1016/j.dcn.2015.08.003

Thomason, M. E., Dennis, E. L., Joshi, A. A., Joshi, S. H., Dinov, I. D., 
Chang, C., … Gotlib, I. H. (2011). Resting-state fMRI can reliably map 

neural networks in children. NeuroImage, 55(1), 165–175. https://doi.
org/10.1016/j.neuro​image.2010.11.080

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. 
A., Renteria, M. E., … Alzheimer's Disease Neuroimaging Initiative, 
EPIGEN Consortium, IMAGEN Consortium, Saguenay Youth Study 
(SYS) Group (2014). The ENIGMA Consortium: Large-scale collab-
orative analyses of neuroimaging and genetic data. Brain Imaging 
and Behavior, 8(2), 153–182. https://doi.org/10.1007/s1168​
2-013-9269-5

Uher, R., Cumby, J., MacKenzie, L. E., Morash-Conway, J., Glover, J. 
M., Aylott, A., … Alda, M. (2014). A familial risk enriched cohort as 
a platform for testing early interventions to prevent severe mental 
illness. BMC Psychiatry, 14(1), 344. https://doi.org/10.1186/s1288​
8-014-0344-2

Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence 
of head motion on intrinsic functional connectivity MRI. NeuroImage, 
59(1), 431–438. https://doi.org/10.1016/j.neuro​image.2011.07.044

Vetter, N. C., Steding, J., Jurk, S., Ripke, S., Mennigen, E., & Smolka, M. 
N. (2017). Reliability in adolescent fMRI within two years – A com-
parison of three tasks. Scientific Reports, 7(1), 1–11. https://doi.
org/10.1038/s4159​8-017-02334​-7

Wechsler, D. (2011). WASI-II: Wechsler abbreviated scale of intelligence. 
San Antonio, TX: PsychCorp.

White, N., Roddey, C., Shankaranarayanan, A., Han, E., Rettmann, D., 
Santos, J., … Dale, A. (2010). PROMO: real-time prospective motion 
correction in MRI using image-based tracking. Magnetic Resonance in 
Medicine: An Official Journal of the International Society for Magnetic 
Resonance in Medicine, 63(1), 91–105.

Wolak, M. E., Fairbairn, D. J., & Paulsen, Y. R. (2012). Guidelines for esti-
mating repeatability. Methods in Ecology and Evolution, 3(1), 129–137.

Zwicker, A., MacKenzie, L. E., Drobinin, V., Bagher, A. M., Howes Vallis, 
E., Propper, L., … Uher, R. (2019). Neurodevelopmental and genetic 
determinants of exposure to adversity among youth at risk for men-
tal illness. Journal of Child Psychology and Psychiatry. https://doi.
org/10.1111/jcpp.13159

SUPPORTING INFORMATION
Additional supporting information may be found online in the 
Supporting Information section.

How to cite this article: Drobinin V, Van Gestel H, Helmick CA, 
Schmidt MH, Bowen CV, Uher R. Reliability of multimodal MRI 
brain measures in youth at risk for mental illness. Brain Behav. 
2020;10:e01609. https://doi.org/10.1002/brb3.1609

https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1016/j.jcm.2016.02.012
https://doi.org/10.1017/S0033291717001374
https://doi.org/10.1007/s40708-016-0060-4
https://doi.org/10.1007/s40708-016-0060-4
https://doi.org/10.1038/nn.4500
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1016/j.neuroimage.2019.116157
https://doi.org/10.1093/schbul/sbt114
https://doi.org/10.1093/schbul/sbt114
https://doi.org/10.1016/j.neuroimage.2014.12.006
https://doi.org/10.1016/j.pneurobio.2008.09.001
http://www.rstudio.com/
https://doi.org/10.1109/TMI.2007.903576
https://doi.org/10.1109/TMI.2007.903576
https://doi.org/10.3389/fnins.2013.00031
https://doi.org/10.1016/j.dcn.2015.08.003
https://doi.org/10.1016/j.neuroimage.2010.11.080
https://doi.org/10.1016/j.neuroimage.2010.11.080
https://doi.org/10.1007/s11682-013-9269-5
https://doi.org/10.1007/s11682-013-9269-5
https://doi.org/10.1186/s12888-014-0344-2
https://doi.org/10.1186/s12888-014-0344-2
https://doi.org/10.1016/j.neuroimage.2011.07.044
https://doi.org/10.1038/s41598-017-02334-7
https://doi.org/10.1038/s41598-017-02334-7
https://doi.org/10.1111/jcpp.13159
https://doi.org/10.1111/jcpp.13159
https://doi.org/10.1002/brb3.1609

