
Brain and Behavior. 2020;10:e01609.	 		 	 | 	1 of 10
https://doi.org/10.1002/brb3.1609

wileyonlinelibrary.com/journal/brb3

 

Received:	8	September	2019  |  Revised:	1	March	2020  |  Accepted:	3	March	2020
DOI: 10.1002/brb3.1609  

O R I G I N A L  R E S E A R C H

Reliability of multimodal MRI brain measures in youth at risk 
for mental illness

Vladislav Drobinin1,2  |   Holly Van Gestel2 |   Carl A. Helmick3  |    
Matthias H. Schmidt4  |   Chris V. Bowen4  |   Rudolf Uher1,2,3

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided the original work is properly cited.
©	2020	The	Authors. Brain and Behavior	published	by	Wiley	Periodicals	LLC.

1Department	of	Medical	Neuroscience,	
Dalhousie	University,	Halifax,	NS,	Canada
2Nova	Scotia	Health	Authority,	Halifax,	NS,	
Canada
3Department	of	Psychiatry,	Dalhousie	
University,	Halifax,	NS,	Canada
4Department	of	Diagnostic	Radiology,	
Dalhousie	University,	Halifax,	NS,	Canada

Correspondence
Vladislav	Drobinin,	13E	-	5850	College	St.,	
Halifax,	NS	B3H	4H7,	Canada.
Email:	vlad.drobinin@dal.ca

Funding information
This project was supported by the 
Independent	Investigator	Award,	Brain	&	
Behavior	Research	Foundation	[Dr.	Uher;	
Grant number 24684]; the Canada Research 
Chairs	Program	[award	number	231397];	
the	Canadian	Institutes	of	Health	Research	
[Grant	reference	numbers	124976,	142738,	
and	148394],	the	Nova	Scotia	Health	
Authority,	the	Dalhousie	Medical	Research	
Foundation.	V.	Drobinin	is	supported	by	a	
doctoral graduate award from the Canadian 
Institutes	of	Health	Research	[CIHR	CGS-D;	
157975].	The	BIOTIC	imaging	facility	
has	received	funding	support	from	Brain	
Canada.

Abstract
Introduction: A	new	generation	of	large-scale	studies	is	using	neuroimaging	to	inves-
tigate	 adolescent	brain	development	 across	health	 and	disease.	However,	 imaging	
artifacts	such	as	head	motion	remain	a	challenge	and	may	be	exacerbated	in	pediatric	
clinical	samples.	In	this	study,	we	assessed	the	scan–rescan	reliability	of	multimodal	
MRI	in	a	sample	of	youth	enriched	for	risk	of	mental	illness.
Methods: We	obtained	 repeated	MRI	scans,	an	average	of	2.7	±	1.4	weeks	apart,	
from	50	youth	(mean	age	14.7	years,	SD	=	4.4).	Half	of	the	sample	(52%)	had	a	diagno-
sis	of	an	anxiety	disorder;	22%	had	attention-deficit/hyperactivity	disorder	(ADHD).	
We	quantified	reliability	with	the	test–retest	intraclass	correlation	coefficient	(ICC).
Results: Gray matter measurements were highly reliable with mean ICCs as follows: 
cortical	 volume	 (ICC	 =	 0.90),	 cortical	 surface	 area	 (ICC	 =	 0.89),	 cortical	 thickness	
(ICC	=	0.82),	and	local	gyrification	index	(ICC	=	0.85).	White	matter	volume	reliabil-
ity	was	excellent	(ICC	=	0.98).	Diffusion	tensor	imaging	(DTI)	components	were	also	
highly	reliable.	Fractional	anisotropy	was	most	consistently	measured	(ICC	=	0.88),	
followed	by	 radial	diffusivity	 (ICC	=	0.84),	mean	diffusivity	 (ICC	=	0.81),	 and	axial	
diffusivity	(ICC	=	0.78).	We	also	observed	regional	variability	in	reconstruction,	with	
some brain structures less reliably reconstructed than others.
Conclusions: Overall,	we	showed	that	developmental	MRI	measures	are	highly	reli-
able,	even	in	youth	at	risk	for	mental	illness	and	those	already	affected	by	anxiety	and	
neurodevelopmental	disorders.	Yet,	caution	is	warranted	if	patterns	of	results	cluster	
within regions of lower reliability.

K E Y W O R D S

developmental,	diffusion	tensor	imaging,	intraclass	correlation	coefficient,	local	gyrification	
index,	MRI,	reliability,	reproducibility,	youth

The peer review history for this article is available at https://publons.com/publon/10.1002/brb3.1609 

www.wileyonlinelibrary.com/journal/brb3
mailto:
https://orcid.org/0000-0003-4018-6850
https://orcid.org/0000-0002-1389-968X
https://orcid.org/0000-0001-5356-780X
https://orcid.org/0000-0002-2390-0453
https://orcid.org/0000-0002-2998-0546
http://creativecommons.org/licenses/by/4.0/
mailto:vlad.drobinin@dal.ca
https://publons.com/publon/10.1002/brb3.1609


2 of 10  |     DROBININ et al.

1  | INTRODUC TION

A	 new	 generation	 of	 large-scale	 studies	 (Alexander	 et	 al.,	 2017;	
Casey	et	al.,	2018)	is	using	neuroimaging	techniques	to	investigate	
adolescent brain development across health and disease. These tre-
mendous	 undertakings,	 often	 called	 “biobanks”	 for	 the	 wealth	 of	
biological	data	that	they	collect,	are	particularly	focused	on	mental	
health.	 A	 primary	 goal	 includes	 identifying	 developmental	 trajec-
tories of psychiatric illness which in turn might help improve early 
detection	 and	 guide	 intervention	 (Alexander	 et	 al.,	 2017;	 Casey	
et	al.,	2018).	Such	research	is	highly	valuable,	as	epidemiologic	stud-
ies	show	that	75%	of	psychiatric	disorders	begin	early	 in	the	 lifes-
pan,	prior	to	age	24	(Kessler	et	al.,	2005;	Kim-Cohen	et	al.,	2003).	
However,	 identifying	 clinically	 useful	 brain	 markers	 of	 illness,	 or	
“biomarkers,”	hinges	on	the	reliability	of	the	MRI	data.

Reliability is the ability of a measurement to provide consistent 
results	under	similar	circumstances.	Imaging	artifacts,	such	as	head	
motion,	 remain	 a	 challenge	 to	 reliability	 (Reuter	 et	 al.,	 2015),	 and	
there	are	concerns	that	measurement	error	may	be	exacerbated	in	
pediatric	 clinical	 samples	 (Ducharme	 et	 al.,	 2016).	 Functional	MRI	
studies	have	begun	to	address	within-subject	reliability	in	youth	as	
motion can have a profound effect on functional connectivity es-
timates	 (Van	Dijk,	 Sabuncu,	&	Buckner,	2012;	Vetter	et	 al.,	 2017).	
However,	a	 large	body	of	 imaging	 research	deals	with	brain	struc-
ture,	and	here	too	image	artifacts	are	of	concern.	It	has	been	shown	
that head motion in healthy volunteers can resemble cortical gray 
matter	atrophy	(Reuter	et	al.,	2015).	Children	and	adolescents	might	
be particularly sensitive to scanner noise and may have difficulty 
remaining	still	for	the	duration	of	the	sequences.	One	study	exam-
ining	pediatric	MRI	data	has	shown	that	low-quality	data	can	affect	
inferences regarding the developmental trajectories of cortical mat-
uration	(Ducharme	et	al.,	2016).	These	findings	necessitate	the	as-
sessment	of	the	reliability	of	MRI	data	 in	participants	who	are	not	
merely	undergoing	normal	development	but	are	also	showing	exter-
nalizing and internalizing symptoms or are at increased familial risk 
for	mental	illness	(Rasic,	Hajek,	Alda,	&	Uher,	2014).

In	 this	 study,	we	 assessed	 the	 scan–rescan	 reliability	 of	multi-
modal	MRI	 in	 a	 sample	 of	 youth	 at	 risk	 for	mental	 illness,	 includ-
ing	 those	 already	 experiencing	 psychopathology.	 We	 measured	
common structural imaging metrics reported in the literature and 
quantified regional reliability based on widely used brain atlases. We 
also compared the reliability of structural measures to published es-
timates from samples of healthy adults.

2  | MATERIAL S AND METHODS

2.1 | Participants

We	recruited	53	youth	(mean	age	14.7	years,	SD = 4.4) at familial risk 
for	mental	illness	from	FORBOW	study,	a	longitudinal	study	enriched	
for	 sons	and	daughters	of	parents	with	mental	 illness	 (Uher	et	al.,	
2014). Offspring at familial risk for mental illness and participants 

from	 control	 families	 were	 invited	 to	 complete	 the	 MRI	 study.	
Participants	 were	 scanned	 twice,	 an	 average	 of	 2.7	 ±	 1.4	 weeks	
apart.	Exclusion	criteria	were	personal	history	of	(i)	psychotic	illness,	
(ii)	any	serious	medical	or	neurologic	disorders,	or	(iii)	MRI	contrain-
dications.	The	study	protocol	was	approved	by	the	Research	Ethics	
Board	 of	 the	Nova	 Scotia	Health	Authority.	 Participants	 provided	
written	informed	consent.	For	children	who	did	not	have	capacity	to	
make	a	fully	informed	decision,	a	parent	or	guardian	provided	writ-
ten informed consent and the child provided assent.

2.2 | Parent assessment

We	 used	 the	 Schedule	 for	 Affective	Disorders	 and	 Schizophrenia	
(SADS-IV;	 Endicott	 &	 Spitzer,	 1978)	 and	 the	 Structured	 Clinical	
Interview	for	DSM-5	(SCID-5;	First,	2015)	to	establish	diagnoses	of	
mental	disorders	according	to	DSM-IV	and	DSM-5.

2.3 | Offspring assessment

Participating	 youth	 were	 interviewed	 using	 the	 Kiddie	 Schedule	
for	 Affective	 Disorders	 and	 Schizophrenia,	 Present	 and	 Lifetime	
Version	 (K-SADS-PL;	 Kaufman	 et	 al.,	 1997)	 by	 assessors	 blind	 to	
parent psychopathology. Diagnoses were confirmed in consensus 
meetings	with	a	psychiatrist.	Full-scale	intelligence	quotient	(FSIQ)	
was	assessed	using	the	Wechsler	Abbreviated	Scale	of	Intelligence	
(Wechsler,	2011).

2.4 | Socioeconomic status (SES)

Socioeconomic	status	was	captured	as	a	composite	variable	(range	
0–5)	 indexing:	 (i)	maternal	 and	 (ii)	 paternal	 levels	 of	 education	 (iii)	
family	 household	 annual	 income,	 (iv)	 ownership	 of	 primary	 resi-
dence,	and	(v)	ratio	of	bedrooms	to	residents	in	household,	as	previ-
ously	described	(MacKenzie	et	al.,	2017;	Zwicker	et	al.,	2019).	Higher	
numeric	value	reflects	higher	SES.

2.5 | MRI acquisition

Images	were	acquired	with	a	3T	General	Electric	Discovery	MR750	
scanner	equipped	with	a	32-channel	MR	Instruments	RF	head	coil.	
Scanning	took	place	at	the	Biomedical	Translational	Imaging	Centre	
(BIOTIC),	Halifax,	Nova	Scotia.	Each	participant	was	positioned	su-
pine	in	the	MRI	scanner	with	the	head	supported	by	foam	padding	
to	reduce	movement.	Earplugs	were	provided	to	minimize	scanner	
noise. We collected a 3D T1-weighted	(T1w)	Brain	Volume	imaging	
(BRAVO)	sequence	with	whole-brain	coverage,	1	mm3 isotropic res-
olution,	matrix	=	224	×	224,	field	of	view	(FOV)	=	224	mm,	168	sagit-
tal	slices	at	1	mm	thickness,	repetition	time	(TR)	=	5.9	ms,	echo	time	
(TE)	=	2.2	ms,	inversion	time	(TI)	=	450	ms,	flip	angle	=	12°,	receiver	
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bandwidth	=	±62.5,	number	of	excitations	(NEX)	=	2,	autocalibrating	
reconstruction	for	cartesian	 imaging	(ARC)	phase	acceleration	=	2,	
ARC	 slice	 acceleration	=	1,	 no	phase	wrap,	 scan	duration	=	5	min	
42 s.

In	 addition,	we	collected	a	T2-weighted	 fluid	 attenuated	 inver-
sion	 recovery	 (FLAIR)	 sequence	 using	 a	 T2	 prep	 contrast	 option	
(T2PREP)	with	identical	coverage,	resolution	and	acquisition	orienta-
tion	to	the	T1w	sequence,	TE	=	98	ms,	TR	=	5,100	ms,	TI	=	1,427	ms,	
echo	 train	 length	 (ETL)	 =	 250	 echoes,	 flip	 angle	 =	 90°,	 receiver	
bandwidth	=	±62.5	kHz,	NEX	=	1,	with	prospective	motion	correc-
tion	(PROMO)	enabled	(White	et	al.,	2010),	ARC	phase	=	2.5,	ARC	
slice	=	1,	scan	duration	=	5	min.

Whole-brain	 axial–oblique	 diffusion-weighted	 images	 were	
also	 acquired	 using	 a	 single-shot	 spin-echo	 EPI	 pulse	 sequence,	
gradient	directions	=	30,	b-value	=	1,000	s/mm2,	three	b = 0 im-
ages	 interleaved	 every	 15	 volumes,	 TR	 =	 8,000	 ms,	 TE	 =	 66.7,	
FOV	 =	 216	 mm,	 slice	 thickness	 =	 2	 mm,	 number	 of	 slices	 76,	
matrix	 =	 108	 ×	 108,	 voxel	 =	 23	 mm	 isotropic,	 receiver	 band-
width	=	±250	kHz,	ASSET	phase	acceleration	factor	=	2,	phase-en-
code	direction	=	AP,	scan	duration	=	4	min	32	s.	For	the	purposes	
of	 estimating	 and	 correcting	 susceptibility-induced	 distortions,	
we	 also	 acquired	 a	 second	 whole-brain	 axial–oblique	 diffu-
sion-weighted	sequence	with	matching	parameters	except	only	8	
volumes at b	=	0	and	with	opposite	phase-encoding	direction	=	PA,	
scan duration = 64 s.

2.6 | MRI processing

Scans	 were	 processed	 with	 the	 Human	 Connectome	 Project	
(HCP)	Minimal	 Preprocessing	Pipeline	 (Glasser	 et	 al.,	 2013).	 The	
HCP	 pipeline	 is	 a	 well-documented	 set	 of	 scripts	 developed	 to	
analyze	high-quality	multimodal	MRI	data.	 It	 leverages	 the	most	
widely	 used	 open-source	 MRI	 processing	 software:	 FreeSurfer	
6	 (RRID:SCR_001847)	 (Fischl,	 2012)	 and	 the	 FMRIB	 Software	
Library	(FSL,	RRID:SCR_002823)	(Jenkinson,	Beckmann,	Behrens,	
Woolrich,	&	Smith,	2012).	We	have	optimized	the	pipeline	for	our	
data by matching it to our acquisition parameters and by replac-
ing	 the	MNI	 template	with	 a	 pediatric	 template	 for	 registration.	
The modified pipeline is available and freely accessible on https://
github.com/GitDr	o/Youth	Relia	bilit	y/tree/maste	r/HCP_custom_
pipeline.	We	used	the	NIHPD	pediatric	atlas	(NIHPD	Objective	1	
atlases	[4.5–18.5	years],	RRID:SCR_008794)	(Fonov	et	al.,	2011)	to	
minimize registration bias in our developmental cohort. In order to 
measure	cortical	folding,	we	ran	the	local	gyrification	index	(LGI)	
analysis,	the	details	of	which	can	be	found	in	the	validation	paper	
(Schaer	 et	 al.,	 2008)	 and	 on	 the	 https://surfer.nmr.mgh.harva	
rd.edu/fswik	i/LGI.

For	 gray	matter	 reliability,	we	 examined	34	 cortical	 regions	 of	
interest	per	hemisphere	based	on	the	FreeSurfer	default	Desikan–
Killiany	 atlas	 (Desikan	 et	 al.,	 2006).	 Thus,	 we	 measured	 cortical	
gray	 matter	 volume,	 cortical	 surface	 area,	 cortical	 thickness,	 and	
LGI/cortical	 folding	 in	68	parcellations	per	 individual	 at	 each	 time	

point.	Quality	control	was	done	both	manually	early	in	the	process-
ing	 stream	 and	 later	 with	 an	 automated	 supervised-learning	 tool	
on	the	FreeSurfer	segmented	output.	Manual	quality	ratings	of	T1-
weighted and T2-weighted	 images	were	performed	by	authors	VD	
and	HVG.	Automated	quality	control	was	done	with	the	Qoala-T	tool	
(Klapwijk,	Kamp,	Meulen,	Peters,	&	Wierenga,	2019).	https://github.
com/Qoala	-T/QC	is	an	automated	machine	 learning	model	used	to	
classify	the	quality	of	FreeSurfer	output.	Six	scans	from	three	par-
ticipants	were	excluded	after	the	combined	quality	control	(largely	
due	to	excess	motion),	bringing	the	total	number	of	participants	in	
the	analysis	to	50.

For	white	matter	 reliability,	we	examined	white	matter	volume	
and	diffusion	tensor	imaging	(DTI)	metrics	based	on	the	20-structure	
JHU	DTI-based	white-matter	tractography	atlas	(Mori,	Wakana,	Zijl,	
&	Nagae-Poetscher,	2005).	Data	inclusion	required	absolute	and	rel-
ative	motion	to	be	under	one	and	a	half	times	the	voxel	size.	Briefly,	
the	processing	was	done	in	three	steps:	(i)	creating	binary	maps	of	
the	20	tracts	in	MNI152-space,	(ii)	registering	each	binary	map	into	
subject	 diffusion–space	 by	 combining	 and	 applying	 the	 nonlinear	
warps	from	MNI152	to	NIHPD	space,	and	NIHPD	space	to	subject	
T1-weighted	space,	and	the	rigid-body	linear	transform	from	subject	
T1-weighted	space	to	subject	diffusion–space,	(iii)	using	“fslstats”	to	
report	each	metric;	white	matter	volume,	fractional	anisotropy	(FA),	
mean	 diffusivity	 (MD),	 axial	 diffusivity	 (AD),	 and	 radial	 diffusivity	
(RD)	for	each	tract.

2.7 | Statistical analysis

We	 used	 RStudio	 (R	 Version	 3.6.2;	 RStudio	 version	 1.2.5033;	
RStudio	Team,	2019)	to	calculate	the	intraclass	correlation	coeffi-
cient	(ICC)	for	the	processed	scan–rescan	datasets.	Reliability	is	the	
ability of a measurement to provide consistent results under simi-
lar	 circumstances.	 Test–retest	 reliability	 assesses	 stability	 under	
repeated	tests,	quantifying	the	extent	to	which	measurements	can	
be	replicated.	The	ICC	indexes	both	correlation	and	agreement	be-
tween	measurements	 (Koo	&	Li,	2016)	and	 is	 commonly	used	 to	
quantify reliability. We wanted to capture the variation in meas-
urements	taken	by	MRI	and	introduced	in	postprocessing,	on	the	
same participant under the same conditions weeks apart. We used 
ICC	(1,1)	for	calculating	scan–rescan	reliability	implemented	in	the	
https://cran.rproj	ect.org/web/packa	ges/ICC/index.html	 (Version	
2.3.0;	Wolak,	Fairbairn,	&	Paulsen,	2012)	which	estimates	the	ICC	
and confidence intervals using the variance components form a 
one-way	 ANOVA.	We	 examined	 averaged	 ICC	 and	 the	 regional	
(parcellated)	ICC	for	all	measures	and	classified	reliability	accord-
ing	to	generally	defined	criteria	(Cicchetti,	1994):	poor	(<0.40),	fair	
(0.41–0.59),	 good	 (>0.59–0.74),	 and	 excellent	 (>0.74).	 The	 code,	
data	 and	 analysis,	 is	 available	 https://github.com/GitDr	o/Youth	
Relia bility in a reproducible R notebook. We also repeated the 
analysis	on	a	subsample	of	the	participants	scanned	again	twice,	
on	 average	 14	 months	 following	 their	 initial	 pair	 of	 scans	 (see	
Tables	S1–S10).

info:x-wiley/rrid/RRID:SCR_001847
info:x-wiley/rrid/RRID:SCR_002823
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
info:x-wiley/rrid/RRID:SCR_008794
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://github.com/Qoala-T/QC
https://github.com/Qoala-T/QC
https://cran.rproject.org/web/packages/ICC/index.html
https://github.com/GitDro/YouthReliability
https://github.com/GitDro/YouthReliability
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3  | RESULTS

3.1 | Demographic and clinical characteristics

We	present	 results	 from	100	scans	collected	 from	50	youth	 (64%	
female)	imaged	several	weeks	apart	(M	=	2.70,	SD = 1.36). The age 
range	was	9–25	years	old	(M	=	14.7,	SD = 4.4). The majority of the 
participants	have	a	family	history	of	mental	illness:	25	(50%)	with	a	
family	history	of	major	depressive	disorder,	13	(26%)	with	a	family	
history	of	bipolar	disorder,	and	2	(4%)	with	a	family	history	of	schizo-
phrenia.	Ten	participants	(20%)	were	recruited	from	control	families.	
A	large	proportion	of	the	scanned	youth	have	been	affected	by	men-
tal	 illness:	26	participants	 (52%)	had	been	diagnosed	with	an	anxi-
ety	 disorder,	 13	 (26%)	 had	 been	 diagnosed	with	major	 depressive	

disorder,	and	11	(22%)	have	had	a	diagnosis	of	attention-deficit/hy-
peractivity	disorder	(ADHD).

The	 sample	 was	 predominantly	 white	 (90%),	 with	 a	 minority	
(10%)	comprised	of	indigenous	and	black	youth.	The	composite	SES	
indicator	was	 normally	 distributed	 (M	 =	 3.1,	SD	 =	 1.31).	 Full-scale	
intelligence	quotient	(FSIQ)	for	the	sample	was	in	the	normal	range	
(M	=	103,	SD = 12.9).

3.2 | Cortical volume

We	observed	 “excellent”	 scan–rescan	 ICC	 for	 cortical	 gray	mat-
ter	 volume	 (M	 =	 0.90,	 95%	 CI	 [0.84,	 0.94])	 averaged	 across	 the	
Desikan	 atlas	 regions	 (Figure	 1a).	 The	 results	 were	 consistent	

F I G U R E  1  Reliability	of	cortical	gray	matter	measures.	Scan–rescan	reliability	of	Desikan–Killiany	regions.	Intraclass	correlation	
coefficient	(ICC)	values:	poor	(<0.40),	fair	(0.41–0.59),	good	(>0.59–0.74),	and	excellent	(>0.74).	(a)	Cortical	gray	matter	volume.	(b)	Cortical	
surface	area.	(c)	Cortical	thickness.	(d)	Local	gyrification	index
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across	the	left	hemisphere	(M	=	0.92,	95%	CI	[0.86,	0.95])	and	the	
right	hemisphere	(M	=	0.89,	95%	CI	[0.82,	0.93]).	As	indicated	by	
the	high	mean	ICC,	the	reliability	for	most	of	the	structures	(65	out	
of	68;	96%)	was	classified	as	“excellent.”	However,	there	was	some	
regional	 variation	 (Table	 S1).	 The	 left	 supramarginal	 gyrus	 vol-
ume	was	 the	most	 reliably	 reconstructed,	with	near-perfect	 ICC	
(ICC	=	0.99,	95%	CI	[0.98,	0.99]).	The	volume	of	the	left	temporal	
pole	was	 the	 least	 reliably	measured	 (ICC	 =	 0.47,	 95%	CI	 [0.23,	
0.66]),	with	 the	 ICC	dipping	 into	 the	 “fair”	 classification	 and	 the	
lower	bound	of	the	confidence	interval	crossing	the	“poor”	thresh-
old.	The	contralateral	right	temporal	pole	was	the	next	least	reli-
ably	measured	structure	(ICC	=	0.55,	95%	CI	[0.33,	0.72]).	The	only	
other	structure	with	a	designation	below	“excellent”	was	the	right	
frontal	pole,	for	which	the	ICC	was	only	“fair”	(ICC	=	0.58,	95%	CI	
[0.36,	0.74]).	Cortical	volume	is	a	composite	measure	comprised	of	
cortical	surface	area	and	cortical	thickness;	thus,	we	proceeded	to	
examine	the	reliability	of	its	components.

3.3 | Cortical surface area

Averaged	across	the	Desikan	atlas	regions,	the	ICC	for	cortical	sur-
face	area	(M	=	0.89,	95%	CI	[0.82,	0.93])	was	also	deemed	“excel-
lent”	overall	(Figure	1b).	Similar	degree	of	reliability	was	attained	
both	 in	 the	 left	 hemisphere	 (M	 =	 0.91,	 95%	CI	 [0.85,	 0.95])	 and	
the	right	hemisphere	(M	=	0.87,	95%	CI	[0.79,	0.92]).	Just	as	with	
the	 volumetric	 results,	 the	 left	 supramarginal	 gyrus	 showed	 the	
highest	 ICC	 (ICC	=	0.99,	95%	CI	 [0.98,	0.99]).	However,	 the	 ICCs	
for	12%	of	the	Desikan	regions	were	classified	as	“good”	or	“fair”	
(Table	S2).	The	bilateral	temporal	poles	were	the	least	reliably	re-
constructed	structures	(left;	ICC	=	0.65,	95%	CI	[0.45,	0.78],	right;	
ICC	 =	 0.47,	 95%	CI	 [0.23,	 0.66]).	 The	 frontal	 poles	 also	 showed	
lower	 ICCs	 than	most	 structures	 (left;	 ICC	=	0.69,	95%	CI	 [0.51,	
0.81],	 right;	 ICC	=	0.70,	95%	CI	 [0.53,	0.82]).	The	 left	 insula,	en-
torhinal	 cortex,	 and	 medial	 orbitofrontal	 cortex	 were	 classified	
as	“good”	with	respective	ICCs	of	0.72,	0.71,	0.64,	95%	CI	[0.55,	
0.83],	 [0.55,	 0.83],	 [0.45,	 0.78].	 Finally,	 the	 right	 caudal	 middle	
frontal	gyrus	ICC	confidence	interval	ranged	from	“fair”	to	“excel-
lent”	(ICC	=	0.70,	95%	CI	[0.53,	0.82]).

3.4 | Cortical thickness

Across	 the	Desikan	atlas,	 the	mean	 ICC	 for	cortical	 thickness	was	
“good”	to	“excellent”	(M	=	0.82,	95%	CI	[0.71,	0.89]).	The	results	were	
consistent	across	the	left	hemisphere	(M	=	0.83,	95%	CI	[0.73,	0.90])	
and	the	right	hemisphere	(M	=	0.81,	95%	CI	[0.69,	0.88]).	The	regional	
variability	was	more	apparent	than	for	other	measures	 (Figure	1c),	
with	 24%	of	 the	 atlas	 below	 the	 “excellent”	 reliability	 designation	
(Table	S3).	Cortical	thickness	reconstruction	was	most	reliable	in	the	
left	 superior	 frontal	 gyrus	 (ICC	=	0.95,	 95%	CI	 [0.91,	 0.97]).	Once	
again,	the	temporal	pole	reconstruction	was	least	reliable	bilaterally	
(left;	ICC	=	0.38,	95%	CI	[0.12,	0.60],	right;	ICC	=	0.41,	95%	CI	[0.16,	

0.62]).	Of	note,	two	additional	regions	had	the	lower	bound	of	the	
confidence	 interval	 cross	 into	 “poor”	 reliability.	 This	 included	 the	
right	entorhinal	cortex	(ICC	=	0.60,	95%	CI	[0.39,	0.75])	and	the	left	
medial	orbitofrontal	cortex	(ICC	=	0.56,	95%	CI	[0.34,	0.73]).

3.5 | Cortical folding (LGI)

We	also	found	“excellent”	scan–rescan	ICC	(M	=	0.85,	95%	CI	[0.75,	
0.91])	for	the	measurement	of	cortical	folding	(Figure	1d).	The	aver-
age	ICC	across	the	right	hemisphere	was	“excellent”	(M	=	0.85,	95%	
CI	[0.76,	0.91])	and	“good”	to	“excellent”	across	the	left	hemisphere	
(M	=	0.84,	95%	CI	 [0.74,	0.90]).	Regional	 reliability	was	 fairly	con-
sistent,	with	most	structures	displaying	 “excellent”	 reconstruction,	
and	 the	 rest	 (eight	 structures)	achieving	 “good”	 ICCs.	None	of	 the	
confidence	intervals	dipped	into	the	“poor”	classification	(Table	S4).	
Cortical folding reconstruction was most reliable in the right pre-
central	gyrus	(ICC	=	0.95,	95%	CI	[0.92,	0.97]).	As	expected	by	now,	
the	 bilateral	 frontal	 (left;	 ICC	 =	 0.62,	 95%	 CI	 [0.41,	 0.76],	 right;	
ICC	=	0.66,	95%	CI	[0.48,	0.79])	and	temporal	poles	(left;	ICC	=	0.63,	
95%	CI	[0.43,	0.77],	right;	 ICC	=	0.68	95%	CI	[0.50,	0.81])	had	the	
comparably lowest ICC estimates in measures of regional gyrifica-
tion.	 The	 gyrification	 measurement	 of	 entorhinal	 cortex	 was	 also	
among	the	least	reliable	(left;	ICC	=	0.65,	95%	CI	[0.45,	0.78],	right;	
ICC	=	0.71,	95%	CI	[0.54,	0.82]),	however,	still	“fair”	to	“excellent.”

3.6 | White matter volume

We observed remarkable reliability of white matter volume meas-
urements	 averaged	 across	 the	 JHU	 white-matter	 tractography	
atlas	 (M	 =	 0.98,	 95%	 CI	 [0.97,	 0.99]).	 Near-perfect	 reliability	 was	
observed in the reconstruction of the cingulum near the cingulate 
gyrus	(ICC	=	0.99,	95%	CI	[0.99,	1.00])	and	other	white	matter	tracts	
(Table	S5).	The	lowest	regional	reliability	was	observed	in	the	cingu-
lum	near	the	hippocampus	(ICC	=	0.96,	95%	CI	[0.93,	0.98]),	which	
was	nevertheless	categorized	as	“excellent.”

3.7 | Diffusion tensor imaging (DTI) measures

3.7.1 | Fractional anisotropy (FA)

Next,	we	examined	white	matter	FA,	which	is	often	used	to	index	mi-
crostructural	integrity.	Scan–rescan	ICCs	were	“excellent”	averaged	
across	the	JHU	atlas	(M	=	0.88,	95%	CI	[0.79,	0.93]),	Figure	2.	The	left	
superior longitudinal fasciculus was measured most reliably across 
scan	sessions	 (ICC	=	0.95,	95%	CI	 [0.91,	0.97]).	The	forceps	minor,	
also	known	as	the	anterior	forceps,	runs	bilaterally	and	had	the	low-
est	reliability	estimates	for	FA	(ICC	=	0.76,	95%	CI	[0.61,	0.86]).	The	
test–retest	 ICCs	for	all	 regions	of	 the	atlas	 fell	 into	the	“excellent”	
range;	however,	a	number	of	the	regions	had	the	lower	confidence	
interval	overlap	with	the	“good”	threshold	(Table	S6).
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3.7.2 | Radial diffusivity (RD)

Radial	diffusivity	has	been	previously	used	as	a	proxy	measure	for	
myelin	damage	or	demyelination.	In	our	study,	we	found	the	measure	
to	be,	on	average,	of	“good”	to	“excellent”	reliability	(M	=	0.84,	95%	
CI	[0.73,	0.90]).	The	forceps	major,	also	known	as	the	posterior	for-
ceps,	was	the	white	matter	fiber	bundle	with	the	highest	RD	reliabil-
ity	(ICC	=	0.94,	95%	CI	[0.90,	0.97]).	The	right	hippocampal	cingulum	
bundle	 had	 the	 lowest	 scan–rescan	 reliability	 (ICC	=	0.69,	 95%	CI	
[0.52,	0.81]).	Of	note,	the	lower	confidence	interval	around	the	ICC	
was	“fair”	for	five	white	matter	tracts	(Table	S7).

3.7.3 | Mean diffusivity (MD)

Mean	diffusivity	summarizes	 the	average	diffusion	properties	of	a	
voxel	and	can	be	sensitive	to	pathology	such	as	edema	and	necro-
sis,	 among	others.	Overall,	mean	atlas-averaged	 ICCs	were	 “good”	
to	“excellent”	(M	=	0.81,	95%	CI	[0.69,	0.89]).	Based	on	the	lower	CI	
bounds,	six	white	matter	tracts	overlap	with	the	“fair”	reliability	clas-
sification	(Table	S8).	Among	those	are	the	bilateral	cingulum	bundles	
surrounding	the	hippocampus	(left;	ICC	=	0.65,	95%	CI	[0.46,	0.79],	
right;	 ICC	=	 0.63,	 95%	CI	 [0.43,	 0.77])	 and	 the	 corticospinal	 tract	
(left;	ICC	=	0.69,	95%	ICC	[0.52,	0.81],	right;	ICC	=	0.66,	95%	CI	[0.48,	
0.79]).	Once	again,	the	highest	scan–rescan	reliability	was	observed	
in	the	measurement	of	the	forceps	minor	(ICC	=	0.91,	95%	CI	[0.85,	
0.95])	and	forceps	major	(ICC	=	0.93,	95%	CI	[0.89,	0.96]).

3.7.4 | Axial diffusivity (AD)

Axial	 diffusivity	measures	water	 diffusion	 along	 the	 principal	 axis	
of	diffusion	and	may	be	correlated	with	axonal	 injury.	AD	had	the	
lowest	average	ICC	of	the	DTI	scalars	 in	our	study	(M	=	0.78,	95%	
CI	[0.65,	0.87]).	While	the	overall	ICC	can	be	classified	as	“good”	to	

“excellent,”	there	is	some	regional	variability	of	note	(Table	S9).	The	
right	hippocampal	cingulum	bundle	had	the	lowest	scan–rescan	ICC,	
with	the	lower	confidence	interval	crossing	into	the	“poor”	classifi-
cation	(ICC	=	0.53,	95%	CI	[0.30,	0.70]).	Nevertheless,	some	regions	
stood	out	for	their	excellent	scan–rescan	reliability,	such	as	the	for-
ceps	major	(ICC	=	0.93,	95%	CI	[0.88,	0.96])	and	the	bilateral	ante-
rior	 thalamic	 radiation	 (left;	 ICC	=	0.90,	95%	CI	 [0.84,	0.94],	 right;	
ICC	=	0.90,	95%	CI	[0.83,	0.94]).

4  | DISCUSSION

In	this	paper,	we	report	the	reliability	of	nine	MRI-derived	measures	
of cortical and white matter morphology and integrity based on 100 
scans	 from	50	 youth.	Despite	 the	 high	 prevalence	 of	 anxiety	 and	
ADHD	disorders	 in	our	young	sample,	we	found	good	to	excellent	
reliability for all measures. White matter volume was most consist-
ently	reconstructed	with	a	scan–rescan	ICC	of	0.98	averaged	across	
the	white	matter	atlas.	Axial	diffusivity	was	the	least	reliable,	with	
an	average	ICC	of	0.78	across	scan	sessions.	We	also	observed	re-
gional	 variability	 in	 reconstruction,	with	many	 structures	 showing	
excellent	stability	across	measures,	and	some	showing	poor	to	fair	
reconstruction. This analysis might be of particular interest for hy-
pothesis	driven	studies	focusing	on	select	regions	of	interest,	and	for	
exploratory	 and	 predictive	multivariate	 studies	 to	 cross	 reference	
the pattern of findings to their reported reliability distributions.

The	excellent	 reliability	of	 gray	matter	measures	 should	be	 in-
terpreted	in	the	context	of	prior	work.	While	the	reliability	of	func-
tional	MRI	 data	 in	 youth	 has	 received	 some	 attention	 (Thomason	
et	al.,	2011;	Vetter	et	al.,	2017),	literature	examining	the	reliability	of	
structural	MRI	data	remains	sparse.	Therefore,	we	interpret	the	con-
sistency of our data by comparing it to similar work in adult samples. 
Iscan	and	colleagues	(Iscan	et	al.,	2015)	reported	a	comparable	anal-
ysis	to	ours.	Their	study	 included	40	healthy	controls	 (age	18–65),	
scanned	 twice,	 whose	MRI	 images	were	 processed	 in	 FreeSurfer.	

F I G U R E  2  Scan–rescan	reliability	of	
diffusion	tensor	imaging	(DTI)	measures
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Overall,	25	individuals	passed	their	thorough	quality	control.	In	the	
approved	scans,	reported	ICCs	for	cortical	thickness/	surface	area/	
volume	were	0.81,	0.87,	and	0.88;	remarkably	similar	to	our	values	
of	0.82,	0.89,	and	0.90.	The	closeness	of	 these	values	carries	 two	
messages:	 (i)	 It	 is	possible	 to	collect	highly	 reliable	MRI	data	 from	
young	people	with	anxiety	and/or	ADHD,	and	(ii)	after	proper	quality	
control,	 the	 reliability	 can	compare	 to	 that	 attained	 from	scans	of	
healthy adults.

We	 extended	 our	 gray	 matter	 analysis	 to	 investigate	 the	 reli-
ability	 of	 cortical	 folding	 (LGI),	 an	 important	 neurodevelopmental	
marker	that	is	essential	to	the	optimization	of	axonal	wiring	and	the	
functional	 organization	 of	 the	 brain	 (Klyachko	 &	 Stevens,	 2003).	
With	 an	 ICC	 of	 0.85,	 cortical	 folding	 was	 of	 excellent	 reliability,	
ranking between measures of cortical thickness and cortical surface 
area. Cortical folding reliability was slightly lower than what was re-
ported	 (ICC	=	0.94)	 in	 a	 recent	paper	 (Madan	&	Kensinger,	 2017).	
The	difference	can	be	attributed	to	several	factors,	as	the	prior	work	
focused on healthy adults who were scanned either 10 times or with 
a sequence specifically optimized for brain morphology research. To 
our	knowledge,	the	current	study	is	the	first	to	report	on	the	reliabil-
ity of this morphological measure in a pediatric risk sample.

Out	of	all	 the	cortical	gray	matter	measures,	cortical	 thickness	
had the lowest ICC overall and had the most structures categorized 
to be of poor reliability based on their lower bound confidence in-
terval.	The	average	thickness	of	the	cortical	mantle	is	2.5	mm	(Fischl	
&	Dale,	2000)	which	is	close	to	the	1	mm	spatial	resolution	of	most	
scan sequences. Thereby cortical thickness measurements may be 
particularly	 sensitive	 to	motion	 artifacts	 even	 in	 high-quality	 data	
(Alexander-Bloch	et	al.,	2016).

The structures with the least reliable cortical thickness recon-
structions	were	the	temporal	pole,	frontal	pole,	medial	orbitofron-
tal	gyrus,	and	the	entorhinal	cortex.	The	temporal	and	frontal	poles	
also	exhibited	reduced	reconstruction	consistency	in	analysis	of	gray	
matter	volume	and	surface	area,	and	are	known	to	be	problematic	in	
the	literature	(Klapwijk	et	al.,	2019).	The	medial	orbitofrontal	gyrus	
and	entorhinal	cortex	are	localized	to	the	inferior	aspect	of	the	brain,	
and their location makes them particularly affected by susceptibil-
ity	gradients	from	air-filled	cavities,	the	bone–tissue	interface,	and	
orbital	artifacts.	However,	the	orbitofrontal	and	entorhinal	cortices	
are both essential to fundamental aspects of memory and cognition 
and	have	been	implicated	in	a	wide	range	of	disorders	(Baiano	et	al.,	
2008;	Rolls	&	Grabenhorst,	2008).	Our	results	suggest	the	need	for	
stringent quality control and adequately powered samples in future 
studies of the cortical thickness of these areas.

In	 contrast,	 white	 matter	 volume	 had	 the	 highest	 reconstruc-
tion	 reliability	 in	 our	 study.	 The	 near-perfect	 ICC,	 both	 regionally	
and	overall,	makes	the	measure	particularly	suitable	for	longitudinal	
research.	However,	the	assessment	of	white	matter	microstructure	
with	diffusion	tensor	imaging	(DTI)	was	more	variable.	DTI	is	widely	
used	 to	 infer	white	matter	microstructure,	 structural	 connectivity,	
and	axonal	health.	Our	results	 ranged	from	good	to	excellent	 (ICC	
0.78–0.88)	 for	 the	 four	 DTI	 measures,	 with	 axial	 diffusivity	 (AD)	
being	 the	 least	 reliable	 and	 fractional	 anisotropy	 (FA)	 the	 most	

reliable. This mirrors the relative interest attained for these mea-
sures	 in	the	research	community.	AD	may	be	a	correlate	of	axonal	
injury	 (Budde,	 Xie,	 Cross,	 &	 Song,	 2009);	 however,	 the	 measure	
is	 less	widely	used	 than	FA	which	has	been	 the	most	popular	cor-
relate	of	white	matter	 integrity	 (Soares,	Marques,	Alves,	&	Sousa,	
2013).	Regionally,	none	of	the	lower	confidence	intervals	for	FA	ICCs	
crossed below the good into the fair or poor classification.

Across	all	DTI	measures,	the	only	region	with	the	 lower	bound	
confidence interval in the poor classification was the hippocampal 
cingulum	bundle.	This	white	matter	 tract,	along	with	the	cingulum	
cingulate	 bundle,	 had	 the	 lowest	 scan–rescan	 reliability	 estimates	
for	AD,	MD,	and	RD.	The	cingulum	bundle	 is	a	 large	white	matter	
tract	 interconnecting	 the	 frontal,	 parietal,	 medial	 temporal,	 and	
other areas and has been implicated in a spectrum of neuropsychi-
atric	disorders	(Bubb,	Metzler-Baddeley,	&	Aggleton,	2018).	Its	size	
and midline positioning might make it particularly susceptible to mo-
tion	artifacts	and	spatial	misregistration	errors,	 and	 thus,	a	 similar	
warning akin to low reliability areas of cortical thickness applies here 
as well.

Lower	 scan–rescan	 reliability	 also	 applied	 to	 the	 corticospinal	
tract.	 Interpreting	 these	 findings	 in	 the	 context	 of	 prior	 research	
might be illuminating. Investigations of the underlying reliability of 
white matter measures in pediatric samples have mainly been re-
stricted	 to	 small	 samples,	 specific	 illness,	 or	 a	 limited	 number	 of	
white	matter	tracts	(Alhamud,	Taylor,	Laughton,	Kouwe,	&	Meintjes,	
2015;	Bonekamp	et	al.,	2007;	Carlson	et	al.,	2014).	However,	a	re-
cent	 paper	 has	 examined	 FA	 reliability	 in	 a	 well-powered	 sample	
comprising	of	both	an	adult	and	an	adolescent	group	(Acheson	et	al.,	
2017).	Similar	to	our	results,	the	authors	found	that	in	adolescents,	
the lowest reliability was observed in the corticospinal tract. This 
observation	held	 in	adults,	 signifying	 low	reliability	of	 the	cortico-
spinal tract across development. The corticospinal tract is a white 
matter	motor	pathway,	and	thus,	the	reliability	concerns	might	not	
be immediately relevant to psychiatric research.

Lastly,	our	structural	MRI	reliability	estimates	were	higher	than	
those	 reported	 in	 functional	MRI	 literature.	An	early	account	pro-
vided the first empirical evidence of the longitudinal reliability of 
resting	state	fMRI	in	children	(Thomason	et	al.,	2011).	The	authors	
obtained	positive	 ICC	values	for	 the	majority	of	brain	voxels,	 indi-
cating stability within participants across measurements. The first 
group	 to	 investigate	 the	 reliability	 of	 resting	 state	 fMRI	 in	 clinical	
developing	groups	observed	fair	(>0.40)	to	good	(>0.70)	ICC	in	the	
short	term	(Somandepalli	et	al.,	2015).	The	authors	noted	higher	ICC	
in	 typically	developing	children	compared	 to	 those	with	ADHD.	A	
more	 recent	 report	 examined	 reliability	 in	 adolescent	 fMRI	within	
a	2-year	period	 (Vetter	et	al.,	2017).	The	 investigators	 found	both	
variability	 and	 stability,	 with	 the	 reliability	 results	 dependent	 on	
task	domain	 and	 region	of	 interest.	 For	 example,	whole-brain	 ICC	
was	lower	(0.44)	in	cognitive	control	paradigms	and	higher	(0.74)	in	
reward paradigms. There was great variability across regions of in-
terest,	with	ICCs	ranging	from	poor	(0.19)	to	excellent	(0.84).	Two	re-
cent	meta-analyses	suggest	that	even	these	modest	fMRI	reliability	
values are potentially optimistic.
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One	meta-analysis	examined	a	decade	of	 test–retest	 reliability	
work surrounding functional connectivity. The authors concluded 
that	most	functional	connections	exhibited	“poor”	ICC	of	0.29	(95%	
CI	 [0.23,	0.36];	Noble,	Scheinost,	&	Constable,	2019).	Another	 re-
cent	meta-analysis	examined	test–retest	reliability	of	common	task-
based	 fMRI	measures	 (Elliott	 et	 al.,	 2020).	 Echoing	 the	 previously	
mentioned	findings,	their	work	revealed	poor	to	fair	overall	reliabil-
ity	(ICC	=	0.40)	across	90	studies.	However,	it	is	worth	noting	that	
contrasting	the	reliability	of	structural	and	functional	MRI	is	not	an	
apples-to-apples	comparison.	The	excellent	structural	reliability	we	
report in this manuscript is based on the consistent reconstruction 
of	a	priori	anatomically	defined	regions.	Functional	reliability	deals	
with	spatial,	temporal,	and	frequency	domains	that	often	try	to	map	
onto	fluid	brain	processes.	Nevertheless,	the	discrepancy	between	
the two modalities is worth acknowledging as it can have practical 
applications,	such	as	sample	size	requirements	for	biomarker	discov-
ery	(Elliott	et	al.,	2020).

4.1 | Limitations

There are several limitations to this study. Sample size is of con-
cern,	 not	 in	 respect	 to	 accurately	 estimating	 reliability	 but	 to	
problems of scale. Our approach of manual ratings for raw data 
followed by automated quality assessment for processed data 
can	 become	 resource	 intensive	 for	 large-scale	 projects,	 such	 as	
the modern biobanks collecting tens of thousands of scans. Our 
relatively	 small	 number	 of	 excluded	 scans	would	 grow	 substan-
tially in those samples and could potentially vary between groups 
of	interest,	for	example,	those	with	or	without	psychopathology.	
Nevertheless,	this	is	actively	being	addressed	with	behavioral	in-
terventions	before	or	during	scanning,	with	optimized	sequences	
utilizing	prospective	motion	correction,	as	well	as	at	the	study	de-
sign	phase	with	oversampling	of	at-risk	youth.

We	 were	 also	 restricted	 to	 a	 single	 scan	 site,	 and	 data	 were	
acquired	on	 the	 same	 scanner	 at	 all	 time	points.	 In	 our	 study,	we	
found that results generalized to the same scanner over a year later 
(Table	 S10).	 However,	 large	 collaborative	 efforts	 are	 often	 made	
possible by acquisitions on scanners from different manufactur-
ers	 at	 sites	 that	may	be	continents	apart	 (Thompson	et	 al.,	 2014).	
This can increase variability that confounds the effects of interest. 
Nevertheless,	 these	challenges	are	being	overcome	with	 the	stan-
dardization of scanning parameters and statistical techniques that 
correct	 for	 site	differences	 (Chen	et	 al.,	 2014).	 Lastly,	beyond	 site	
differences,	 variations	 in	data	 analysis	methods	 are	more	 likely	 to	
have	a	stronger	effect	on	neuroimaging	results,	but	are	also	being	
addressed	(Nichols	et	al.,	2017).

Another	 limitation	 is	our	 choice	of	parcellation	 scheme	 for	 as-
sessing regional reliability of cortical areas and white matter tracts. 
The construction of an accurate map of the major subdivisions of 
the	human	brain	 is	 a	 century-old	endeavor	with	 an	accompanying	
and equally long debate on what constitutes a boundary. There are 
other parcellations than the one used in this paper that are more 

biologically	 grounded,	 accounting	 for	 cortical	 architecture,	 topog-
raphy,	 and	 functional	 connectivity	 (Glasser	et	 al.,	2016).	However,	
given	that	it	is	impossible	to	exhaustively	test	each	parcellation,	we	
decided to focus on those most likely to be commonly used in the 
field.	The	Desikan	atlas	has	over	5,000	citations	on	PubMed,	and	the	
JHU	atlas	has	almost	2,000.	They	come	default	or	preinstalled	with	
commonly	used	MRI	software,	including	FreeSurfer	and	FSL,	respec-
tively.	Thus,	these	atlases	are	the	starting	point	for	a	great	number	
of neuroimaging researchers and a basis of comparison for those on 
the cutting edge who choose to use newer or custom parcellations.

5  | CONCLUSIONS

In	conclusion,	while	researchers	should	be	cognizant	of	regional	vari-
ability	in	reconstruction,	pediatric	MRI	brain	data	are	highly	reliable	
overall.	Furthermore,	the	high	reliability	was	established	in	youth	at	
risk	for	mental	illness	or	those	already	affected	by	anxiety	and	neu-
rodevelopmental disorders. This bodes well for work investigating 
the	neurodevelopmental	markers	of	mental	illness	at	an	early	stage,	
before	medication,	drug	use,	and	other	confounds	take	a	persistent	
toll	on	the	brain.	Confidence	 in	the	data	quality	of	high-risk	youth	
samples is also a prerequisite for improved diagnosis and develop-
ment of personalized prevention strategies based on brain markers.
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