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Abstract: The present study was conducted to explore the impact of novel water–oil mixed frying
and traditional oil frying methods on the soybean oil quality and formation of trans fatty acids (TFAs)
and heterocyclic amines (HCAs) in fried duck breast and skin during 60 frying cycles. The acid value
of the soybean oil was 2.10 mg/g using the traditional oil frying and 1.08 mg/g using water–oil
mixed frying at the 60th frying cycle. The peroxide value of the water–oil mixed fried soybean oil was
significantly lower than that of the traditional frying method. Water–oil mixed frying delayed the
formation of TFAs in the soybean oil. The traditionally oil fried skin showed increased TFAs (9tC16:1)
content from 0.17 to 0.22 mg/g (29.4% increase), while those of the water–oil mixed fried samples
increased from 0.16 to 0.20 mg/g (25.00% increase) compared to control. Harman, Norharman and
AαC were detected in all the fried samples and PhIP was observed after the 20th frying cycle, while
MeAαC was formed only at the 60th frying cycle in traditional fried duck breast. Therefore, it is
concluded that the water–oil mixed frying method is more suitable to improve the quality and safety
of fried duck skin and breast meat.

Keywords: water–oil mixed frying; harmful substances; meat quality; oil quality; cooking

1. Introduction

The manufacturing of meat products relies on several processing methods, including
frying, and conventional frying oil temperatures fall in the range of about 150–190 ◦C [1].
The most common prevailing drawback of frying protein-rich meat at these temperature
ranges is the formation of mutagenic and carcinogenic compounds such as heterocyclic
amines (HCAs) [2]. Until now, 30 kinds of HCAs have been identified from different
sources [3] and most of these HCAs have been previously identified as human health haz-
ards. The International Agency for Research on Cancer (IARC) has recognized nine HCAs,
including 2-amino-3,4-dimethyl-imidazo [4,5-f]quinoline (MeIQ) (group 2B), 2-amino-1-
methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), 2-amino-3-methyl-9H-pyrido[2,3-b]indole
(MeAαC) and 2-amino-9H-pyrido[2,3-b]indole (AαC) as possible human carcinogens, and
IQ (2-amino-3-methylimidazo[4,5-f]quinoline) as a probable human carcinogen. Based on
their carcinogenic nature, IARC has suggested that dietary intake of these HCAs should
be minimized [4,5], while the specific intake of HCAs likely to cause cancer in humans
has not been determined. Among various factors contributing to the formation of HCAs,
fried oil is also a key factor which affects the contents and types of HCAs. The repeated
use of fried oil results in the further accumulation of HCAs in the food products. Several
reports have shown the formation of HCAs may be the result of oil oxidation during frying
and the repeated use of the same frying oil [2,6]. It has been observed that during frying,
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a number of nutrients in the meat can move to the meat surface along with water, which
later on results in the evaporation of the water, during which some protein, free amino
acids, creatine and organic acids may be accumulated in the high-temperature fried oil.
This accumulation could provide favorable conditions for the occurrence of the Maillard
reaction, resulting in the deterioration of fried oil color and the formation of HCAs.

Considering the facts about HCAs formation, several approaches have been adopted
to mitigate the generation of these HCAs, but most of these strategies focused on the usage
of phenolic compounds of natural antioxidants in order to control the generation of HCAs
in meat products [7]. On the other hand, frying at a temperature above 150 ◦C can also
generate trans fatty acids (TFAs) that can elevate the cholesterol levels in blood and is
related to the risk of coronary heart disease. It is a well-documented fact that TFAs are
usually formed at high temperatures during oil frying of meat products or the prolonged
heating time [2,8]. However, limited information is available regarding the TFAs profile
in meat products with repeated use of the same frying oil (repeat cycling). Therefore, it
is of dire need to explore the TFAs profile in repeatedly used frying oil because there is a
mass transfer of TFAs between the oil and meat components during the frying [9,10]. It
is of utmost importance to adopt an alternative way of frying to reduce the generation of
mutagenic and carcinogenic compounds in meat products.

Frying is a common method to transfer the heat for the cooking of food products [11].
During frying, oil type, time, temperature and fryer type affect the quality of oil, due to
polymerization, oxidation and hydrolysis [12]. Recently, the water–oil mixed frying method
was developed which contained a mixture of water and oil during frying. The water–oil
mixed frying method has considerably several advantages over the traditional method [13].
During water–oil frying, oil remains in the upper layer and water can reside within its
sublayer and the frying residues can accumulate within the water layer before they are
carbonized in the oil layer [14]. Hypothetically, this way will greatly reduce the degree of
fried oil deterioration and harmful compound generation, since repeat frying cycles and
prolonged heating time causes several chemical reactions which lead to the formation of
human health hazard substances in oil and meat products [14]. Nevertheless, the effect
of the water–oil mixed frying method on the formation of TFAs in the fried oil and the
generation of HCAs and TFAs in the meat products is not yet known. Therefore, in the
current study, the outcomes of the traditional oil frying method and the water–oil mixed
frying method on the formation of HCAs and TFAs in duck breast skin/meat and frying
oil quality were evaluated during 60 frying cycles. The generated data will provide the
baseline information about the novel water–oil mixed frying method on the quality of fried
meat products to minimize the formation and accumulation of harmful compounds in the
fried meat products.

2. Materials and Methods
2.1. Chemicals

HCAs standards including, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx),
2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), 2-amino-3-methylimidazo[4,5-f]
quinoline (IQ), 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx), 2-amino-
3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx), 1-methyl-9H-pyridoindole (Har-
man), 9H- Pyrido[4,3-b]indole (Norharman), 3-amino-1,4-Dimethyl-5H-pyrido[3,4-b]indole
(Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-1-methyl-6-phenyl-
Imidazo[4,5-b]pyridine (PhIP), 2-Amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) and
2-amino-9H-pyrido[2,3-b]indole (AαC) were obtained from Toronto Research Chemicals
(Downsview, ON, Canada). Trans fatty acid methyl ester (FAME) standards including,
9 t-14:1, 9 t-16:1, 6 t-18:1, 9 t-18:1, 11 t-18:1, 9 t,12 t-18:2, 11 t-20:1 and 13 t-22:1 were pur-
chased from Nu-Chek Prep, Inc. (Elysian, MN, USA). The HPLC-grade solvents acetonitrile
and methanol were bought from Tedia Co. (Fairfield, OH, USA), while ammonia, ammo-
nium acetate, hydrochloric acid and sodium hydroxide were collected from Sinopharm
Chemical Regent Co., Ltd. (Shanghai, China). All reagents and chemicals were chromato-
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graphic or analytical grade. A Millipore water purification system was used to collect the
deionized water (Millipore Co., Bedford, MA, USA).

2.2. Samples and Frying Method

Frozen duck breast samples with skin (6.1 mean pH value) were bought from a local
meat market in Nanjing, PR China and thawed at 4 ◦C for 12 h before use. All the samples
were divided into two groups to process using two different frying methods, i.e., traditional
oil frying and water–oil mixed frying, and 60 frying cycles were completed for each group.
Each frying cycle contained three raw breast muscles, while the three raw samples without
frying were analyzed and presented as (0 frying cycle). As samples for the frying, soybean
oil was poured into a water–oil mixed fryer (Expro Machinery Engineering Co., Ltd.,
Hangzhou, China) and the water was added up to the water line. The oil temperature was
set at 170 ◦C, and three raw duck breasts of the same size (12 cm × 8 cm × 2 cm; 150 ± 5)
were fried for 10 min. All the meat samples were without any seasoning to eliminate the
influence of seasoning. Ten batches (frying cycles) were consecutively fried per day for
six days. The fried oil was not changed, nor replenished with fresh oil during the process.
The oil temperature remained at 170 ± 5 ◦C. Finally, samples were taken from the 1st, 10th,
20th, 30th, 40th, 50th and 60th frying cycle. The skin and meat of the duck breast samples
were separated and individually grinded with a tissue homogenizer (8010S, Waring, Inc.,
Torrington, CT, USA), vacuum packed, and then frozen at −80 ◦C until testing. On the other
hand, 50 mL of oil samples were collected after frying was completed each day and frozen
at −80 ◦C until analysis. The same operation process was conducted for the traditional oil
frying method using a fryer (EF101-V, Changzhou Guohua, China).

2.3. Determination of Color, Peroxide Value and Acid Value of the Soybean Oil

The color of oil samples was determined by spectrophotometer method. Briefly,
2 mL of the filtered oil was added into 6 mL of petroleum ether and then boiled at a
range of 60–90 ◦C. After boiling samples were vortexed and the absorbance of the sample
was measured at 880 nm, petroleum ether was used as a blank. The acid and peroxide
values of the soybean oil samples were determined according to the measuring method of
GB/T5009.37-2003, the national standard of the People’s Republic of China, methods for
analysis of hygienic standards of edible oils.

2.4. Determination of Color Difference (∆E) and Moisture Content of Duck Meat and Skin

The moisture percentage was analyzed according to the method reported in GB5009.3-2016,
Chinese National Standard (Determination of water in foods). For determination of the
differences in the color (∆E), all the samples were placed in a strainer to drain the excess oil
and skin was removed manually from the breast meat with the help of a knife. After 0.5 h,
a colorimeter (CR-400, Konica Minolta Sensing, Inc., Osaka, Japan, 10◦ standard observer
and D65 illuminant) was used to measure the L* (lightness), a* (redness) and b* (yellowness)
values at six randomly selected locations of the samples and means values of these readings
were used for further analysis. The instrument was calibrated using a white reference plate.
The color difference (∆E) was calculated according to the following formula [15].

∆E =

√
(∆L∗)2 + (∆a∗)2 + (∆b∗)2 (1)

2.5. Determination of Trans Fatty Acids (TFAs)

A gas chromatography (GC-2010Plus Gas Chromatograph Shimadzu Corporation,
Kyoto, Japan) was used to analyze the TFAs profile. After fat extraction, KOH in isooctane
and methanol was used to prepare the methyl esters. The trans FAMEs were analyzed
according to the method described in the Chinese National Standard for the determi-
nation of trans fatty acids in foods with some modifications [2]. An SP-2560 column
(L × I.D. 100 m × 0.25 mm, df 0.20 µm) (Supelco, Centre County, PA, USA) was used. The
temperature was maintained at 140 ◦C for 5 min, then rose to 200 ◦C at a rate of 2 ◦C/min,
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and then increased to 208 ◦C at 1 ◦C/min and kept there for 15 min. Nitrogen gas was
used as a carrier gas. The other conditions reported included flow rate (1.3 mL/min),
injection volume (1 µL) and split ratio (30:1). The concentration of the standard substances
ranged between 1–500 mg/L, the linear correlation coefficient was within 0.9997–0.9999,
and the recovery rate of standards was 92.05–98.54%. Moreover, the similar structures
and close retention times of three tC18:1 isomers (6tC18:1, 9tC18:1, 11tC18:1) resulted in
overlapping peaks which made it difficult to separate completely, hence these three isomers
are considered as one substance (tC18:1).

2.6. Analysis of Heterocyclic Amines

The extraction and purification of HCAs were determined by the procedure reported
by Gross and Grüter [16] with some modifications. Determination and quantification were
achieved as reported in the previous studies of our laboratory [17,18] using HPLC (Waters
2695 High Performance Liquid Chromatograph Waters Company, Worcester County, MA,
USA). Separation was performed using a TSK gel ODS-80 TM column reversed-phase
(25 cm, 4.6 mm, 5 µm, 80 Å, Tosoh, Tokyo, Japan). A vacuum manifold was used for
solid-phase extraction (CNW Technologies GmbH, Düsseldorf, Germany). The column
temperature was set to 30 ◦C; the flow rate was 1 mL/min and the injection volume per
injection was 20 µL. The 12 types of HCAs were detected through an ultraviolet detector
(IQ, MeIQx, MeIQ, 4,8-DiMeIQx and 7,8-DiMeIQx) and fluorescence detector (Harman,
Norharman, Trp-P-1, Trp-P-2, PhIP, MeAαC and AαC). Using methanol as a solvent, the
polar HCAs were diluted to 1, 10, 50, 100, 250, 500, 1000 ng/mL mixed standard solution;
the non-polar HCAs were diluted to 0.1, 1, 2, 10, 20, 50, 100 ng/mL mixed standard solution
to obtain a standard curve. The linear correlation coefficients of heterocyclic amines were
between 0.9972 and 0.9999. The linear ranges of IQ types and non-IQ types of HCAs were
10–1000 ng/g and 0.1–100 ng/g, respectively. The recovery rates of 12 kinds of HCAs were
67.12–96.81%.

2.7. Statistical Analysis

Minitab 18.1 statistical software was used to perform the statistical analysis. The data
was tabulated and presented as the mean of replicates and standard deviation. Data was
further analyzed using two-way ANOVA and Fisher’s LSD test on the interaction of the
two factors at p < 0.05. All the experiments were repeated thrice.

3. Results and Discussion
3.1. Color, Acid Value and Peroxide Value of the Soybean Oil

The soybean oil color change corresponding to the frying methods and frying cycles is
shown in Figure 1. The absorbance of the samples fried with the water–oil mixed frying
method is lower than that of the traditional frying method. In the previous studies, it is
reported that the darkening of the color might be due to the availability of non-volatile
degradation products including oxidized triglycerides and polymers [19,20]. Interaction
of food nutrients also causes Maillard reaction and browning products contributes to the
darkening [21].

Oils and fats are hydrolyzed at high temperatures to produce free fatty acids, this in
turn accelerates the rancidification, which is primarily determined by acid value [22]. The
acid value of fried soybean oil was increased considerably with the number of frying cycles
in both frying methods (p < 0.05). Figure 2 shows that the increased acid value was faster
under traditional oil frying conditions than the water–oil mixed frying method during
60 frying cycles. The acid value of the oil was 2.10 mg/g when using the former method
and 1.08 mg/g when using the latter method (11.05- and 5.68-fold greater, respectively,
than the original content (0.19 mg/g). None of the acid values in this work exceeded the
3 mg/g limit specified in the GB2716-2005 protocol. Moreover, observed findings for acid
value is also as per recommendation (<3) by the Food Sanitation Act, Japan [23]. After
40 frying cycles, the acid value of the traditional fried soybean oil was significantly higher
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than the water–oil mixed frying and this difference between the two values gradually
expanded with the increasing frying cycles. A similar increasing trend was recorded in
the previous study; the acid value of the soybean oil was increased from 0.47 to 5.14 after
1–101 frying cycles [24]. During processing in the frying oil, the acid value was increased
maybe due to oxygen, steam and water initiated chemical reactions [25]. Furthermore,
chemical composition of fats and oils also have a role in oxidative changes [24].
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The peroxide value of oils is an important factor used to measure the degree of oxida-
tive rancidity [24]. The peroxide value of fresh oil should be <1 meq/kg, and if >10 meq/kg,
the fats and oils are considered as rancid [26]. In our study, the peroxide value was in-
creased significantly during 60 frying cycles, the peroxide value of traditional fried soybean
oil and water–oil mixed frying were 12.50 meq/kg and 7.65 meq/kg, respectively, after
60 frying cycles (Figure 3), though this value of fresh soybean oil was only 1.25 meq/kg.
However, its peroxide value still met the GB2716-2005 limit (25 meq/kg). In addition, Sulie-
man et al. [27] also recommended that a good quality frying oil should have <2 meq/kg
peroxide value. After 30 cycles, the effects of both frying methods on the peroxide value
of the soybean oil was found to be considerable (p < 0.05), and the peroxide value of the
water–oil mixed fried oil was significantly lower than that of the traditional fried soybean
oil. Meat residue readily fell into the water layer during frying with the water-oil mixed
fryer. Hence this method reduces the accumulation and carbonization of residues in the
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oil, subsequently decreasing the oil turbidity and deterioration [13]. Ma et al. [14] also
revealed that water–oil mixed frying reduced the deterioration of the soybean oil. Due
to the above fact, in the current study water–oil mixed frying might reduce the oxidation
of the oil and delay the increase in the peroxide value. Similar trends of an increase in
peroxide value in oils during continued frying for two consecutive days were reported
earlier [28,29]. Furthermore, oxidation of the oils and fats depends on various factors, such
as heating rate, time, temperature, light, oxygen concentration, storage conditions and
composition of fatty acids [30]. Based on the above indicators, it can be concluded that in
the repeated frying cycles of soybean oil, the quality of the oil continues to deteriorate, and
water–oil mixed frying can delay the rate of deterioration of the oil.
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3.2. TFAs Contents in the Soybean Oil

The cis double bonds in unsaturated fatty acids are isomerized upon prolonged heating
to give TFAs [8]. In the current study, only tC18:1 was detected in the fried soybean oil,
and it was found that the tC18:1 content in the raw soybean oil was 1.28 mg/g, which is
comparable with the findings of Wang et al. [2]. The content of tC18:1 in the oil showed
an increasing trend as the oil was repeatedly reused (Table 1). The tC18:1 content of the
frying oil after 60 cycles was 1.52- and 1.43-fold increased compared to the initial content of
the fresh oil for both frying methods, traditional and water–oil mixed frying, respectively.
Water–oil mixed frying delayed the formation of TFAs in the soybean oil. In the present
work, after 20 cycles of the oil, the amount of tC18:1 produced in the soybean oil during
water–oil mixed frying was significantly lower than that produced by the traditional frying
method, the tC18:1 content in soybean oil after 60 cycles in water–oil mixed frying was
comparable to the tC18:1 content in soybean oil after 40 cycles in the traditional oil frying
method. In addition, the formation of 9tC16:1 (0.17 mg/g) was detected in soybean oil
after 60 cycles of traditional frying (data not shown). Correspondingly, in a previous study
initially TFAs were not observed in soybean oil samples, while they were detected after
70 h of frying [31]. In another study, at 170 and 180 ◦C no obvious difference was observed
between trans isomers of soybean oil, whereas trans isomers were increased at 190 ◦C in
soybean oil [32]. Jain et al. [33] also stated that TFAs in oils were increased with the increase
in frying cycles and temperatures. Dana et al. [34] continuously injected water droplets
into the bottom of continuously heated canola oil, which helped prevent changes in the
fatty acid composition of the oil, as compared to the control group. The inhibition of TFAs
production in frying oil by mixing it with water may be due to meat residue falling into the
water layer during frying, thus reducing the introduction of oxidation catalysts, such as
iron ions in the meat, and delaying the oxidation of the oil.
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Table 1. Contents of TFAs in the soybean oil under different frying methods and cycles.

Number of Cycles
tC18:1 (mg/g)

Traditional Oil Frying Water–Oil Mixed Frying

0 1.28 ± 0.03 hi 1.28 ± 0.03 hi

10 1.36 ± 0.05 g 1.32 ± 0.01 gh

20 1.46 ± 0.05 f 1.25 ± 0.02 i

30 1.73 ± 0.05 d 1.37 ± 0.02 g

40 1.88 ± 0.05 bc 1.46 ± 0.02 f

50 1.90 ± 0.06 ab 1.65 ± 0.04 e

60 1.95 ± 0.06 a 1.83 ± 0.05 c

Note: Statistics are shown as mean ± standard deviation; means bearing different superscripts show significant
difference at p < 0.05.

3.3. Color Change (∆E) and Moisture Percentage in the Fried Duck Breast Skin and Meat

Table 2 shows that changes in the color (∆E) of the traditionally oil fried duck breast
skin increased significantly with the number of frying cycles, the ∆E of the fried skin
of samples collected from the 60th cycle were significantly greater than those of the 1st
and 10th frying cycles in traditional oil frying. Whereas, in the samples fried with the
water–oil mixed frying, the ∆E of the fried duck breast samples was relatively stable, with
no significant differences between the samples taken from the 1st and 60th cycle. There
was no significant difference between the ∆E values of the duck breast meat fried with
the water–oil mixed fryer and the traditional oil fryer. Ma et al. [14] reported that in the
water–oil mixed frying method, a decreasing rate of lightness during the six days frying
as compared to the pure oil frying was observed, while yellowness was increased in both
methods during frying. Srivastava and Semwal [35] suggested that higher yellowness was
associated with the polymer formation of unsaturated carbonyl compounds and non-polar
compounds of food stuff solubilized in the oil. The moisture contents of the fried duck
meat samples were significantly lower than those of the fresh samples, and these results
are in line with previous study [2]. It was revealed that the moisture contents of the fried
skin samples decreased with the increase in frying cycles regardless of frying methods.
The moisture content of the fried skin sample from the 60th cycle was significantly lower
than that of the fried skin sample from the 1st cycle in traditional oil frying. This may be
caused by the increase in the impurities and viscosity of the fat over extended periods of
use, resulting in reduced lipid exchange with the duck skin and subsequently increased
amounts of fat retained in the skin (data not shown). The moisture content of the fried
duck breast meat was not remarkably affected by the number of frying cycles nor the frying
method (except at the 20th and 50th cycles), which might be due to the dry and hard crust
that was rapidly formed during frying which prevented further evaporation of moisture.

Table 2. ∆E and moisture percentage of duck skin and breast meat under different frying methods
and cycles.

Number
of Cycles

∆E (Duck Skin) ∆E (Duck Breast Meat) Moisture (Duck Skin) Moisture (Duck Breast Meat)

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional Oil
Frying

Water–Oil
Mixed frying

Traditional Oil
Frying

Water–Oil
Mixed Frying

0 0.00 ± 0.00 e 0.00 ± 0.00 e 0.00 ± 0.00 d 0.00 ± 0.00 d 23.15 ± 0.20 g 24.04 ± 0.20 g 72.98 ± 0.40 a 74.06 ± 0.40 a

1 23.81 ± 2.67 d 26.00 ± 0.59 bcd 13.19 ± 2.70 bc 15.56 ± 0.90 ab 37.01 ± 1.10 abc 39.48 ± 0.11 a 62.85 ± 0.04 defg 61.63 ± 0.78 gh

10 23.58 ± 3.14 d 29.54 ± 2.17 ab 12.77 ± 0.44 c 13.89 ± 0.60 bc 36.32 ± 0.39 bc 34.80 ± 0.26 cde 62.39 ± 0.31 efgh 61.99 ± 0.48 fgh

20 29.96 ± 1.32 a 27.91 ± 2.86 abc 13.68 ± 1.48 bc 14.99 ± 0.92 abc 35.50 ± 0.94 bcd 35.94 ± 2.96 bcd 64.01 ± 0.45 bcd 62.41 ± 0.22 efgh

30 24.57 ± 1.03 cd 29.65 ± 0.45 a 14.86 ± 3.12 abc 14.94 ± 1.09 abc 37.38 ± 0.03 ab 32.44 ± 0.53 ef 63.07 ± 0.38 cdef 64.30 ± 0.22 bc

40 26.98 ± 2.21 abcd 30.15 ± 2.21 a 12.76 ± 1.93 c 17.12 ± 3.02 a 34.71 ± 2.38 cde 35.49 ± 1.06 bcd 63.51 ± 0.02 bcde 64.59 ± 0.05 b

50 28.19 ± 1.69 abc 24.77 ± 2.84 cd 13.39 ± 0.63 bc 15.02 ± 2.01 abc 36.83 ± 2.02 bc 32.59 ± 2.63 ef 62.43 ± 0.25 efgh 59.94 ± 0.32 i

60 28.58 ± 3.34 ab 28.72 ± 4.09 ab 12.91 ± 0.14 bc 12.73 ± 2.16 c 31.42 ± 0.18 f 33.69 ± 2.83 def 62.26 ± 0.56 efgh 61.20 ± 1.10 hi

Note: statistics are shown as mean ± standard deviation; means bearing different superscripts under the same
properties show significant difference at p < 0.05.
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3.4. TFAs Contents in the Fried Duck Breast Skin and Meat

Table 3 shows the variations in the TFAs contents in the skin and meat corresponding
to the frying cycles and frying methods and the limit of detections for 9 t-14:1, 9 t-16:1,
9 t-18:1, 6 t 18:1, 11 t 18:1, 9 t,12 t-18:2, 11 t-20:1 and 13 t-22:1 were 0.063, 0.064, 0.068, 0.072,
0.068, 0.07, 0.05 and 0.12 mg/100 g, respectively. In the present study, only two types
of TFAs, i.e., 9tC16:1 and tC18:1, were detected in fried samples, however 9tC16:1 was
observed only in the skin of the fried duck and was not detected in fried breast duck
meat in both frying methods. These results are in agreement with Liu et al. [36]; they
stated that the formation of TFAs were observed in the chicken leg skin and no TFAs
were formed in the chicken leg meat, which might be due to the absorption of oil in the
skin. The content of 9tC16:1 in the fried duck skin of the traditional oil frying method
sample at the 60th cycle was significantly greater than that of other frying cycles in the
same method. Upon comparing the 9tC16:1 content in the fried skin of the samples of
the 60th and 1st cycle, the traditionally oil fried samples showed increased TFAs contents
from 0.17 to 0.22 mg/g (a 29.41% increase), while those of the water–oil fried samples had
increased from 0.16 to 0.20 mg/g (a 25.00% increase). Similarly, tC18:1 content increased
under both frying methods. The tC18:1 content in the samples after the 40th cycle was
greater than the 1st to the 30th cycles when the traditional oil frying method was employed,
whereas the tC18:1 content in the samples fried in the water–oil mixed fryer did not show
significant increases until the 50th cycle. The two frying methods did not exhibit significant
differences on the 9tC16:1 and tC18:1 content in the fried skin, except after the 40th frying
cycle when the 9tC16:1 content in the fried skin of water–oil mixed fried samples was lower
than that in the fried skin of traditionally oil fried samples. Similarly, for the tC18:1 content,
no significant differences were noted in the samples fried under either condition, while a
numerical uptrend was observed with increasing frying cycles. On the other hand, TFAs
contents were lower in the fried breast duck meat samples as compared to the fried skin,
tC18:1 being the only detected TFA in the fried duck breast in both processing methods.
Lower TFAs content in the fried breast meat and higher TFAs in the fried skin shows that
the absolute content of the TFAs intake in the samples related to the amount of TFAs in the
frying oil. The content of tC18:1 increased with the increasing frying cycles. Yang et al. [37]
concluded that the contents of TFAs in chicken fillets have no statistical variation among
various frying cycles. Additionally, the concentration of TFAs also depends on the amount
of TFAs present in the feed of poultry birds [38].

Table 3. Effect of frying methods and cycles on the formation of TFAs (mg/g) in duck skin and
breast meat.

Sample Number of
Cycles

9tC16:1 tC18:1

Traditional Oil Frying Water–Oil Mixed Frying Traditional Oil Frying Water–Oil Mixed Frying

Skin

0 0.19 ± 0.01 c 0.18 ± 0.01 cd 0.90 ± 0.00 g 0.92 ± 0.02 fg

1 0.17 ± 0.01 ef 0.16 ± 0.02 ef 1.07 ± 0.11 defg 1.01 ± 0.25 efg

10 0.17 ± 0.01 de 0.18 ± 0.00 cd 1.08 ± 0.05 cdef 1.11 ± 0.01 bcde

20 0.17 ± 0.01 ef 0.18 ± 0.00 cd 1.07 ± 0.04 def 1.06 ± 0.04 defg

30 0.16 ± 0.01 ef 0.17 ± 0.01 ef 1.05 ± 0.03 defg 1.10 ± 0.10 cde

40 0.18 ± 0.00 cd 0.16 ± 0.00 f 1.20 ± 0.07 abcd 1.20 ± 0.02 abcd

50 0.20 ± 0.00 b 0.19 ± 0.02 c 1.25 ± 0.13 abc 1.28 ± 0.02 ab

60 0.22 ± 0.01 a 0.20 ± 0.00 b 1.31 ± 0.22 a 1.29 ± 0.07 a

Meat

0 ND ND 0.07 ± 0.01 g 0.07 ± 0.01 g

1 ND ND 0.08 ± 0.01 de 0.09 ± 0.01 d

10 ND ND 0.09 ± 0.00 cd 0.08 ± 0.01 de

20 ND ND 0.07 ± 0.00 fg 0.08 ± 0.00 def

30 ND ND 0.07 ± 0.01 fg 0.07 ± 0.02 efg

40 ND ND 0.10 ± 0.00 bc 0.11 ± 0.01 ab

50 ND ND 0.08 ± 0.00 def 0.12 ± 0.01 a

60 ND ND 0.09 ± 0.00 cd 0.10 ± 0.01 b

Note: statistics are shown as mean ± standard deviation; means bearing different superscripts under the same
properties show significant difference at p < 0.05. ND = Not detected
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3.5. Heterocyclic Amines in the Fried Duck Breast Skin and Meat

The effects of frying cycles and frying methods on the HCAs content in the fried skin
and duck breast meat are shown in Table 4. The limits of detections for harman, norharman,
PhIP, Trp-P-1, Trp-P-2, MeAαC, AαC, IQ, MeIQ, MeIQx, 4,8-DiMeIQx and 7,8 DiMeIQx
were 0.05, 0.07, 0.03, 0.04, 0.04, 0.02, 0.02, 2.95, 1.68, 0.91, 0.72 and 0.83 ng/mL, respectively.
For the skin of the duck breast, the types and contents of HCAs increased with the number
of frying cycles. Three HCAs, namely Harman, Norharman and AαC were found in all
the fried samples after the first frying cycle. These results are in accordance with the
previous study of Liao et al. [39]; they also found AαC, Harman and Norharman in all
deep-fried duck breast meat. PhIP was detected at the 30th frying cycle. This might be
due to the oxidation of oil and fat during repeated frying contributing to PhIP formation.
The oxidation products of unsaturated fatty acids, especially 2,4-dienal and 2-enal, made a
significant contribution to the production of PhIP [40], while other types of HCAs were not
detected in any fried skin sample in both frying methods, which might be due to the fact
that compounds such as 4,8-DiMeIQx, MeIQx, IQ and MeIQ come under the umbrella of
thermic set of HCAs and generate at long cooking times and high temperatures. Moreover,
the data shows that in the fried duck skin the water–oil mixed frying caused a lower
content of Norharman than traditional oil frying at the 60th frying cycle (p < 0.05) and the
amount of Norharman was also increased significantly with the increase in frying cycles.
Guo et al. [41] also reported that Norharman content was increased in pig hock skin during
four cooking cycles. Additionally, Randel et al. [42] conducted a study and observed the
degradation of HCAs in oil under frying and storage conditions and reported that HCAs
may be soluble in oil and Norharman had an oil–water partition coefficient (Ko/w) of
36.8 ± 3.5. Additionally, Harman and Norharman were more stable as compared to the
other types of HCAs under similar conditions. The water–oil mixed frying method left oil
in the upper and water in the lower layer, automatically filtrated oil sample scraps off and
retarded the precursors accumulation in the oil [14], which would benefit the reduction of
Norharman. Apart from the frying method, the amount and types of HCAs also depends
on several other factors including pH level, availability of precursors, additives, water
activity and the type of meat [43]. Furthermore, in our study, similar trends were noted in
the case of fried duck breast meat as Harman, Norharman and AαC contents were detected
in the 1st frying cycle in both processing methods and PhIP was detected in the samples
from the 20th frying cycle. Compared to the fried duck skin, MeAαC was detected in the
fried duck breast meat only under the traditional oil frying method. There was no statistical
variation in the content of Harman and AαC at various frying cycles between water–oil
mixed frying and the traditional oil frying method (p > 0.05). The oil temperature of the
two frying methods was maintained at 170 ± 5 ◦C, and the samples were fried at the same
oil temperature and in the same medium, so most of the data have no significant difference.
Moreover, an increasing trend was observed in all types of detected HCAs with increasing
frying cycles in both frying methods, possibly due to the generation of free radicals in the
oil which makes promising conditions for the generation of HCAs [2].
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Table 4. Effect of frying methods and cycles on the formation of HCAs (ng/g) in duck skin and breast meat.

Sample No. of
Cycles

Norharman Harman PhIP AαC MeAαC Total

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional Oil
Frying

Water–Oil
Mixed Frying

Traditional
Oil Frying

Water–Oil
Mixed
Frying

Traditional
Oil Frying

Water–Oil
Mixed
Frying

Skin

0 ND ND ND ND ND ND ND ND ND ND ND ND
1 0.25 ± 0.02 f 0.28 ± 0.01 f 0.27 ± 0.04 cd 0.32 ± 0.02 abcd ND ND 0.09 ± 0.00 g 0.10 ± 0.02 g ND ND 0.61 0.70
10 0.33 ± 0.01 e 0.34 ± 0.00 e 0.28 ± 0.03 cd 0.30 ± 0.01 abcd ND ND 0.16 ± 0.01 d 0.08 ± 0.02 g ND ND 0.77 0.72
20 0.39 ± 0.03 d 0.42 ± 0.02 bc 0.30 ± 0.01 abcd 0.26 ± 0.00 d ND ND 0.13 ± 0.01 ef 0.15 ± 0.00 de ND ND 0.82 0.83
30 0.34 ± 0.02 e 0.31 ± 0.01 e 0.28 ± 0.12 bcd 0.28 ± 0.04 cd 0.12 ± 0.02 e 0.14 ± 0.03 d 0.08 ± 0.02 g 0.11 ± 0.01 f ND ND 0.82 0.84
40 0.44 ± 0.06 bc 0.40 ± 0.01 cd 0.34 ± 0.03 abcd 0.31 ± 0.02 abcd 0.15 ± 0.01 cd 0.17 ± 0.01 ab 0.11 ± 0.02 f 0.12 ± 0.01 f ND ND 1.04 1.00
50 0.45 ± 0.02 b 0.43 ± 0.01 bc 0.36 ± 0.02 ab 0.34 ± 0.04 abc 0.15 ± 0.01 bcd 0.16 ± 0.01 abc 0.20 ± 0.02 b 0.17 ± 0.01 cd ND ND 1.16 1.10
60 0.49 ± 0.03 a 0.43 ± 0.02 bc 0.37 ± 0.12 a 0.34 ± 0.04 abcd 0.15 ± 0.02 cd 0.17 ± 0.02 a 0.22 ± 0.02 a 0.19 ± 0.01 bc ND ND 1.23 1.13

Meat

0 ND ND ND ND ND ND ND ND ND ND ND ND
1 0.47 ± 0.00 h 0.66 ± 0.02 ef 0.59 ± 0.01 fg 0.68 ± 0.08 def ND ND 0.09 ± 0.01 ef 0.07 ± 0.03 f ND ND 1.15 1.41
10 0.58 ± 0.05 g 0.73 ± 0.03 de 0.63 ± 0.07 ef 0.70 ± 0.02 def ND ND 0.15 ± 0.01 abcd 0.10 ± 0.05 ef ND ND 1.36 1.53
20 0.58 ± 0.04 fg 0.83 ± 0.06 bc 0.51 ± 0.10 g 0.64 ± 0.02 ef 0.13 ± 0.00 c 0.17 ± 0.01 a 0.13 ± 0.00 cde 0.11 ± 0.02 def ND ND 1.35 1.75
30 0.77 ± 0.06 cd 1.00 ± 0.03 a 0.59 ± 0.00 fg 0.67 ± 0.05 def 0.11 ± 0.02 d 0.15 ± 0.02 ab 0.15 ± 0.01 bcd 0.13 ± 0.01 cde ND ND 1.62 1.95
40 0.87 ± 0.07 b 0.99 ± 0.13 a 0.73 ± 0.10 bcde 0.82 ± 0.14 ab 0.12 ± 0.00 cd 0.15 ± 0.01 b 0.18 ± 0.07 ab 0.14 ± 0.01 bcde ND ND 1.90 2.10
50 0.87 ± 0.02 b 0.98 ± 0.05 a 0.71 ± 0.02 cde 0.93 ± 0.14 a 0.12 ± 0.00 cd 0.13 ± 0.01 cd 0.20 ± 0.06 a 0.15 ± 0.01 abcd ND ND 1.90 2.19
60 1.01 ± 0.03 a 0.99 ± 0.05 a 0.76 ± 0.02 bcd 0.81 ± 0.06 bc 0.12 ± 0.00 cd 0.15 ± 0.01 b 0.16 ± 0.05 abc 0.16 ± 0.02 abc 0.03 ± 0.0 a ND 2.08 2.11

Note: statistics are shown as mean ± standard deviation; means bearing different superscripts under the same properties show significant difference at p < 0.05. ND = Not detected.
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4. Conclusions

The water–oil mixed frying method reduced the trans fatty acids, peroxide value and
acid value of the soybean oil when compared to the traditional oil frying method during
60 frying cycles. The ∆E and moisture content of the fried duck skin and breast meat were
also relatively stable using the water–oil mixed frying method. The content of TFAs were
higher in the fried duck skin than fried duck breast meat in both processing methods.
Harman, Norharman and AαC were formed in all fried duck breast and skin samples and
PhIP was observed after the 20th frying cycle, whereas MeAαC was only formed at the 60th
frying cycle in traditionally oil fried duck breast meat. Both TFAs and HCAs had a slightly
increasing trend with the increase in frying cycles. Data shows that the novel water–oil
mixed frying method is more suitable than traditional oil frying. Therefore, this method
may be used at industrial as well as household cooking levels. These findings will be
beneficial for the regulations regarding frying oils used for food processing. Furthermore, a
public awareness drive and good manufacturing practices (GMPs) should be adopted to
reduce the intake of HCAs and TFAs from processed meat.
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