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Yersiniosis is a food-borne illness that has become more prevalent in recent years due to human transmission via the fecal-
oral route and prevalence in farm animals. Yersiniosis is primarily caused by Yersinia enterocolitica and less frequently by
Yersinia pseudotuberculosis. Infection is usually characterized by a self-limiting acute infection beginning in the intestine and
spreading to the mesenteric lymph nodes. However, more serious infections and chronic conditions can also occur, particularly
in immunocompromised individuals. Y. enterocolitica and Y. pseudotuberculosis are both heterogeneous organisms that vary
considerably in their degrees of pathogenicity, although some generalizations can be ascribed to pathogenic variants. Adhesion
molecules and a type III secretion system are critical for the establishment and progression of infection. Additionally, host innate
and adaptive immune responses are both required for yersiniae clearance. Despite the ubiquity of enteric Yersinia species and their
association as important causes of food poisoning world-wide, few national enteric pathogen surveillance programs include the
yersiniae as notifiable pathogens. Moreover, no standard exists whereby identification and reporting systems can be effectively
compared and global trends developed. This review discusses yersinial virulence factors, mechanisms of infection, and host
responses in addition to the current state of surveillance, detection, and prevention of yersiniosis.

1. Introduction

Yersiniosis is typically a self-limiting, gastrointestinal disease
of global concern. However, despite the known association
of the causative agents (Y. enterocolitica, YE, and very rarely
Y. pseudotuberculosis, YPT) with both gastroenteritis and
extraintestinal infections, it remains a poorly understood
disease. Sporadic cases are still reported in which food is
not suspected as the source of infection, and isolation from
contaminated food sources is often problematic. Because
yersiniosis is considered relatively uncommon and YE and
YPT are ubiquitous, food and water supplies are not regularly
monitored for these bacterial pathogens. However, the ability
of the yersiniae to persist in a nonculturable but viable state
in natural samples [1] and to grow and thrive at refrigeration

temperatures (∼4◦C) suggests that their contribution to
disease might be underappreciated.

1.1. YE Infections. The major causative agent of yersiniosis is
the gram-negative, zoonotic bacterial pathogen, YE, which
is typically transmitted via the fecal-oral route [2]. The
closely related YPT can also cause yersiniosis, but human
YPT infections are less frequent than those caused by YE.
Yersiniosis has been observed on all continents [3] but is
most common in European countries. Some of the chal-
lenges associated with linking yersiniosis to its source of
contamination are attributable to the heterogeneity of yer-
siniae populations within a plethora of environments and
reservoirs including: soil, water, and a variety of animals.
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Yersiniosis is an important infection in European brown
hares [4] and has additionally been detected in Canadian
beavers, snowshoe hares, and muskrats [5]. Additionally,
YE and YPT have been isolated form bats in Germany [6].
More relevant to humans is the prevalence of the yersiniae in
animal food sources, particularly pigs and pork products [7–
9], and more recently in domestic farm dogs in China [10].
Further complicating the picture of disease transmission, a
recent study found that wild rodents on a European pig farm
tested positive for YE, suggesting that rodents might serve
as interspecies carriers between reservoirs [11]. YE has also
been isolated from flies found in farm piggeries and kitchens
[12], suggesting that arthropod vectors/insects might play
a role in the transmission of the enteric yersiniae between
animals and humans. Flies might also facilitate the spread
of nosocomial infections which is of particular concern be-
cause there is at least one report of flies in Libyan hospitals
carrying antibiotic-resistant strains of bacteria belonging to
the Enterobacteriaceae family [13]. The major source of
yersiniosis is swine, but recent isolates from contaminated
chicken, milk, tofu, and water have also been reported [8, 14].

In healthy, immunocompetent individuals, yersiniosis
symptoms range from mild, self-limiting diarrhea to mesen-
teric lymphadenitis. However, in immunocompromised in-
dividuals chronic conditions such as reactive arthritis have
also been observed [15]. YE infection is generally established
via digestion of contaminated food or water followed by bac-
terial adherence to small intestinal epithelial cells and even-
tual crossing of the intestinal barrier via M cells [16]. Sub-
sequently, YE bacilli replicate in Peyer’s patches and can
sometimes spread to more distant lymphoid tissues, such as
the mesenteric lymph nodes [16–18]. Dissemination from
the distal ileum to the spleen and liver is relatively common,
followed by extracellular replication and formation of mon-
oclonal microabscesses [19]. The most common infection is
acute gastroenteritis, mainly observed in children and infants
on account of being somewhat immunocompromised due
to an immature immune system. However, a host of other
infections and complications can also occur in older chil-
dren and adults, including pseudoappendicular syndrome,
mycotic aneurysms [20–28], and, more rarely, sepsis as
a secondary complication of yersiniosis or from blood
transfusions. Several chronic conditions have also been
described including: reactive arthritis, erythema nodosum,
uveitis, glomerulonephritis, and myocarditis [3, 29]. While
enteropathogenic yersiniosis is typically self-limiting in heal-
thy individuals, the mortality rate can reach as high as 50%
in immunocompromised persons, as a result of systemic
bacterial dissemination [30].

1.2. YPT Infections. YPT causes zoonotic infections in a
variety of hosts, including both wild and domestic animals
and birds [31]. Human YPT infections, though less common
than those caused by YE, are most often acquired from
contaminated food or water [32]. Clinically, YPT infections
typically present as abscess-forming mesenteric lymphadeni-
tis and diarrhea but can also lead to secondary complications,
such as perforation [33], subacute obstruction syndrome
[34], intussusceptions [35], and acute renal failure [36] in

rare cases. Additionally, patients with severe gastrointestinal
bleeding in cases of YPT colitis have also been reported
[37–39]. Similar to YE, the most common features of YPT
infections in humans are ileocolitis and mesenteric lym-
phadenitis [40], the latter of which can affect appendix tissue
and be mistaken for appendicitis [41]. YPT infections can be
acute or chronic [42], with reticulogranulocytic infiltration,
enlarged follicles, and necrosis with abscess formation in
mesenteric lymph nodes [39, 43, 44]. Infection is usually
self-limiting, but rare cases of sepsis can lead to a very
high mortality rate (>75%) [45]. In addition to appendicitis,
YPT infections have been confused with tumoral lesions
[46], terminal ileitis, and Crohn’s disease [47]. YPT has also
been implicated in reactive arthritis, erythema nodosum, and
Kwasaki autoimmune syndrome [48].

1.3. YE Epidemiology. Surveillance of human YPT infections
is not routinely performed, and there are thus no complete
databases from which information can be used to gauge
trends in human YPT infections. However, there are several
national surveillance networks that include yersiniosis in
weekly, monthly, and yearly reports of human enteric disease
cases/isolations, particularly those collected by member
states of the European Union, the United States, and New
Zealand. Potential sources of epidemiological data include
clinical reports, laboratory isolations, sentinel site studies,
reported cases, and rates calculated as cases per 100,000
persons in the affected population surveillance area per
annum. Differences in reporting methods, isolation meth-
ods, and availability of strain information greatly complicate
comparisons among countries and sometimes even among
different regions/states/territories within an individual coun-
try. Furthermore, yersiniosis is infrequently monitored in
developing countries, where enteric diseases are a major
cause of infant and child mortality. For instance, the World
Health Organization initiated a plan to address this issue in
Africa in 1998 by working with member states and technical
partners to implement the integrated disease surveillance and
response (IDSR) program, but yersiniosis is not included as
a primary surveillance target. Similarly, the Medical Sciences
Center for Disease Control (http://www.moh.gov.cn), a di-
vision of China’s Ministry of Health, reports communicable
disease incidences on a weekly basis, but the plague is the
only yersiniae-associated disease included in their surveil-
lance efforts.

Despite the lack of surveillance in many countries, in-
cluding Africa, Asia, the Middle East, Pacific Islands, Latin
America, the Caribbean, and others, there are several nation-
al agencies in North America and Europe that provide yearly
reports which include sporadic yersiniosis cases, outbreaks,
and incidence rates in both humans and animals. As shown
in Figure 1, there was a broad range of case reports for North
America (including the US and Canada), Oceania (including
Australia and New Zealand), and several European countries.
For instance, Ireland reported between 3 and 14 isolations
of YE/YPT from humans between the years of 2000 and
2009, while Germany reported between 3,906 and 7,186
confirmed cases of human yersiniosis during this same time

http://www.moh.gov.cn
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Figure 1: Human yersiniosis cases reported for selected countries that conduct active annual surveillance for the yersiniae. Surveillance
data for years 2000 to 2009 were collected from national repositories for Canada (National Microbiology Laboratory, http://www
.publichealth.gc.ca), the United States (FoodNet, http://www.cdc.gov/foodnet), 24 European Union members (European Food Safety
Authority, http://www.efsa.europa.eu), New Zealand (The Institute of Environmental Science and Research, http://www.surv.esr.cri.nz),
Australia (OZFoodNet, http://www.ozfoodnet.gov.au), Northwestern Russia, the Republic of Karelia, Ukraine, and Belarus (EpiNorth
Project, http://www.ozfoodnet.gov.au). Russian data was obtained only from the following participating regions: Arkhangelsk oblast,
Kaliningrad oblast, Leningrad oblast, Murmansk oblast, Nenets Autonomous okrug, Novgorod oblast, Pskov oblast, St. Petersburg City,
Vologda oblast, and the Republic of Komi. For comparison, countries defined as Western European nations based on the classification
scheme used by the United Nations include Austria, Belgium, France, Germany, and Luxembourg (which are marked with an asterisk). As
shown, Germany reported the greatest number of human cases per annum for the ten-year period included (years 2000–2009), compared
to all other countries examined, including the bordering countries of Denmark, Poland, Czech Republic, Austria, and France. The annual
cases reported are shown on the ordinate, with the axis broken between 1,000 and 4,500 cases to allow the inclusion of Germany and other
countries in one graphical display. Yearly cases were not adjusted for population differences. Individual countries are listed on the abscissa.
USA: United States; UK: United Kingdom.

period (Figure 1). Although, incidences have declined over
the last 10 years (Figure 2), German yersiniosis cases account
for more than half of all reported European yersiniosis
events and ∼90% of those within Western European nations
that regularly surveyed their populations for YE-associated
infections during the aforementioned ten-year-time frame
(Figure 1). The reasons for the dramatically higher yersinio-
sis incidence rate in Germany compared to all other countries
with active YE/YPT surveillance programs is unclear, but
potential factors include variability in yersiniae isolation
procedures and reporting systems, differences in clinical
diagnostic frequency, degree of underreporting, prevalence
of YE and YPT in animal reservoirs, differences in food proc-
essing, and variability in the consumption of meat products.
There is some evidence to support the idea that higher meat
consumption, particularly pork in Germany compared to
other European nations might correlate with Germany’s
higher incidence of yersiniosis [49].

1.4. YE Genomics. YE is a heterogeneous group of organisms
characterized by six biotypes and 60 serotypes. Biotypes can
be distinguished based on level of pathogenicity, only one
of which is nonpathogenic (Biotype 1A). “Old World” YE

includes Biotypes 2–5, which are weakly pathogenic. Most
virulent is the “New World” Biotype 1B, which is highly
pathogenic to humans and lethal in a mouse model of infec-
tion [50]. Of the sixty serotypes of YE, only eleven have been
associated with disease in humans, and the majority can be
traced to only three commonly virulent serotypes: O:3, O:8,
and O:9. These three serotypes are generally considered the
causative agents of yersiniosis and vary based on geography.
For instance, strain 1B/O:8 has been the predominant version
of pathogenic YE in the United States [15]; in contrast, strain
3/O:9 is the most common cause of yersiniosis in China and
in Europe [51, 52].

Isolates from these two pathogenic strains were se-
quenced [53, 54] and recently compared to identify common
and unique virulence regions [54]. The results of this analysis
indicated that the two strains share considerable genetic
conservation/similarity, including most of the known YE vir-
ulence determinants. However, several 1B/O:8 key virulence
regions were absent in the 3/O:9 strain [54] including high
pathogenicity island (HPI) [55], Yersinia type II secretion
1 (yts1) [56], and the Yersinia Type III secretion apparatus
(ysa). Likewise, the 3/O:9 strain possessed pathogenicity
regions absent in the highly pathogenic 1B/O:8 strain. Strain

http://www.publichealth.gc.ca
http://www.publichealth.gc.ca
http://www.cdc.gov/foodnet
http://www.efsa.europa.eu
http://www.surv.esr.cri.nz
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http://www.ozfoodnet.gov.au
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Figure 2: Line graph comparing the yearly incidence rate
of yersiniosis reported for various European countries, North
America, and Oceania. Surveillance data were collected from
national repositories for Canada (National Microbiology Labo-
ratory, http://www.publichealth.gc.ca), the United States (Food-
Net, http://www.cdc.gov/foodnet), 24 European Union mem-
bers (European Food Safety Authority, http://www.efsa.europa
.eu), New Zealand (The Institute of Environmental Science
and Research, http://www.surv.esr.cri.nz), Australia (OZFoodNet,
http://www.ozfoodnet.gov.au), Northwestern Russia, the Republic
of Karelia, Ukraine, and Belarus (EpiNorth Project, http://www
.epinorth.org). The yearly incidence rate (cases per 100,000 in the
surveillance population) was calculated based on total reported
cases per year and published population figures included in
published surveillance reports or governmental census sites. For
countries where surveillance did not include the entire population,
rates were adjusted based on the surveillance population and
case information provided with the original surveillance data. For
countries that did not provide data for all years included in the
analysis (i.e., 2000–2009), the rate was extrapolated using linear
regression (e.g., Canada, Australia, and Luxembourg). Notification
rate (calculated as explained above) per 100,000 persons is shown
on the ordinate, and a total of 30 countries presented by region are
displayed on the abscissa. Western Europe (WE) includes Austria,
Belgium, France, Germany, and Luxembourg. North America
includes Canada and the United States. Northern Europe includes
Latvia, Lithuania, Estonia, the United Kingdom, Ireland, Denmark,
Norway, Finland, Sweden, and the Republic of Karelia. Eastern
Europe includes the Czech Republic, Poland, Slovakia, Hungary,
Bulgaria, the Ukraine, Belarus, and Northwestern Russia. Southern
Europe includes Slovenia, Spain, and Malta. Oceania includes New
Zealand and Australia. All of the available European data considered
together (aE), representing a total of 28 countries, is also shown for
comparison.

3/O:9-specific regions included a novel chromosomally
encoded Type III secretion system (T3SS), ATP binding cas-
sette transporter system, toxin-related gene clusters, and a
flagellar gene cluster [54]. Sequencing additional YE strains,
such as 4/O:3 that has recently emerged as an important
cause of yersiniosis in the United States [57], will likely
contribute to a better understanding of the relationship

between strain-specific virulence factors and variations in
clinical sequelae.

1.5. YPT Genomics. YPT can be classified into 14 distinct
biotypes [58], five of which are almost exclusively pathogenic
(O1–O5). The remaining nine biotypes (O6–O14) have been
isolated from animals and the environment but never from
human clinical samples [58–61]. Both pathogenic and non-
pathogenic YPT can be further subdivided into 21 serotypes
[62] based on the distribution of about 30 different O fac-
tors (O-specific polysaccharide of lipopolysaccharide [LPS])
within the species [58]. These serotypes vary geographically
and in degree of pathogenicity [63], generally correlating
with the size and presence of the chromosomal pathogenicity
island, HPI [63]. Only Biotype O1 strains contain a com-
plete, intact HPI. Biotype O3 contains a truncated version,
and the pathogenicity island is entirely absent from all
other YPT strains that have thus far been examined [64–
66]. The pathogenicity of YPT depends on the presence
of the T3SS-encoding virulence plasmid pYV [67], YPMa
[68], and HPI [69] (described in detail in the next section),
and clinical features are closely correlated with the various
combinations of these three virulence factors. For instance,
pYV is absent in one-fourth of the known virulent serotypes,
which instead express the YPMa superantigen variant and/or
HPI proteins [63]. The heterogeneous distribution of these
factors accounts for the differences in clinical manifestations
of infections in the Far East, Europe, and Western countries
[63, 66, 70–72].

1.6. YE and YPT Virulence Factors. The genomes of YE,
YPT, and YP are 97% identical, but the three bacteria cause
vastly different diseases in humans, despite having a shared
tropism for lymph nodes [73–76]. Their distributions of
shared and unique virulence factors play a critical role
in the different routes of infection, types of infections,
and severity of disease in humans. Both chromosomal and
plasmid-derived virulence factors play a role in yersiniae
pathogenesis and in the establishment and progression of
yersiniosis. YE pathogenicity depends on the presence of
the 70-kb plasmid associated with Yersinia virulence, pYV
[67, 77–79]. The pYV plasmid differentiates pathogenic from
non-pathogenic strains, because it is essential for virulence
[79]. The highly pathogenic Y. enterocolitica biotype 1B also
harbors the chromosomal high-pathogenicity island (HPI),
as do almost all European strains of Y. pseudotuberculosis
serotype O1 [69]. HPI encodes proteins that are involved in
the biosynthesis, regulation, and transport of the siderophore
yersiniabactin [80, 81] and has thus been referred to as an
“iron capture island” [63, 69]. There are five main genes
within this island (psn, irp1, irp2, ybtP, and ybtQ) that are
involved in the yersiniabactin system [80, 82, 83]. This system
is positively regulated by YtbA, which is, itself, negatively
regulated by the iron-responsive regulator Fur [84]. The
psn and irp2 genes are important for the high-pathogenicity
phenotype of YPT [69, 85].

Almost all Far Eastern strains of YPT additionally pro-
duce one of three variants of a chromosomally encoded novel

http://www.publichealth.gc.ca
http://www.cdc.gov/foodnet
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Figure 3: Mechanisms of action of the enteropathogenic yersiniae Ysc T3SS effectors (Yops) on host cell signaling and survival. As shown,
membrane-bound Yersinia Yad and invasin proteins bind host cell β1-integrins, bringing the bacteria into close proximity to the host cell
thereby facilitating insertion of the T3SS injectisome needle-like structure into the targeted host cell. Yops are then translocated across the
host plasma membrane and into the cytoplasm, where they interact with the cytoskeleton and host cell signaling molecules. YopO/YpkA
interacts directly with the cytoskeleton, as well as the small GTPase signaling molecules, RhoA, Rac1, and Cdc42. YopE inhibits the
activities of RhoA, Rac1, and Cdc42. YopP/J promotes LPS-induced host cell apoptosis and directly induces capsase-1 cleavage. YopP/J also
inhibits mitogen-activated protein kinases (MAPK) and IKK-mediated NF-κB activation, which prevents expression of proinflammatory
and cell survival genes. YopM forms a complex with Rsk and Pkn in the host cell nucleus, which is believed to contribute to bacterial
pathogenesis. The figure was produced using Pathway Builder 1.0, a cell signaling drawing tool provided through the Protein Lounge
(http://www.ProteinLounge.com).

superantigenic toxin YPM (YPT-derived mitogen) encoded
by the ypm gene [86, 87]. The original YPM (renamed YPMa)
is encoded by ypmA [88] and plays a more important role
in systemic infections than in gastroenteritis [68]. The other
two variants, YPMb and YPMc, are encoded by the ypmB and
ypmC genes, respectively [88, 89].

The small conserved RNA chaperone protein, Hfq is
required for full virulence of a variety of pathogenic bacteria,
including both YE and YPT [90]. Hfq is required for expres-
sion of the heat-stable enterotoxin Yst in YE [91]. In YPT,
Hfq plays a role in the regulation of motility, intracellular
survival, and production of T3SS effectors [90].

The YPT chromosomally encoded PhoP/Q system [92]
regulates survival and growth in macrophages [93, 94] and
covalent modifications of LPS that reduce its stimulatory
capacity [95], thereby empowering bacteria to avoid, mini-
mize, or delay macrophage activation. In a mouse model of
intestinal infection, mutants devoid of PhoP were 100-fold

attenuated in virulence due to a reduced capacity to survive
and replicate intracellularly within macrophages [93]. The
global PhoPQ regulon also senses the reduction in Mg2+

and possibly Mn2+ levels that characterizes the intracellular
environment of host cells. MntH, a putative Yersinia Mn2+

transporter, was recently proposed to promote survival of the
bacteria within phagocytic vacuoles by protecting them from
reactive oxygen species [96].

1.7. Establishment of Yersiniosis Infection. In many patho-
gens, virulence factors are closely coupled to temperature,
and this temperature regulation is particularly important for
the establishment of infection. At environmental tempera-
tures (less than 28◦C) and under acidic conditions at 37◦C,
the enteric yersiniae optimally express the invasin protein,
which is encoded by the chromosomal inv locus [17, 18].
Upon ingestion, invasin binds to B1 integrins on host cells
and facilitates penetration of the epithelial layer (Figure 3).

http://www.ProteinLounge.com
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The gradual increase in temperature within the host induces
the expression of virulence factors necessary to establish a
stronghold within the lymph tissues and evade immune sys-
tem detection. Expression of the chromosomal ail (attach-
ment invasion) locus, for instance, is induced at 37◦C, and the
resulting Ail/OmpX protein further enhances epithelial cell
invasion. Establishment of infection also requires transloca-
tion of toxic effectors via a T3SS as well as “other transporter
systems” [97]. Regulation of adherence and invasion is me-
diated via the regulator of virulence A (RovA), which pos-
itively regulates inv expression, Yersinia-modulating protein
(YmoA), and histone-like nucleoid structuring protein (H-
NS) [98–103].

Yersinia adhesion A protein (YadA) also mediates mucus
and epithelial cell attachment and, in concert with invasin,
promotes host cell invasion (Figure 3). YadA is a multi-
functional, surface-exposed virulence factor encoded on the
pYV virulence plasmid that confers the ability to adhere
to extracellular matrix proteins [104–106]. Induction of
YadA expression is coordinated with the upregulation of
Yops (Yersinia outer membrane proteins) [107, 108]. The
contribution of YadA to virulence is greater for YE than for
YPT, playing a significant role in the positive regulation of
both adherence to and invasion of host cells [105, 109]. YadA
plays only a minor role in YPT, conferring merely an adhesive
phenotype [110–112]. Similar to invasin, YadA initiates
internalization by binding to extracellular fibronectin that
is bound to a 5b1 integrin [105]. YadA from YPT and YE
binds fibronectin, collagen I, II, and IV, and laminin, albeit
with different affinities thus promoting variable virulence
properties [105]. YadA elicits an inflammatory response in
epithelial cells by inducing mitogen-activated protein kinase-
(MAPK-) dependent interleukin (IL)-8 production and by
contributing to the resulting intestinal inflammatory cascade
[113, 114]. Interaction of YadA with collagen has been
proposed to contribute to chronic yersiniosis infections, such
as the development of reactive arthritis [113–116] which has
been demonstrated in a rat model [117–119].

In addition to inhibition and invasion of host cells, both
Ail and YadA play significant roles in complement resistance
and immune evasion. Ail and YadA inhibit the alternative
complement pathway by binding regulator factor H and
usurping its natural function to prevent lysis of host cells
[120–123]. Ail and YadA similarly subvert the classical
complement and lectin pathways by binding to C4b-binding
protein, thereby promoting the degradation of the C4b
complement factor and preventing the formation of the C3
convertase that would otherwise lead to lysis of the bacterial
cells [123].

Other YPT virulence factors include the putative DNA
adenine methyltransferase, YamA, which is required for full
virulence [124], and several proteins that aid in bacterial sur-
vival under acidic conditions. An aspartate-dependent acid
survival system was recently described for YPT, which plays a
role in bacterial survival and thus facilitates establishment of
infection [125]. A drop in pH induces the expression of the
YPT aspertase (aspA) gene; the encoded gene product, AspA,
subsequently produces ammonia, allowing the ingested
organisms to survive the acidic gastrointestinal environment

[125]. Other bacterial factors that promote survival under
acidic conditions include urease [126], TatC [127], PhoP,
OmpR, and PmrA [128, 129]. Acidic pH also induces a
downregulation of the transcriptional regulator, Cra (for
catabolite repressor/activator), which increases bacterial acid
survival [130]. Presumably Cra mediates this action via tran-
scriptional regulation, but its mechanism of action remains
unknown.

1.8. T3SS and Yop Effectors. The T3SS, which is encoded on
the pYV virulence plasmid and is common to all three patho-
genic yersiniae, plays a substantial role in both the establish-
ment and outcome of infection. The T3SS injectisome spans
both the inner and outer bacterial membranes, and virulent
effector proteins, termed Yersinia outer proteins (Yops), are
translocated through a host-cell docked Yersinia secretion
protein F (YscF) needle, directly into the targeted host cells
[131]. The YopB and YopD proteins form a pore in the host
cell plasma membrane, allowing for the docking of the YscF
needle and eventual translocation of the effectors (Figure 3).
Proper assembly of a stable injectisome complex also requires
the YscE and YscG cytosolic chaperone proteins [132].
There are six effector Yop proteins (YopE, YopH, YopP/J,
YopO/YpkA, and YopM) that mediate immune evasion by
interfering with host signal transduction pathways, disrup-
tion of the host actin cytoskeleton, and by inducing host-cell
apoptosis (Figure 3) [133, 134].

Delivery of Yops requires close contact between the bac-
terial and host cells and is mediated by YadA and invasin
through their binding to β1-integrins (Figure 3) [135, 136],
which when stimulated cause the activation of Src kinases
and RhoA that facilitate Yop translocation via modulation of
actin polymerization [137]. In the absence of Yops, activation
of β1-integrins would instead lead to actin rearrangements
that promote bacterial internalization [138]. Each Yop has
a designated chaperone called a Syc protein (for specific
Yop chaperone) (e.g., SycE for YopE), required for Yop
secretion [133]. The T3SS injectisome is triggered by host-
cell contact [139], as well as in vitro by temperature
(37◦C) and low calcium conditions (which serve to emulate
intracellular conditions of the host cells) [140–142]. Yop
effectors allow evasion of immune responses by blocking
host phagocytic function [133, 143, 144], which is vital for
bacterial replication and intracellular survival. The Yersinia
T3SS pore itself was recently suggested to trigger processing
of IL-1β and IL-18 in macrophages [75, 145] and subsequent
formation of an inflammasome, a cytosolic innate immune
complex [146] that triggers inflammation and pyroptosis in
response to pore formation [147, 148].

Host cell death is mediated by the YopP/J effector, a
serine-threonine acetyltransferase that induces apoptosis of
phagocytes by modulating the actions of LPS (Figure 3).
Upon binding to the toll-like receptor (TLR)-4, LPS induces
the activation of proapoptotic host factors via TRIL (Toll/IL-
1 receptor domain-containing adapter inducing IFN-β) [149,
150], while simultaneously downregulating proinflamma-
tory and cell survival genes via inactivation of MAPK and nu-
clear factor kappa B (NF-κB) transcription factor (Figure 3)
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[151–153]. YopP/J specifically inhibits the inflammatory and
cell survival actions of LPS [154, 155], thus tipping the
scale towards host cell apoptosis [150, 156]. YopP/J-mediated
inhibition of host cell proinflammatory responses involves
inhibition of IKKβ activation, and thus NF-κB activity
(Figure 3) [157], which results in the reduction of TNF-α
release by macrophages [158], prevention of IL-8 secretion
by epithelial cells [155], and reduction in the presentation
of ICAM-1 and E-selectin adhesion factors on the surface of
epithelial cells [159]. More recently, it was shown that YopP/J
also directly activates caspases (Figure 3) independently of
upstream death receptors [160–162].

Once injected into the host-cell cytoplasm, YopE, -H, -P,
and -T cooperatively disrupt the cytoskeleton of epithelial
cells, macrophages, and dendritic cells thereby decreasing
their capacity to engulf the invading bacteria. YopP/J can also
facilitate evasion of adaptive immune responses by inhibiting
the ability of dendritic cells to present antigens to CD8+

T cells [163], either directly or possibly by decreasing the
population of dendritic cells via induction of apoptosis
[162, 164, 165]. A similar strategy is employed by YPT using
the GTPase activating protein (GAP), YopE, to circumvent
phagocytosis by dendritic cells [163, 166]. In addition to
the Yersinia injectisome and effector proteins, at least three
adaptor proteins YopB, YopD, and VirF/LcrV (low calcium
response V antigen) are required for T3SS activity [133].
VirF/LcrV (also called V antigen) is a multiple adaptational
response (MAR) family member that regulates the T3SS at
the level of transcription and, when secreted into the extra-
cellular host environment, contributes to virulence by down-
regulating inflammation [167, 168].

YopE, YopT, and YopO/YpkA counteract host-cell phago-
cytosis by acting on monomeric Rho GTPases responsible
for regulation of cytoskeleton dynamics [133]. YopE exhibits
GAP activity, thereby inducing GTP hydrolysis and, thus,
inactivation of RhoA, Rac1, and Cdc42 (Figure 3) [169–171].
YopT, on the other hand, acts as a cysteine protease that
inactivates Rho, Rac, and Cdc42 via cleavage [172, 173].
YopO/YpkA is a serine-threonine kinase with sequence and
structural similarity to RhoA-binding kinases that undergoes
autophosphorylation upon binding to actin [174–176].
YopO can also bind directly to RhoA and Rac-1 with cur-
rently unknown consequences [133].

The YopH effector was also recently shown to inhibit host
inflammatory responses via the downregulation of chemok-
ine monocyte chemoattractant protein 1 (MCP-1) [177].
YopH of YPT inhibits activation of the phosphatidylinositol
3-kinase pathway, resulting in the prevention of antigen-
mediated activation of lymphocytes [177, 178]. YopH, a
protein tyrosine phosphatase, disrupts T-cell and B-cell ac-
tivation by interfering with phosphorylation signaling events
resulting in decreased expression of the costimulatory mol-
ecules B7.2 and CD69, as well as the leukocyte mitogen,
IL-2 [178, 179]. Very little is known about YopM, but its
deletion results in a dramatic decrease in virulence [180].
YopM appears to be injected into host cells, along with other
T3SS effector proteins [181], but there is also evidence that
YopM can bind to the extracellular acute phase protein α1-
antitrypsin [182]. More recently, YopM was shown to form

a complex with ribosomal S6 kinase (RSK) and protease-
activated kinase (PKN) (Figure 3) [183], which results in sus-
tained activation of RSK and possibly contributes to Yersinia
pathogenicity [184, 185].

1.9. Chromosomal T3SSs. In addition to the pYV-encoded
T3SS, there are two additional chromosomally encoded
T3SSs in YE: a flagellar T3SS and the Ysa T3SS [186, 187].
The Ysa T3SS is optimally expressed under high salt con-
centrations, 26◦C, and at stationary growth phase [186, 188,
189]. Salt responsiveness is mediated by the sycByspBCDA
operon, which is regulated by YsaE and the SycB chaperone
[189]. The Ysa T3SS plays a role in virulence [186] and is
important for colonization of the small intestine despite its
optimal expression at non mammalian temperatures (26◦C)
[190]. There are 15 known Ysa effector proteins (Ysps),
which are thought to function similarly to Yop effectors as
modulators of host immune responses [191]. Interestingly,
the flagellar T3SS, which functions in the biogenesis of
flagella, secretes Fop effectors that also play a role in the
pathogenesis of YE [187]. YplA (Yersinia phospholipase A),
for instance, is a Fop required for colonization of Peyer’s
Patches and mesenteric lymph nodes that contributes to in-
flammatory responses within these tissues [192].

1.10. Type VI and IV Secretion System. T3SSs are not the
sole secretion systems identified in the yersiniae that promote
bacterial virulence. In fact, a type VI secretion system
(T6SS) was recently identified in YPT, which harbors four
copies, one of which was recently shown to be regulated
by temperature, growth phase, and the N-acyl homeserine
lactone-AHL-dependent quorum sensing system [193]. YPT
also harbors a type IV pilus gene cluster that contributes to
pathogenicity [194].

1.11. Host Responses to YE and YPT Infection. Yersinia infec-
tions are biphasic and are initiated by a “quiet” 36–48 hour
period of bacterial replication without a measurable host
response. This initial “quiet” phase is followed by an influx of
activated phagocytes into infected tissues and lymph nodes,
which induces an acute inflammatory response characterized
by cytokine production and tissue necrosis [74, 76, 195–
199]. The T3SS Yop effectors are likely responsible for the
initial inhibition of phagocytic functions, but the mecha-
nisms behind such a sudden, bipolar “off-on” inflammatory
response are presently not fully understood. The T3SS is
absolutely required for effective colonization of systemic or-
gans, and T3SS inactivation leads to rapid clearance of the
bacteria by the host [200–202]. As a result, yersiniae lacking
a functional T3SS are avirulent and can function as live
attenuated vaccine strains in mice [200, 203, 204].

Recent evidence suggests that macrophages can compen-
sate for YopE/YopH-mediated inhibition of the endosomal
MHC class II antigen presentation pathway by an autophagy-
dependent mechanism [205]. Thus, autophagy might serve
as an alternative counter-pathway by which the host might
mount an MHC class II-restricted CD4+ T-cell response
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against Yersinia T3SS-mediated translocation of Yop viru-
lence effectors [205]. However, whereas Deuretzbacher et
al. [206] demonstrated autophagy-mediated degradation of
macrophage internalized YE, YPT was shown to usurp the
autophagosome pathway for continued replication within
macrophages at the intestinal site of infection [207].

Murine studies have demonstrated that CD4+ and CD8+

T cells are required for control of YE infection [196, 208],
as are IFN-γ-mediated Th1 immune responses, including
macrophage production of TNF, IL-12, and IL-18 [209–212].
Inhibition of T-cell proliferation and dendritic cell functions
by Yops are primary mechanisms by which the yersiniae
evade both innate and adaptive immune responses [213].
Interestingly, the yersiniae induce both apoptosis of naı̈ve
macrophages and inflammatory cell death (pyroptosis) of
activated macrophages, which is consistent with its biphasic
infection process [73, 75]. Increased inflammation associated
with the redirected host cell death could initially benefit the
yersiniae but later could contribute to a generalized immune
response and eventual clearance of bacteria [73, 75].

1.12. Detection and Prevention of Food-Borne Yersiniosis. YE
and YPT clinical infections most often occur following in-
gestion of the bacteria in contaminated food or water. The
two aforementioned yersiniae have been isolated from meat,
fresh produce, and milk, but their presence is frequently
unapparent due to detection difficulties. Various YE strains
are most often distinguished by pulsed-field gel electropho-
resis (PFGE), but there is currently no standardized test or
database for consistent identification. Moreover, enteropath-
ogenic Yersinia species are not included in the protocols that
are used by laboratories in PulseNet which, in cooperation
with the Association of Public Health Laboratories (APHL),
coordinates with public health laboratories to subtype
bacterial foodborne pathogens [214]. The heterogeneity of
both YE and YPT makes definitive detection difficult, and
PFGE produces multiple bands that are not especially dis-
tinctive based on serotype [29, 215–217]. Some reports have
suggested that current detection methods can produce
false-negatives or false-positives based on variability in the
presence of Yersinia virulence factors, and their variable
correlation with pathogenicity [218, 219]. Suggestions for
improving detection include the use of more than one
restriction nuclease in PFGE analyses [29] and application
of a recently developed multilocus variable-number tandem-
repeat analysis (MLVA) for YE [220, 221].

Detection is an especially important concern, because
both YE and YPT can readily proliferate at refrigeration tem-
peratures (4◦C) and even as low as 0◦C. Furthermore, the
enteropathogenic yersiniae can likewise adapt to and thrive
under modified atmospheric conditions that are often used
in conjunction with colder temperatures as common meth-
ods of food preservation. Survival and cell growth at low
temperatures are accomplished via a short-term, cold-shock
response, in which a variety of stress response proteins are
produced that mediate bacterial adaptation to the sudden
drop in temperature (reviewed in [222]). Both YE and YPT
are also capable of more long-term cold adaptation, a process

that requires polynucleotide phosphorylase (PNPase), a
cold-shock exoribonuclease that enhances both T3SS func-
tion as well as promoting growth under cold conditions
[223].

Pathogenic YE produce insecticidal toxins, encoded by
tc (toxin complex-like) genes located within a chromosomal
pathogenicity island [224, 225]. These insecticidal toxins are
expressed at low temperatures [226], but they are nonetheless
thought to possess virulence functions in mammalian hosts
[224, 225]. It is possible that the presence of these insecticide
toxins suggests that the normal life cycle of YE includes an
insect stage, as previously proposed [226], and these toxins
might facilitate growth of the organisms in refrigerated
food products. Tc proteins in YPT, on the other hand, do
not possess insecticide activity but rather confer toxicity to
mammalian cells [227] and might, therefore, play a role in
human disease.

The presence of β-lactamases that confer antibiotic
resistance to some pathogenic strains of YE [228, 229] under-
scores the importance of surveillance for these pathogenic
organisms. While these organisms are not monitored nation-
ally, yersiniosis incidence rates and patient demographics in
the United States are collected annually by the Foodborne
Diseases Active Surveillance Network (FoodNet). FoodNet
reported 1,355 and 18 human yersiniosis cases of YE and
YPT, respectively, in the U.S. between 1996 and 2007. How-
ever, based on FoodNet’s assessments [230], cases of yersinio-
sis, especially those caused by YPT, are likely under-estimated
in the U.S. due to lack of testing and difficulty associated with
culturing the yersiniae on standard media [231, 232].

2. Conclusions

YE is the major cause of yersiniosis in humans, although
prevalence of YPT-associated disease is likely underreported
due to lack of surveillance and differences in applied isolation
strategies. Extreme heterogeneity among strains of YE and
YPT further complicates efforts to link contamination to the
source and monitor human disease in a uniform manner
comparable to other more thoroughly studied food-borne
pathogens (e.g., Salmonella). Although a plethora of animal
hosts serve as reservoirs for both YE and YPT, human
disease-associated yersiniae are most prevalent in swine. In
healthy individuals, the resulting illness can manifest as
mild, self-limiting diarrhea, but in young children and im-
munocompromised individuals yersiniosis can represent a
significant source of morbidity and mortality. Additionally,
chronic diseases, such as reactive arthritis and secondary (or
nosocomially derived) complications such as sepsis, can de-
velop in immune compromised persons.

YE and YPT are heterogeneous organisms that differ in
genomic content and degree of pathogenicity. Two pathogen-
ic strains (1B/O:8 and 3/O:9) have been sequenced and com-
pared [53, 54] to gain insight into virulence mechanisms re-
quired to initiate infection and cause acute symptoms or
chronic conditions in patients. YE infection is generally estab-
lished via consumption of contaminated food or water and
involves adherence to and translocation across the intestinal
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barrier via M cells [16]. Other virulence factors include the
pYV plasmid, which encodes a T3SS essential for YE patho-
genicity [79], and the chromosomal HPI locus found in
highly pathogenic strains [69]. Pathogenic YPT strains en-
code a novel superantigenic toxin, YPM that contributes to
systemic infections [68] and a PhoP/Q system important for
regulation of bacterial survival and growth within macropha-
ges [93, 94]. Type IV pilus genes [194] and a recently discov-
ered T6SS [193] also contribute to yersiniae virulence. While
a great deal of molecular work has contributed significantly
to a better understanding of YE and YPT pathogenicity, there
is much to be gained from future studies, particularly those
aimed at dissecting the contributions of various virulence
factor combinations to pathogenicity, the resulting type of
infection, and ability of the host immune system to clear
the bacteria. Very little is known about yersiniae-associated
autoimmune disease and other chronic conditions. For in-
stance, YPT is much less studied than YE and thus might
be underappreciated as a causative agent of yersiniosis. As
such, yersiniosis surveillance efforts concentrate almost ex-
clusively on YE, making attempts to accurately estimate YPT-
associated gastroenteritis incidence nearly impossible.

Enteropathogenic YE and YPT cause yersiniosis globally
and are of significant concern to the pork industry. The abil-
ity of the enteropathogenic yersiniae to replicate and thrive
at refrigeration temperatures, coupled with their seemingly
ubiquitous nature, suggests that future and more uniform
surveillance measures are inevitable and requisite. At present,
enteropathogenic yersiniae cases are likely underestimated;
however, recent preventative measures in the pork industry
and increased attention, both in the research laboratories and
clinics, will provide much needed insight and better strate-
gies for managing yersiniosis. Furthermore, more thorough
and uniform surveillance measures will allow us to more
accurately gauge national and global yersiniosis trends and
better predict which agricultural, hygienic, and clinical ef-
forts are effective in reducing the incidence of yersiniosis
infection in the general population.
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