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Abstract: Many application scenarios require indoor positioning in fifth generation (5G) mobile
communication systems in recent years. However, non-line of sight and multipath propagation lead
to poor accuracy in a traditionally received signal strength-based fingerprints positioning system. In
this paper, we propose a positioning method employing multivariable fingerprints (MVF) composed
of measurements based on secondary synchronization signals (SSS). In the fingerprint matching, we
use MVF to train the convolutional neural network (CNN) location classification model. Moreover, we
utilize MVF to train the path-loss model, which indicates the relationship between the distance and the
measurement. Then, a hybrid positioning model combining CNN and path-loss model is proposed
to optimize the overall positioning accuracy. Experimental results show that all three positioning
algorithms based on machine learning with MVF achieve accuracy improvement compared with
that of Reference Signal Receiving Power (RSRP)-only fingerprint. CNN achieves best performance
among three positioning algorithms in two experimental environments. The average positioning
error of hybrid positioning model is 1.47 m, which achieves 9.26% accuracy improvement compared
with that of CNN alone.

Keywords: indoor positioning; multivariable fingerprints; convolutional neural network; path-loss
model; 5G

1. Introduction

With the rapid development of Internet of Things technology, location-based services
such as navigation and positioning are receiving extensive attention. The global navigation
satellite system (GNSS) works well in an outdoor environment [1]. However, in a complex
indoor environment, the signal of satellite is weakened due to blockage and multipath
propagation. GNSS often has poor accuracy or even fails to work. In order to obtain
satisfactory indoor location, many methods have been proposed, such as Ultra-Wide Band
(UWB), Wi-Fi technology, Bluetooth and so on [2–4]. However, they are not widely deployed
and not affordable for personnel positioning during epidemic control for COVID-19 or
large-scale exhibition, such as Import Expo. The existing cellular network is suitable for
these location-based services adjusting to the new times, and there is no need to lay a large
number of special hardware.

From the first generation (1G) to the fifth generation (5G) mobile communication
system, each generation has relevant research contributions for positioning [5]. 2G and 3G
have supported standard positioning methods including timing advance (TA), enhanced
observed time difference (EOTD), uplink time difference of arrival (UTDOA) and GNSS-
based method [6]. In the 4G standard for both the control plane and the user plane, many
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positioning methods are available, such as Cell ID (CID), user equipment (UE)-assisted and
network-based enhanced CID (E-CID), UE-based and UE-assisted A-GNSS, UE-assisted
observed time difference of arrival (OTDOA) and UTDOA [7]. With the evolution of
communication technology and the deployment of 5G base stations (BS), the radio signal is
easy to collect. People can easily connect mobile devices such as smart phones to 5G systems
in indoor environments. At the same time, 5G has the advantages of larger bandwidth and
flexible subcarrier spacing, which leads to higher positioning accuracy.

Many researchers have proposed a wide range of machine learning (ML)-based indoor
localization approaches using fingerprints [8]. Random forest (RF)-based location aware-
ness is used to improve the execution time and accuracy [9]. They utilize both the received
signal strength indication (RSSI) and basic service set identifier (BSSID) measurements.
Ref. [10] combines grid search-based kernel support vector machine (SVM) and principle
component analysis (PCA) to improve the localization accuracy. Ref. [11] calculates the po-
sition of UE in 5G system by combining Kalman filter (KF), Universal Kriging (UK) spatial
interpolation algorithm and k-Nearest Neighbors (KNN). However, traditional ML algo-
rithms usually learn the shallow features of the data, which makes them unable to extract
all reliable features from the complex received signal strength (RSS) fingerprints. In recent
years, the indoor fingerprinting positioning system based on deep learning shows better
performance than the traditional methods. Deep-Fi [12] uses a deep neural network (DNN)
with four hidden layers in the Wi-Fi system to train the channel state information (CSI) of
all subcarriers or antennas. DNN is very sensitive to the changes of input data, as when
the data set is not sufficient, the accuracy is not high. ConFi [13] proposed the first Wi-Fi
location algorithm based on convolutional neural network (CNN). The CNN is composed
of three convolution layers and two fully connected layers, which transforms the location
problem into an image classification problem [14]. They group 30 CSI measurements for
30 subcarriers for one antenna at the same reference point to construct a 30 × 30 matrix.
Due to the limitation of hardware, not all base stations support CSI reporting. Ref. [15] uses
CNN and Bluetooth RSS to classify the floor and location. The RSS of 144 Bluetooth APs
collected at each reference point are converted into 12 × 12 eigenvector image. However,
the fingerprinting database based on RSS images needs lots of base stations to achieve
satisfactory positioning accuracy.

For single base station, RSS fingerprint is vulnerable to non-line of sight (NLOS) and
multipath propagation. The features of different positions may be similar and results in
poor accuracy. Therefore, multiple measurements fingerprint is necessary. The reference
signal reception power (RSRP) is combined with the reference signal reception quality
(RSRQ) in the 4G cellular network. This physical layer information of the signal is used to
build a fingerprinting database to improve the positioning accuracy [16]. Ref. [17] presents
a localization method employing a Hybrid Wireless fingerprint (HW-fingerprint) based
on CNN in Wi-Fi systems. Ref. [18] proposed random forest variable selection (RFVS) to
sort variable importance and combinations for establishing multivariable fingerprinting
database in 5G cellular network to improve the robustness of the positioning system.

Indoor positioning methods include trilateration and fingerprinting. Trilateration
obtains the positioning result by calculating the intersection between the geometry, such
as circle or hyperbola. RSS is commonly used to fit the radio propagation path-loss
model [19,20]. It is suitable for large open scenes because of sufficient line of sight (LOS)
path information. Fingerprinting uses the features of the scene to estimate the target
position. The position of the target device is usually determined as the reference point with
the most similar features, such as RSS, delay or channel delay extension [21]. Fingerprints
take the advantages of multipath propagation. Therefore, a combination of localization
algorithms is implemented to improve the overall performance. Adaptive Enhanced Cell-
ID (AECID) adjusts the similarity of signal power fingerprinting according to roundtrip
time (RTT), and uses weighted KNN (WKNN) algorithm to calculate the final position [22].
Ref. [23] combines the fingerprinting system with CSI model under LOS environment to
improve the robustness and accuracy of multidimensional scaling (MDS)-KNN system.



Sensors 2022, 22, 3179 3 of 16

In this paper, we study the indoor positioning problem based on fingerprint in 5G
systems. The fingerprint is established by using four measurements in secondary synchro-
nization signal (SSS). We use CNN to transform the indoor positioning problem into an
image classification problem. At the same time, the path-loss model is trained to improve
the overall positioning accuracy. The method in this paper only uses a single base sta-
tion, but can also be extended to multiple base stations. The main work of this paper is
as follows:

1. We combine four measurements in SSS to construct 5G physical layer multivariable
fingerprints (MVF), and use MVF to train a CNN location classification model for
indoor positioning.

2. We use MVF to train the path-loss model, which indicates the relationship between
distance and radio signal measurement. A hybrid positioning model combining CNN
and path-loss model is proposed to optimize the overall positioning results.

3. We conduct experiments in the actual indoor environment to verify the effectiveness
of the proposed method.

2. System Model

The user equipment (UE) captures the SSS in 5G system and the MVF consist of four
radio measurements of synchronization signal including reference signal received power
(RSRP), reference signal received quality (RSRQ), received signal strength indication (RSSI)
and signal-to-noise and interference ratio (SINR) [24]. The indoor positioning system
based on MVF includes an offline stage and online stage, as shown in the Figure 1.

Figure 1. Indoor positioning system with CNN and path-loss model based on multivariable fingerprints.
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In the offline stage, the positioning area is evenly divided into two-dimensional rect-
angular grid reference points. At each reference point, UE is used to capture SSS containing
multiple radio measurements. The measurements are used to construct observation matrix.
Then, the observation matrix is preprocessed, and the data packets with missing values are
eliminated. We use Kalman filter algorithm to smooth the data, reduce the noise and obtain
the MVF. With the sliding window, the preprocessed observation matrix is transformed into
the observation image. The fingerprinting database is obtained by combining the observa-
tion image and the coordinates of the corresponding reference points. The fingerprinting
database is used to train a CNN location classification model. The MVF and the distance
between reference points and base station are used to train the path-loss model.

In the online stage, the test points are evenly selected in the positioning area. UE is
used to capture SSS containing multiple radio measurements and construct observation
matrix at each test point. Similarly, the data are preprocessed and obtain the MVF. With the
sliding window, the preprocessed observation matrix is transformed into the observation
image. Then, the observation image is provided to the CNN location classification model
trained in the offline stage for pattern matching. The output of the CNN model is the
probability that the test point belongs to each reference point. Use the criterion to judge the
test point whether it fits the path-loss model. If the test point satisfy the criterion, we will
combine the path-loss model and CNN to obtain the positioning results. Otherwise, the
CNN model will work alone.

3. Algorithm and Methods
3.1. Construction of 5G Observation Image

Suppose there are a total of B reference and test points in the positioning area, and the
UE captures C sampling data packets at each point. We express the MVF as the following
5G observation matrix:

Mb =


V1

1 V1
2 V1

3 V1
4

V2
1 V2

2 V2
3 V2

4
. . . . . . . . . . . .
Vc

1 Vc
2 Vc

3 Vc
4

, b = 1, 2, 3, . . . B, c = 1, 2, 3, . . . , C (1)

where b is the index of point while B is total number of points, and c is the index of
data packets while C is total number of data packets. The columns represent four radio
signal measurements RSRP, RSRQ, RSSI and SINR, respectively, which is expressed as
V1, V2, V3, V4, and different rows represent the measurements at different sampling times.

The original observation matrix needs to be enhanced when the training samples
are not sufficient. Traditional data enhancement methods, such as image inversion and
scaling [25], will damage the information contained in the feature for positioning. Instead,
we use sliding window with small sliding step to enhance the data set to prevent the
potential over fitting problem.

As shown in the Figure 2, the observation matrix and sliding window are expressed as
two different matrices. We use a heat map to represent the observation matrix and the color
of heat map varies with the measurements. The sliding window matrix is expressed as a
rectangle with a red border. CNN usually solves the problem of image classification, which
means the traditional fingerprinting database is converted into image before convolution
operation. The sliding window slides down the observation matrix to build the observation
image. Applying CNN on a time-series of measurements is also expected to reduce
the noise and randomness present in separate measurement, and hence improve the
positioning accuracy.
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Figure 2. Observation matrix and sliding window.

Suppose the sliding window has a size of T × 4 (T ≤ C), and we group T sampling of
the observation matrix to reconstruct a T × 4 matrix, which we call 5G observation image:

Ib =


V1

1 V1
2 V1

3 V1
4

V2
1 V2

2 V2
3 V2

4
. . . . . . . . . . . .
Vt

1 Vt
2 Vt

3 Vt
4

, t = 1, 2, 3, . . . , T, b = 1, 2, 3, . . . B (2)

where t is the index of sampling while T is total row number of the observation image.
Therefore, each point will have at least C/T observation images. The observation im-
ages collected at the same point are regarded as samples from the same category for
training CNN.

We set T to 16, so the size of the observation image is 16 × 4. If T is small, the
observation image is too short to capture the time-domain correlation between sample
eigenvalues. The larger the sliding window step size is, the less the observation images
used for training and the lower the positioning accuracy. The smaller the sliding window
step size is, the more the observation images used for training and the longer the training
time. Consider a trade-off between the training time and positioning accuracy, we choose
the step size of 8, which is half the length of the image.

3.2. CNN Location Classification Model

The structure of CNN we use is developed from AlexNet, which has produced re-
markable performance in image classification. As shown in the Figure 3, the CNN location
classification model consists of four convolution layers, one fully connected layer and one
softmax layer in turn.

CNN is robust to noise by using convolution kernel and constructs a higher-level
representation of the input image in the latter layer. A two-dimensional image I is used
as input and the two-dimensional convolution kernel is defined as Kc, the convolution
operation is expressed as:

S(i, j) = (Kc ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j− n)Kc(m, n) (3)
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where the size of the convolution kernel Kc is m× n, the size of the image is i × j. The
larger the convolution kernel, the larger the receptive field and the more information is
obtained. A large convolution kernel may lead to a surge in computational complexity,
which is not conducive to increasing the depth of the model and reducing the computational
performance. The convolution kernel size is usually odd. For each input image, we
employed 10 convolutional filters with 1× 1 kernel size in the first convolutional layer. The
1× 1 convolution layer increases the nonlinear characteristics while keeping the image size
unchanged, which is conducive to feature extraction. We employed 10, 5, 5 convolutional
filters with 3× 3 kernel size in the following three convolutional layers.

Figure 3. CNN location classification model.

Due to the dimension of the observation image itself is not big enough, we pad the
observation image to ensure that the size of the feature image remains 16 × 4 during
forward propagation. We set the stride step of the convolution kernel to one to obtain the
information in the time domain accurately, so that the dimension of the input observation
image will not be reduced. We hope that the fully connected layer can get enough input
features. We believe that each pixel on the observation image is a description of the
location features, so we do not use the pooling layer for down sampling to avoid losing the
information. The dropout layer is added and set to 0.2 after the first fully connected layer
to reduce the influence of over fitting.

The activation function in convolution layer introduces nonlinearity into the neural
network, which is an important factor affecting the performance of the neural network. The
function of activation function is to compress the result of convolution into a fixed range,
so that the numerical range is controlled after multiple convolution layers. We choose the
Rectified Linear Units (ReLUs) as the activation function, which achieves high computing
speed because the resulting neural network has good sparsity. ReLUs are expressed as:

f (x) = max(0, x) (4)

The number of neurons in the output layer is equal to the number of reference points,
so each output neuron corresponds to a reference point. Since the UE may appear near any
reference point, we use softmax as the activation function of the output layer, which means
the sum of all outputs is equal to one. Therefore, the output of neurons is interpreted as the
probability that the UE belongs to the corresponding reference point. The softmax function
is defined as follows:
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pj =
ewT

j qi

∑J
j=1 ewT

j qi
(5)

where pj represents the output of the jth neuron in softmax layer. There are a total of J
output neurons whose number is equal to the number of reference points in the positioning
area. qi is the output of the neuron of the second last layer, wj is the weight connecting the
second last layer and softmax layer, and T represents the transpose of the weight vector.

In the online stage, the observation images of the test points are input into the CNN
location classification model. Because the test point can appear at any position in posi-
tioning area, the estimated position L of the test point is obtained by using the probability
weighted centroid method, which is expressed as:

L =
∑k∈Ω pk(xk, yk)

∑k∈Ω pk
(6)

We sort the probabilities of all reference points in descending order, and Ω is the set of
the first K reference points with high probability. pk is the probability of the kth reference
point. (xk, yk) is the coordinates of the kth reference point.

3.3. Path-Loss Model with MVF

In the ideal free space, the propagation of signal between the transmitter and receiver
conforms to Friss model:

Pr(d) =
PtGtGrλ2

(4πd)2 (7)

where Pr and Pt are the power of receiving antenna and transmitting antenna in mW, Gr
and Gt are the gain of receiving antenna and transmitting antenna. d is distance between
the transmitter and receiver, and λ is wavelength. The power in Equation (8) is expressed
in dBm and the reference distance d0 is introduced:

Pr(d) = −10log10

(
d
d0

)2
+ Pr(d0) (8)

where Pr(d0) is the receiving antenna power when the distance between the transmitter
and receiver is d0.

Multipath propagation is ubiquitous in indoor positioning environment, and logarith-
mic path-loss model with path-loss exponent is more suitable, which is expressed as:

Pr(d) = −10αlog10

(
d
d0

)
+ Pr(d0) (9)

where α represents the path-loss exponent, and its value varies with the environment.
In the offline stage, the secondary synchronization signal data are captured by UE at

each reference point, and the noise of the data is removed by Kalman filter algorithm. The fil-
tered RSRP in MVF is associated with the distance to train the logarithmic path-loss model:

RSRP(d) = −10αlog10

(
d
d0

)
+ C (10)

where d0 is the reference distance, which is set to one meter in this paper, and C is the
average RSRP value at d0.

In online stage, we easily obtain the distance between the test point and the base station:

d
′
= d0 × 10

C−RSRP
10α (11)

where d
′

represents the distance between the test point and the base station.
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The RSRP measurement in MVF will be affected by multipath propagation to varying
degrees. If all reference points in the room are used to train the path-loss model, the
positioning accuracy will be reduced. Therefore, we need to find a criterion to filter out
those points in a severe multipath environment. According to 3GPP TS 38.215, RSRP, RSRQ
and RSSI satisfy the following equation:

RSRQ =
N × RSRP

RSSI
(12)

where N represents the number of resource blocks in the RSSI measurement bandwidth
of the carrier. N relates the three measurements and reflects the degree that one point is
affected by multipath, which will be verified in the experiment section.

We calculate the N value of the reference point by Equation (12). If the N value
of the point satisfies the criterion expressed in Equation (13), the point is in a slight
multipath environment:

|N − N0| ≤ η (13)

where N0 is the theoretical true value of N, and usually N0 = 20 for SSS plus demodulation
reference signal (DMRS) of physical broadcast channel (PBCH). η is a threshold varying
with different environments. The greater the deviation of N from N0, the greater the point
is affected by multipath. We will choose the point less affected by multipath to train the
path-loss model.

3.4. Hybrid Positioning Model

The hybrid positioning model combines CNN location classification model and path-
loss model. In the online stage, we will use hybrid positioning model when the test points
satisfy Equation (13). Otherwise, the CNN model will work alone. We first substitute the
multiple measurements of the test point into the Equation (12) to obtain the N value. When
the N value satisfies the Equation (13), we substitute the RSRP value of the test point into
Equation (11) to obtain the estimated distance d

′
. We obtain the first K reference points with

high probability by CNN model, and the distance between kth reference point and the base
station is defined as dk. Absolute value of the difference between dk and d

′
is calculated:

∆dk =
∣∣∣dk − d

′
∣∣∣ (14)

The smaller ∆dk indicates that the closer the reference point is to the real position of
the test point. The proximity of the kth reference point and the real position of the test point
is defined as sk:

sk =

{
pk +

∑K
k=1 ∆dk
∆dk

, ∆dk ≤ δ

pk, ∆dk > δ
(15)

where pk is the probability of the kth reference point. The threshold δ is determined by the
positioning error of CNN location classification model.

Then the probability of the kth reference point is updated as:

p
′
k =

sk

∑K
k=1 sk

(16)

where p
′
k is the updated probability of the kth reference point and the sum of p

′
k is equal to one.

Finally, we use the probability weighted centroid method to obtain the optimized
positioning coordinates of the test points:

L
′
=

∑k∈Ω p
′
k(xk, yk)

∑k∈Ω p′k
(17)

The detailed steps of hybrid positioning are shown in Algorithm 1:
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Algorithm 1 Hybrid positioning.

Input: Ω: The first K reference points set with high probability estimated by CNN;
pk: The probability of the first K reference points;
(xk, yk): The coordinates of the first K reference points;
dk: The distance between the first K reference points and the base station;
Path-loss model curve and measurements of the test points;

Output: Estimated position of the test point;
1. Initialize parameters N0, η, δ;
2. Substitute the multiple measurements of the test point into the Equation (12) to

obtain the N value;
if |N − N0| > η then

continue;
else

Substitute the average RSRP of the test point into Equation (11) to obtain the estimated
distance d

′
between the test point and the base station;

for dk of the kth reference point do
Obtain the absolute value of the difference ∆dk between dk and d

′
;

end for
if ∆dk > δ then

sk = pk;
else

sk = pk +
∑K

k=1 ∆dk
∆dk

;
end if

Update the probability of the kth reference point p
′
k using Equation (16)

end if
3. Use the Equation (17) to obtain the estimated position of the test point.

4. Experiment Results and Analysis
4.1. Experiment Setup

Our experimental system consists of multiple components, as shown in the Figure 4.
The signal source is Gongjin 5G Sub-6GHz Small Cell base station, the user equipment is
Huawei P40, and the PC is HP Laptop equipped with Inter (R) Core (TM) i5-8250U CPU @
1.60 GHz processor. The PC installs Pilot Pioneer Tools version 10.5.8.32 and HI-SILICON
driver software. The user equipment stores the original radio signal into the PC through the
USB cable, and we use the data analysis tool Pioneer to export the required measurements
for constructing fingerprinting database.

(a) (b)

Figure 4. Experimental equipment: (a) 5G small base station. (b) PC and user equipment.
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In order to verify the validity of MVF and proposed method in various scenarios, we
give the experimental results of two typical indoor environments. The positioning area
is divided into several reference points and test points evenly. The black dots represent
reference points and the red stars represent test points. Establishing a coordinate system
with the first reference point as the origin, we measure and record the coordinates of other
reference points and test points. UE is placed at each reference point and test point to
capture SSS for establishing fingerprinting database. The two rooms are described as
follows and as shown in Figure 5.

(a) (b)

Figure 5. Map of positioning area: (a) Room A. (b) Room B.

Room A: a typical meeting room shown in Figure 5a. The size of room A is 7 m × 6 m
with a table placed in the center, and there is a projector in the front of the room and a
cabinet in the back. The 5G base station is located in the lower left corner of the room
instead of the center to avoid isotropy. The base station towards the room with a height of
2 m. The UE is placed horizontally on a tripod with a height of 1 m, and most positions
are in LOS environment. The positioning area is divided into 41 reference points, and each
point is evenly deployed in a grid of 1 m × 1 m. 23 test points are evenly selected. We
collect data packets at each point for 2 min and the fetch rate is 200 ms/samples.

Room B: a typical office room shown in Figure 5b. The size of room B is also 7 m × 6 m
and the room is crowded with tables and computers, which forms a complex radio trans-
mission environment. The 5G base station is in room A, which locates out of the room B
with a height of 2 m. The signal propagates in room B forming a pure NLOS environment.
The UE is placed horizontally on a tripod with a height of 1 m. The positioning area is
divided into 30 reference points, and each point is evenly deployed in a grid of 1 m × 1 m.
17 test points are evenly selected. We collect data packets at each point for 2 min and the
fetch rate is 200 ms/samples.

The average error ε and 80% quantile of cumulative distribution function (CDF) are
used as the performance metric for different positioning algorithms. Assuming that the
true position of the test point is (xt, yt) and the estimated position is (xe, ye). The root
square error (RSE) is calculated as:

RSE =

√
(xt − xe)

2 + (yt − ye)
2 (18)
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For M locations, the average error is calculated as:

ε =
∑M

m=1 RSEm

M
(19)

4.2. Localization Performance of MVF

We apply the popular deep learning platform Keras in Python to build CNN location
classification model. We select Adam as the optimization function and the initial learning
rate is 0.0001. The training epoch and batch size are set as 200 and 50. Cross-entropy is
selected as the loss function. The parameter K in the weighted probability centroid method
is set to 5. In order to explore the rationality of MVF, we tested CNN and several other
commonly used machine learning and deep learning methods.

We apply the popular machine learning platform Sklearn in Python to build KNN
and MLP model. The number of nearest neighbors in KNN is set to 5 by default in sklearn
module. The weights of neighbors are the same and Euclidean is selected as the distance
measurement method. For MLP, the number of hidden layers and the number of neurons
in each layer are both 16. The activation function is ReLUs. The optimization function is
Adam and the initial learning rate is 0.001. The training epoch and batch size are both set
as 200 by default.

The data set used by the three algorithms are the same. The input of CNN is an image,
so the data set is converted into 16 readings as a training sample. KNN and MLP still
employ 1 reading as a training sample. Figure 6 shows the positioning error of KNN, MLP
and CNN with and without MVF in Room A, respectively. Figure 7 shows the positioning
error of KNN, MLP and CNN with and without MVF in Room B respectively. In the case
without using MVF, we only use RSRP measurements to construct the fingerprints.

(a) (b) (c)

Figure 6. The positioning error of KNN, MLP and CNN with and without MVF in Room A: (a) KNN.
(b) MLP. (c) CNN.

(a) (b) (c)

Figure 7. The positioning error of KNN, MLP and CNN with and without MVF in Room B: (a) KNN.
(b) MLP. (c) CNN.
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As show in Figures 6 and 7, in both room A and room B, the positioning error of the
three localization algorithms is reduced when the MVF is used.

The positioning error of KNN, MLP and CNN with or without MVF in room A are
shown in Table 1.

Table 1. The positioning error of KNN, MLP and CNN with or without MVF in room A.

Methods Average Error (m) CDF = 80% (m)

KNN without MVF 3.00 4.29
KNN with MVF 2.10 3.21

MLP without MVF 2.28 2.76
MLP with MVF 1.66 2.41

CNN without MVF 2.54 3.67
CNN with MVF 1.62 2.26

In room A, it is seen from the Table 1 that the average positioning error of KNN, MLP
and CNN without MVF are 3.00 m, 2.28 m and 2.54 m respectively. The average positioning
error of KNN, MLP and CNN with MVF are 2.10 m, 1.66 m and 1.62 m respectively. The
average positioning accuracy of KNN, MLP and CNN has been improved by 30.00%,
27.19% and 36.22% respectively. The positioning error of KNN, MLP and CNN with MVF
are less than 3.21 m, 2.41 m and 2.26 m for 80% test samples respectively. The positioning
accuracy of CNN is 29.59% and 6.22% higher than that of KNN and MLP respectively.

The positioning error of KNN, MLP and CNN with or without MVF in room B are
shown in Table 2.

Table 2. The positioning error of KNN, MLP and CNN with or without MVF in room B.

Methods Average Error (m) CDF = 80% (m)

KNN without MVF 2.25 3.56
KNN with MVF 1.87 2.98

MLP without MVF 1.85 2.45
MLP with MVF 1.58 2.17

CNN without MVF 2.62 4.20
CNN with MVF 1.41 1.96

In room B, it is seen from the Table 2 that the average positioning error of KNN, MLP
and CNN without MVF are 2.25 m, 1.85 m and 2.62 m, respectively. The average positioning
error of KNN, MLP and CNN with MVF are 1.87 m, 1.58 m and 1.41 m respectively. The
average positioning accuracy of KNN, MLP and CNN has been improved by 16.89%,
14.59% and 46.18% respectively. The positioning error of KNN, MLP and CNN with MVF
are less than 2.98 m, 2.17 m and 1.96 m for 80% test samples respectively. The positioning
accuracy of CNN is 34.23% and 9.68% higher than that of KNN and MLP, respectively.

The results show that the CNN model has better performance in data feature extraction
and classification than KNN and MLP.

4.3. Path-Loss Model and Performance of Hybrid Positioning

The N value of each reference point is calculated by employing Equation (12). We use
the reference points in room A and room B to draw three-dimensional cubic interpolation
diagrams of N values at different positions. The distribution of N in two rooms are shown
in the Figure 8.

As Figure 8 shows, the calculated N value varies at different positions in both room
A and room B due to noise and multipath propagation. In room A, the N value of most
positions is about 20, which verifies that N0 = 20 in Equation (13). A few positions have
large calculated N value. These positions are located at the corner of the wall, near the
door and window where has complex propagation paths. In room B, the signal of all
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points propagate through severe multipath propagation. The distribution of N value is
very uneven, and there is no clear trend.

The distribution of N value comprehensively and qualitatively reflect the influence of
multipath propagation on the positioning area. Room A in Los condition is less affected by
multipath propagation than room B in NLOS condition. The reference points in room B
are too far away from the base station, which leads to low discrimination of the path-loss
model. Therefore, we choose the reference points satisfying Equation (13) in room A to
train the path-loss model and the fitting curve is as shown in Figure 9.

As shown in Figure 9, we plotted distance vs. average RSRP and then used Python’s
curve fitting function to estimate a curve for distance vs RSRP in Room A. The path-loss
exponent α equals to 1.97 and C equals to −66.75.

The hybrid positioning model combines CNN location classification model and path-
loss model shown in Figure 9. We set the threshold η to one in room A and δ equals to the
positioning error of CNN model in room A. The positioning error of hybrid positioning
model compared with CNN model in room A is shown in Figure 10.

(a)

(b)

Figure 8. The distribution of N in room A and room B: (a) Room A. (b) Room B.
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Figure 9. Path-loss model curve of room A.

Figure 10. The positioning error of hybrid positioning model and CNN model in room A.

As shown in Figure 10, the hybrid positioning model performs better than CNN
model though the two curves overlap at the end. Some test points in room A do not
satisfy Equation (13), and their positioning results are the same under the two models.
The average positioning error of hybrid positioning model and CNN alone are 1.47 m and
1.62 m respectively. The positioning accuracy of hybrid positioning model is 9.26% higher
than that of CNN alone.

4.4. Localization Performance of the Proposed Method

The performance of positioning algorithm based on fingerprints is directly propor-
tional to the quality of fingerprinting database. Refs. [13,15] use multiple base stations or
subcarriers to enhance the robustness of fingerprint database in Wi-Fi or Bluetooth system,
which has high requirements for hardware deployments. Refs. [13,23] use the CSI finger-
prints at subcarrier level to obtain richer information than RSS fingerprints. CSI reporting
is not supported in existing 5G base stations. The construction of fingerprinting database
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is also related to the environmental complexity of the positioning area. We compare the
proposed method with some references using 5G system, which is shown in Table 3.

Table 3. The comparison of the proposed method and other references.

System Signal Source Measure-Ments Positioning Area Positioning Error

Ref. [11] 5G Single base station RSSI 3 m × 4 m average 1.16 m
Ref. [18] 5G Single base station multivariable 3 m × 4 m CDF = 80% 1.18 m

Proposed method 5G Single base station multivariable 7 m × 6 m average 1.47 m

As shown in Table 3, although Refs. [11,18] achieve a little higher positioning accuracy
than the proposed method, their positioning area is smaller and has lower complexity.

In this paper, we use single base station and multiple RSS related measurements to
construct fingerprinting database, which reduces the requirements for equipment. The
proposed method achieves similar positioning accuracy in a more complex environment.

5. Conclusions

To avoid the problem that traditional RSS fingerprint is vulnerable to multipath
propagation, we proposed a multivariable fingerprinting-base indoor localization algorithm
in 5G system. We combine SS-RSRP, SS-RSRQ, SS-RSSI and SS-SINR to construct 5G
physical layer multivariable fingerprints. We use the sliding window to transform the
origin observation matrix into the observation images and achieve data enhancement.
MVF are used to train CNN location classification model for indoor positioning. A hybrid
positioning model combining CNN with path-loss model is proposed to optimize the
overall positioning. Experimental results show that KNN, MLP and CNN with MVF
achieve accuracy improvement in both two experimental scenarios. CNN achieves best
performance among three positioning algorithms and shows 36.22% and 46.12% accuracy
improvement with MVF in two experimental environments, respectively. The positioning
accuracy of CNN is 29.59% and 6.22% higher than that of KNN and MLP, respectively, in
room A. The positioning accuracy of CNN is 34.23% and 9.68% higher than that of KNN
and MLP, respectively, in room B. The average positioning error of hybrid positioning
model is 1.47 m, which achieves 9.26% accuracy improvement compared with that of
CNN alone.

In future work, we will build more appropriate path-loss model in indoor environment.
Additionally, we will try to construct more robust fingerprints and find a better method to
combine CNN model and path-loss model to further improve positioning accuracy.
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