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Abstract: Human monoamine transporters (MATs) are cation transporters critically involved in
neuronal signal transmission. While inhibitors of MATs have been intensively studied, their substrate
spectra have received far less attention. Polyspecific organic cation transporters (OCTs), predomi-
nantly known for their role in hepatic and renal drug elimination, are also expressed in the central
nervous system and might modulate monoaminergic signaling. Using HEK293 cells overexpressing
MATs or OCTs, we compared uptake of 48 compounds, mainly phenethylamine and tryptamine
derivatives including matched molecular pairs, across noradrenaline, dopamine and serotonin trans-
porters and OCTs (1, 2, and 3). Generally, MATs showed surprisingly high transport activities for
numerous analogs of neurotransmitters, but their substrate spectra were limited by molar mass.
Human OCT2 showed the broadest substrate spectrum, and also the highest overlap with MATs
substrates. Comparative kinetic analyses revealed that the radiotracer meta-iodobenzylguanidine
had the most balanced uptake across all six transporters. Matched molecular pair analyses compar-
ing MAT and OCT uptake using the same methodology could provide a better understanding of
structural determinants for high cell uptake by MATs or OCTs. The data may result in a better under-
standing of pharmacokinetics and toxicokinetics of small molecular organic cations and, possibly, in
the development of more specific radiotracers for MATs.

Keywords: SLC6; monoamine transporters; organic cation transporters; biogenic amines; matched
molecular pair analysis; substrates

1. Introduction

The monoamine neurotransmitters dopamine, norepinephrine, and serotonin play
essential roles in motor control, cognition, memory processing, emotion, and many other
body functions [1]. Monoamines act on extracellular binding sites of several receptors [2]
and signaling is terminated by transporter-mediated uptake with subsequent intracellular
storage and recycling or enzyme-mediated degradation. Two systems mainly acting as
monoamine reuptake systems have been identified and historically classified as uptake1
and uptake2 [3,4].

Uptake1 is formed by the human monoamine transporters (MATs), including the
norepinephrine (NET/SLC6A2), dopamine (DAT/SLC6A3), and serotonin transporter
(SERT/SLC6A4). MATs are crucial in terminating the transmission of monoaminergic
neurons [5]. They are mainly, but not exclusively, expressed at distinct regions in the
brain and are characterized by a high affinity to their name-giving substrates. NET is
an exception since it shows an even higher affinity towards dopamine than towards the
name-giving norepinephrine itself [6]. All MATs are promiscuous and capable of transport-
ing the other monoamine neurotransmitters as well [7]. Monoamine reuptake inhibitors
with differential selectivity have been developed and are established treatment options
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in conditions such as depression, anxiety disorder, obsessive-compulsive disorder, and
attention deficit hyperactivity disorder [8]. Besides approved drugs, many recreationally
used psychostimulants exert their function at monoamine transporters. Pharmacodynami-
cally speaking, those psychostimulants are either predominantly reuptake inhibitors (e.g.,
cocaine) or substrate-type releasers (e.g., amphetamine) [9].

The second monoamine reuptake system, uptake2, has later been identified to in-
clude the organic cation transporters 1, 2, and 3 (OCTs) of the SLC22 family. OCTs trans-
port a broad spectrum of hydrophilic organic cations [10], including, but not limited to,
monoamine neurotransmitters. Apart from transporting endogenous substrates, OCTs
play a major role in transporting exogenous compounds including numerous approved
drugs [11–16]. Initially, uptake2 had been characterized as a low-affinity but high-capacity
transport system in peripheral tissues [17]. Meanwhile, it has been established, that OCT2
and OCT3 are also expressed in the central nervous system and under certain circumstances
modulate monoaminergic signaling [18–22]. In addition, as will be shown in this study,
for several substrates the contrary is true, namely, MATs may have a substantially higher
capacity than the OCTs.

While inhibitors of MATs—as well as OCTs—have been studied intensively [23–27]
and ligand- as well as structure-based determinants of inhibition have been identified [28–31],
less is known about the substrate spectra of MATs and OCTs. Especially with MATs,
relatively little data is available beyond the narrow substrate group of the neurotransmitters
themselves. From the limited number of earlier identified substrates of MATs, several have
been identified only based on indirect indicators of possible transport such as transporter
inhibition assays (in some cases combined with assays on substrate release) [26,32–34] or
by electrophysiological methods [35,36]. Only very few studies have characterized the
substrate spectrum of MATs using direct measurements by radiolabeled compounds or
LC/MS-MS analyses of cell uptake of the substrates [37].

Given that MATs and OCTs, uptake1 and uptake2, have been discovered as two players
in the same process, astonishingly little effort has been made to compare them directly,
regarding structure-activity relationships. From a basic research perspective, a more
systematic evaluation of the substrate overlap of both transporter families could lead to a
better understanding of monoamine (brain) physiology as well as a better understanding
of the fundamental biological roles of the OCTs. Additionally, and from a more applied
clinical perspective, the identification of the substrate overlap between MATs and OCTs is of
great interest for the development of selective radiotracers for diagnostics and therapy [38].
Meta-iodobenzylguanidine (mIBG), a NET tracer used for diagnostics in heart diseases [39]
as well as for diagnostics and therapy in neuroendocrine cancer patients [40], has relatively
recently been proven to be an excellent OCT substrate [41,42]. High affinity towards OCTs
explains some difficulties in mIBG diagnostics and treatment that were previously not
understood on a molecular level.

Recently, we investigated the uptake of different psychostimulants, showing that
there is overlap between MATs and OCTs in the uptake of substances which in their
chemical structure differ from the typical neurotransmitters. Particularly cathine was
transported by both the MATs (DAT and NET), but also by OCT2 [43]. As opposed to OCT2,
OCT1 transported only one of the tested psychostimulants to a significant degree, namely
mescaline. This may indicate that with all known substrate polyspecificity encountered
in OCTs, there may exist substances that are exclusively taken up into the cell by MATs.
In addition, as it will be shown in this study, it may well be that OCT2 has the broadest
substrate spectrum among the OCTs with respect to small organic cations. With the
psychostimulants investigated, no conclusive molecular descriptors differentiating between
MAT and OCT substrates could be derived, as these psychostimulants were molecularly
too heterogeneous to allow for meaningful pairwise comparisons [43]. Therefore, we here
wanted to derive these predictors by comparative uptake analyses of numerous substances
with a phenylethylamine- or tryptamine-based backbone structurally closely related to
the monoamine neurotransmitters. For this, we comparatively screened the candidate
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compounds for uptake by MATs and OCTs. We then analyzed whether general chemical
descriptors are sufficient to explain differences in the uptake patterns of both transporter
families. Finally, we carried out a series of matched molecular pair analyses to point out
which molecular features are required for efficient uptake by the distinct transporters.

2. Results

From the 48 substances tested, 33, 32, 35, 28, 26, and 18 were taken up significantly by
OCT1, OCT2, OCT3, NET, DAT and SERT, when comparing cell uptake in overexpressing
cells with mock-transfected cells (Figures 1 and S1, Table S1). When using an uptake
ratio of 3 as cutoff, the corresponding numbers were 29, 41, 32, 23, 18, and 17 and thus,
apparently, OCT2 had by far the broadest substrate spectrum. At least for OCT1, the cutoff
of 3 has previously been shown to successfully discriminate compounds as substrates and
non-substrates in accordance with transport kinetic parameters [42]. Overall, the OCTs had
a broader substrate spectrum compared with MATs. Nevertheless, MATs had a surprisingly
strong uptake capacity for several substances beyond their “classical” neurotransmitter
substrates. For several substrates, MATs are clearly not low-capacity transporters, but of
course, in vivo, relative tissue expressions have to be taken into account.

As expected from sequence homologies, NET and DAT showed the most similar
uptake pattern among the six investigated transporters. Both showed transport ratios even
upwards from 100, for their best substrates, which, apart from their eponymous neurotrans-
mitters, also included deoxyepinephrine and norphenylephrine (Figure 1). With slightly
lower transport ratios, the same could be observed for SERT. With SERT, besides serotonin,
N-methyl serotonin showed an uptake ratio around 100. For OCTs, maximum transport
ratios were lower, with most of the best substrates reaching uptake ratios of around 50, no-
table exceptions being deoxyepinephrine with an uptake ratio of 92 (OCT2) and salsolinol
with an uptake ratio of 71 (OCT2). Apart from this, serotonin (OCT2) and neurotransmitter-
similar compounds such as isoprenaline (for OCT2 and 3), deoxyepinephrine as well as
dopamine (OCT2), and N-methyl serotonin (OCT1), showed the highest transport ratios.
Those substances with phenethylamine or tryptamine-based backbone but larger substitu-
tions, clinically used as monoamine agonists (α- and β-adrenergic, as well as serotonergic
agonists), were efficiently transported by OCTs although in a different pattern among the
three transporters. With respect to specificity, sumatriptan and pirbuterol showed the
highest transporter-specific uptake by OCT1. For OCT2 and OCT3, salbutamol as well
as hordenine, and zolmitriptan as well as isoprenaline were the most specific substrates,
respectively (Figure S2A). For the MATs, epinephrine, dopamine, and serotonin were the
most specific substrates for NET, DAT, and SERT as expected given their physiological
functions. A global comparison of the generated uptake dataset revealed that, besides
NET and DAT ratios (r = 0.978), also the uptake ratios for OCT2 correlated well with
those of NET and DAT (r = 0.615 and 0.625) even better as with those for OCT1 (r = 0.428,
Figure S2B). SERT uptake ratios showed highest correlation with OCT1 uptake (r = 0.306)
and OCT3 uptake correlated best with OCT2 values (r = 0.322).

Larger compounds mainly showed little to no transport via MATs. Interestingly, there
was one exception for this, namely frovatriptan, with an uptake ratio of 34 despite a larger
compound size. Frovatriptan, a serotonin receptor agonist, with a molar mass of 243 Da (as
compared to serotonin with a molar mass of 176 Da), does not only differ from serotonin
by a hydroxy-to-amide substitution, but also by a ring closure (Figure S3).
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Figure 1. Transport ratios, uptake into overexpressing cells over uptake into empty-vector control cells for compounds as
shown on the x-axis (alphabetical order). HEK293 cells were incubated with 2.5 µM of each respective compound for two
minutes (five minutes for epinephrine and norepinephrine). Data are provided as the means with error bars indicating the
SEM of at least three independent experiments. Uptake ratios were tested for statistical significance using one sample t-tests
with an α-value of 0.05 as reported in Table S1.
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As frovatriptan appeared to be an unusual SERT substrate, concentration-dependent
experiments were performed. Comparative uptake of frovatriptan and serotonin into SERT-
overexpressing cells showed similar transport capacity for both but an increased Km with
frovatriptan (Figure S3). Generally, high uptake rates of serotonin and N-methyl serotonin
were found for all transporters except OCT3 and therefore these two compounds were ana-
lyzed more thoroughly by concentration-dependent transport experiments (Figure S4A).
Results showed saturable uptake by OCT1 and 2 and all three MATs, but not by OCT3.
The kinetic analysis confirmed that serotonin N-methylation greatly improved its OCT1
transport and also uptake via OCT3 (Figure S4A). OCT2 transport capacity is reduced
by N-methylation and DAT and SERT transport are almost unaffected, while NET trans-
port is characterized by a reduced transport capacity (Figure S4B). It is to note that in-
trinsic clearances by OCT1 for both substrates were well within the range of NET and
DAT, and only topped out by SERT. Moreover, a remarkably high capacity of OCT2 up-
take for serotonin as well as for N-methyl serotonin was found, with vmax values of
31,565 pmol ×mg protein−1 ×min−1 and 11,918 pmol ×mg protein−1 ×min−1, respec-
tively (Table S2).

To analyze whether basic chemical descriptors are sufficient to explain the observed
differences in the uptake by both transporter families, we compared those descriptors (for
compounds transported with transport ratios of ≥3) across all MATs and OCTs. Main
differences were observed for several descriptors related to molecular size, including molar
mass, heavy atom molar mass, and heavy atom count (Table S3). That makes interpretation
of other differences, such as in the number of rotatable bonds hard to interpret, as those
are overall also correlated with molar mass. Albeit to some extent based on our specific
compound selection, the number of compounds with transport ratios ≥3 was the highest
for OCT2.

Compared with OCTs, the MAT transport seems to be more limited by compound
size. Chemical descriptors such as molar mass and fraction of SP3 hybridized atoms are
apparently not sufficient to define the substrate spectrum of MATs and to differentiate it
from the substrate spectrum of OCTs (Figure 2). While it appears to be relatively easy to
find an OCT substrate that is not a MAT substrate, e.g., by searching for positively charged
substances with a molar mass larger than 250 Da that are OCT substrates, finding MAT
substrates that are not OCT substrates, cannot be solved this way. This is because, on the
one hand, small compounds are not necessarily good MAT substrates and on the other
hand, they are not necessarily bad OCT substrates.

The basic chemical descriptors were not able to discriminate between compounds
showing low or high uptake by MATs. Therefore, we carried out-matched molecular pair
analyses (complete overview in Figure S5), to find further molecular determinants of MAT-
specific uptake. Compounds were aligned in pairs that differ only by a single molecular
change. Based on these comparisons, the following structure–activity relationships were
observed: For the phenylethylamine derivatives, branched or non-branched N-methylation
generally reduced uptake by MATs (albeit from a normally high level of transport). In-
terestingly, as can be seen using the direct comparisons, the same substitutions increased
uptake by OCT1 and in some cases by OCT3 (Figure 3). It is worth noting that for uptake
by MATs, the single methylation is still tolerated, whereas, for instance, the slightly larger
ethyl chain of etilefrine results in very low MAT uptake ratios.

Dopamine serves as an exception of this observation as the N-methylated analog
deoxyepinephrine shows similarly high MAT uptake-ratios. Hydroxylations at the phenyl
ring at either the meta or the para site or at both, greatly improved transport via MATs,
which has been known but now can be compared with its effect on OCTs. These did not
improve transport at OCTs to a similar extent as they did in MATs and thereby improved
the relative specificity towards MATs (Figure 4A,B).
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MAT transport was almost completely abolished by methylation of the catechol hy-
droxy groups (Figure 4C). Beta-hydroxylation slightly increased transport ratios by NET
except for dopamine and N-methyl dopamine. DAT ratios were unaffected or even re-
duced by beta-hydroxylation thereby shifting the NET/DAT selectivity towards NET
(Figure 4D,E). SERT uptake ratios were reduced by beta-hydroxylation and OCT ratios
were not affected in a systematic manner. As a note, the direct comparison of transport
ratios for p-tyramine and 4-hydroxybenzylamine suggests that the distances of the aromatic
ring and the positively charged nitrogen are crucial for MAT transport (Figure 4F). Inter-
estingly, the NET tracer meta-iodbenzylguanidin (mIBG) showed the most homogenous
uptake with a ratio of 10 for the OCTs and NET as well as DAT while the SERT uptake
ratio was slightly lower (Figure 4G). Given this finding and the prominent role of mIBG as
a clinically applied NET tracer, we carried out concentration-dependent uptake analyses
by all six transporters.

The kinetic analyses revealed low Km uptake of mIBG by the aforementioned five
transporters and uptake with a higher Km by SERT (Figure 5). The lowest Km and highest
intrinsic clearance were found for NET with a Km of 2.3 µM and Clint of
284 mL × g protein−1 ×min−1 (Table 1). Interestingly, DAT was the transporter with the
highest vmax with 2800 pmol ×mg protein−1 ×min−1.
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Figure 5. Concentration-dependent uptake of meta-iodobenzylguanidine by the investigated trans-
porters. Transport is presented as net uptake with the mean± SEM of three independent experiments.

Table 1. Uptake characteristics of meta-iodobenzylguanidine.

Transporter Uptake Ratio [x-Fold over
EV Control] Km ± SEM [µM] Vmax ± SEM

[pmol ×mg Protein−1 ×min−1]
Clint ± SEM

[mL × g Protein−1 ×min−1]
OCT1 11.4 ± 2.2 16.6 ± 3.7 2301 ± 129 138 ± 38.5

OCT2 14.7 ± 1.6 13.3 ± 2.4 2039 ± 86.9 152 ± 34.1

OCT3 12.0 ± 1.0 10.5 ± 1.9 1689 ± 68.0 161 ± 35.7

NET 11.3 ± 2.1 2.27 ± 0.57 648 ± 28.2 284.6 ± 84.2

DAT 15.1 ± 3.0 12.2 ± 1.46 2800 ± 77.2 229 ± 33.8

SERT 4.3 ± 1.0 11.2 ± 6.2 429 ± 53.4 38.2 ± 25.9

In addition to the phenylethylamines, the second major group of investigated com-
pounds belonged to the class of substituted tryptamines. With minor exceptions, for the
tryptamine-based compounds, the same structure–activity relationships were observed,
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as already described for the phenethylamine compounds above. Here, non-branched N-
methylation reduced MAT uptake ratios if at all then only slightly, while OCT1 uptake was
increased especially for N-methyl serotonin (Figure S6). 5-hydroxylation of the tryptamine-
backbone greatly increased transport by MATs and to a minor extend also transport by
OCT1. In line with the previous observations on O-methylations in phenylethylamines,
MATs almost completely lacked the ability for transport of 5-methoxy tryptamine.

The here formulated structure–activity relationships for the MATs were based on a
single-concentration screening. To further demonstrate that distinct molecular features of
the compound are required for efficient MAT transport, we finally compared concentration-
dependently the uptake of the endogenous substrates for each MAT with the uptake
of the respective parent compounds (phenylethylamine for NET as well as DAT and
tryptamine for SERT). All MATs showed low Km uptake for their respective neurotrans-
mitter (Figure S7, Table S4) whereas the uptake the respective precursor was characterized
by a low transport capacity and a high Km. These findings further highlight that although
the unsubstituted parent compounds are transported as well, in particular, the backbone
hydroxylations of phenylethylamine and tryptamine are critical for efficient transport by
NET, DAT, and SERT.

3. Discussion

In the last decades, MATs have been extensively characterized regarding their inhi-
bition, but much less is known about their substrate spectrum. Polyspecific OCTs also
transport monoamine neurotransmitters and numerous drugs acting as agonists or antag-
onists at monoaminergic receptors. Increasing evidence that OCTs and MATs cooperate
in monoamine clearance during neuronal transmission [18–21,37,44] suggests a need for
defining the functional specificity and overlap of both transporter families.

To start with the most general finding, our data show that the substrate spectrum
of MATs is larger than previously assumed but at the same time characterized by a low
chemical diversity. Furthermore, our data show that MATs efficiently facilitate the uptake
of numerous analogs of their endogenous substrates. Our results further substantiate that
MAT transport is limited by the molar mass of the ligand, which is in line with insights
from mutagenesis [45] and crystallography studies [46,47]. However, the molar mass is
neither the only criterion nor are size limitations so strict that only compounds in the size
of neurotransmitters are MAT substrates (as seen with frovatriptan for SERT, Figure S2).
In addition to size, distinct molecular features are required for efficient MAT transport;
especially hydroxylations at the phenylethylamine and tryptamine backbone facilitate
MAT transport. This has previously been reported for DAT substrates [48] and in visionary
studies on uptake1 even as early as in the 1960s (albeit with indirect measurements and of
course without overexpression) [26]. We also observed that substitutions at the primary
nitrogen of the phenylethylamine and tryptamine backbone decreased MAT transport
(Figures 4 and S4), this is in line with the historic findings using indirect methods and
primary cells [26]. This also explains the low SERT uptake ratios of the recently shown
hallucinogens dimethyl- and diethyltryptamine [43]. Interestingly and in contrast to the
results in MATs, these substitutions at the primary amine improved transport via OCT1 in
several cases.

A rather unexpected finding was SERT showing moderate to high transport ratios
for frovatriptan. As frovatriptan is larger than serotonin, these results highlight that the
size cut-off for MAT substrates is not to be understood as a strict border a few Daltons
higher than the molar mass of the transporters’ name-giving neurotransmitters. The
main structural differences of frovatriptan and serotonin are the 5′-amide replacing the
hydroxy moiety of serotonin, the third ring structure, and the secondary amino group.
Based on our observations, the single methyl substituent at the nitrogen is well tolerated,
however, for the other modifications we lack the molecular pairs for direct comparison.
From a chemical point of view, the additional amide can engage in similar molecular
interactions as the replaced hydroxy group, functioning as hydrogen-bond donor and
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acceptor as well. The ring closure, that makes frovatriptan much less adaptable, suggests
that SERT provides some extra space in its respective binding pockets allowing for chemical
modifications of known ligands. From this data, it might be speculated that there is
a particular accumulation of frovatriptan into thrombocytes (known to highly express
SERT) and in presynaptic serotoninergic neurons. However, we did not find any data on
whether this was confirmed in human beings or whether this has any clinical implications.
Nonetheless, one might still speculate that high accumulation may result in toxicity or
might interfere with other cellular processes. All other triptans tested were not transported
by SERT.

While exceeding typical size limitations does not exclude transport with certainty, as
discussed above, undercutting typical size limitations does not guarantee MAT transport
either. Many compounds matching size limitations are not efficiently transported by MATs.
Exemplarily, phenylethylamine (PEA) shows low transport ratios as well as a high Km,
low-capacity kinetics for MATs. This is not inconsistent with the fact that PEA shows
NET/DAT inhibition with IC50 values in the low micromolar range [49]. PEA might
interact with the transporter but could nevertheless lack the molecular features for efficient
transporter-mediated translocation.

Many of the compounds that were efficiently transported by MATs and also by OCT2
belong to the group of trace amines including tyramine, octopamine, synephrine, and
tryptamine [50]. These compounds are mostly of endogenous and/or microbial origin
and act via trace amine-associated receptors (TAARs), intracellular G-protein coupled
receptors [51], which modulate for instance monoaminergic neurotransmission [52]. Trans-
porters are discussed to be involved in the regulation of synaptic levels of trace amines
and OCT2 has been recently identified as high-affinity tyramine transporter [53]. Among
all transporters tested in our study, OCT2 showed the broadest substrate spectrum with
medium to high uptake ratios for almost all low molar mass amines. Interestingly, the
intracellular target [50,54] of p-tyramine, TAAR1, is also characterized by a rather broad
substrate specificity [55,56]. One could speculate that neuronal expressed OCT2 and TAAR1
complement each other in regulating neuronal levels and action of trace amines. Uptake by
neuronal OCTs or MATs into monoaminergic neurons might also have additional conse-
quences. Given the structural similarity of trace amines and monoamine neurotransmitters,
the accumulation of trace amines might interfere with vesicular neurotransmitter storage
and enzyme-mediated degradation. Among trace amines, transporters also facilitate the
uptake of the neurotoxic compounds salsolinol [57]. Many of these compounds are not only
endogenous intermediates but also occur naturally in several plants or microbial species
and might therefore be taken up by nutrition (Table 2).

Table 2. Typical origin of trace amine-like compounds investigated in this study.

Name Endogenous Microbiom Nutrition Plants Example and References

3-Methoxy p-tyramine x x Dopamine metabolite
Cactus [58]

Bisnorephedrine x Trace amine neuromodulator [59]

Deoxyepinephrine x Acacia species [60]

Halostachine x Perennial ryegrass, tall fescue [61]

Hordenine x x Barley, beer [62]
Acacia species [60]

N-Methyl
phenylethylamine x x Trace amine neuromodulator

Acacia species [63]

N-Methyl serotonin x Black cohosh [64]

N-Methyl tryptamine x x Citrus plants [65]

N-Methyl
p-tyramine x x Acacica speciest [60]
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Table 2. Cont.

Name Endogenous Microbiom Nutrition Plants Example and References

Octopamine x x x Trace amine neuromodulator [66]
Citrus herbs [67]

Phenylethylamine x x Cheese [68]

Salsolinol x x x Dopamine intermediate [57]
Cocao, chochlate [69]

Synephrine x x Various Citrus trees [70]

Tryptamine x x x
Trace amine neuromodulator [71]

Commensual bacteria [72],
Cheese [68]

m-Tyramine x Trace amine neuromodulator [73]

p-Tyramine x x x
Enterococcus species [74], cheese

[68]
Citrus herbs [67]

Uptake by extraneuronal (e.g., hepatic and renal) expressed OCTs might be a critical
step in the elimination of these compounds. Exemplarily, the OCT2-mediated uptake and
excretion of p-tyramine via the kidney, but also p-tyramine transport by NET, DAT, and
OCT3 (Figure 1), might all contribute to the observation that interindividual variation of
tyramine pharmacokinetics and pharmacodynamics is not determined at all by the OCT1
genotype [75].

MAT and OCT transport has rarely been investigated comparatively, to the regret of
those in search of specific MAT tracers. As shown here, with mIBG, comparative data using
the same assay conditions, reinforces the clinically supported observation, that tracers can
have little specificity not only between certain MATs, but also between MATs and OCTs
and potentially other cation transporters as well. Undesired tracer uptake by organic cation
transporters causes several issues. In neuroendocrine cancer treatment, unwanted OCT1-
mediated uptake into the liver explains occasionally observed liver toxicity indicated by
increased serum transaminases [76]. In mIBG-based cardiac imaging, liver uptake causes
unwanted background noise where the left liver lobe is in close proximity to the heart.
Furthermore, due to SERT expression in platelets and megakaryocytes and again due to
mIBG lacking NET selectivity, mIBG therapy in neuroendocrine cancer is often limited by
myelosuppression with low platelet counts [77]. In addition, OCT3-mediated mIBG uptake
into heart tissue [78,79] can feign neuroendocrine metastases.

A strategy for devising an OCT-specific substrate tracer without transport by MATs is
relatively straightforward: Our data here reveals, as mostly to expect, clear signs of a size
cutoff for transport in MATs that is not matched by a similarly strict cutoff in OCTs.

The opposite goal of devising MAT-specific substrate tracers without transport by
OCTs, from a current clinical standpoint the more interesting optimization, is unfortu-
nately the harder one and our dataset provides unfortunately little clue on a solution. An
obvious observation in our data is OCT2 being the strongest competitor for MATs. Ring
hydroxylations in meta and/or para position shifted the specificity towards MATs and away
from OCTs. This was not just true for the obvious cases, the neurotransmitters themselves,
but also, e.g., for tyramine, when compared with phenylethylamine, and for octopamine
and norphenylephrine, when compared with bisnorephedrine. This raises the question
of whether hydrophilic ring substitutions are detrimental for OCT transport or simply
beneficial to MAT transport. The frequent occurrence of ring hydroxylations in good OCT
substrates such as pirbuterol, salbutamol, and salsolinol indicate that OCTs can at least deal
with it, though it might not benefit as much. With a strict size cut-off for MAT transport,
there are of course little degrees of freedom remaining for medicinal chemistry approaches
to make proper MAT substrates poorer OCT substrates. In that regard, it is relieving to see
that at least for SERT, in frovatriptan, an exception for the size cut-off could be identified.
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Further examination of substrate candidates, which claim the middle ground between
neurotransmitters and too large compounds, might provide hints for MAT-specific tracers.
The use of co-administered OCT inhibitors to improve MAT/OCT tracer selectivity, which
has also been brought up [80], is no viable alternative to finding a more selective substrate.
Although OCT inhibition is a reasonable approach, it might create new problems given the
prominent role of OCTs in the pharmacokinetics of many cationic drugs [14,81]. With the
polyspecificity of OCTs, finding a specific inhibitor might be already a challenging goal.

In search of MAT-specific tracers, one worthwhile future objective for OCT research
could be the search for small cationic OCT non-substrates. This approach might indeed be
more challenging with a polyspecific transporter than to find additional substrates.

4. Materials and Methods
4.1. Test Compounds

Compounds with a structure very similar to the known neurotransmitter substrates
of MATs were selected for this study. This resulted in 36 substances with whole or par-
tial phenethylamine or tryptamine backbone and with a molar mass between 121 Da
and 240 Da. To possibly identify molecular size boundaries for MATs, compounds, still,
phenethylamine- or tryptamine-based, but with larger substitutions were identified within
the groups of monoaminergic receptor agonists (α- and β-adrenoceptor agonists as well as
serotonin receptor agonists). These larger compounds had molar mass from 243 Da up to
383 Da. Additional less closely related compounds were selected based because of clinical
significance, e.g., mIBG.

Test compounds were bought from Sigma-Aldrich (Taufkirchen, Germany), Toronto Re-
search Chemicals (Toronto, ON, Canada), Santa Cruz Biotechnology (Darmstadt, Germany),
LGC Standards (Luckenwalde, Germany), and Wako Chemicals (Neuss, Germany). A
complete list of all compounds used in this study and their manufacturers is provided in
Supplementary Table S5.

4.2. In Vitro Transport Experiments

Transporter function was investigated via an in vitro uptake assay using HEK293 cells
stably transfected to overexpress the specific transporter. Cell lines were generated using
the Flp-In system as described previously [11,43,82,83], except for hOCT3 overexpressing
cells which were a kind gift from Drs Koepsell and Gorbulev (University of Würzburg,
Würzburg, Germany). Cells were regularly cultivated in DMEM with 10% (v/v) FCS and
1% (v/v) penicillin/streptomycin and kept in culture for up to 30 passages.

For cellular uptake assays, 300,000 cells were plated per well in poly-D-lysine coated
24-well plates two days ahead of the experiment. The transport experiments were carried
out at 37 ◦C and cells were washed once with 1 mL pre-warmed HBSS+ (10 mM HEPES
in Hank’s balanced salt solution, pH 7.4; Thermo Fisher Scientific, Darmstadt, Germany)
prior to incubation. Cells were then incubated with 2.5 µM test compound in 37 ◦C HBSS+
for exactly two minutes and incubation was stopped by adding 1 mL of ice-cold HBSS+
(epinephrine and norepinephrine uptake ratios were determined with an incubation period
of 5 min). Finally, cells were washed twice with ice-cold HBSS+ and lysed using 80% ace-
tonitrile (LGC Standards, Wesel, Germany) containing an appropriate internal standard for
high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS/MS),
internal standards are provided in Table S5. For concentration-dependent uptake analyses,
cells were incubated with increasing drug concentrations, and additionally, a standard
curve of known compound concentrations was prepared for eventual quantification. Addi-
tionally, per cell line, the cells in one well were lysed using RIPA buffer and total protein
content was quantified in a bicinchoninic acid assay [84]. Total protein content was then
used for normalization of cellular uptake to the density of seeded cells.
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4.3. Concentration Analyses

Intracellular drug concentrations were quantified by HPLC-MS/MS analysis using a
Shimadzu Nexera HPLC system with a SIL-30AC autosampler, a CTO-20AC column oven,
an LC-30AD pump, and a CBM-20A controller (Shimadzu, Kyoto, Japan). Compounds
were separated on a Brownlee SPP RP-Amide column (4.6 × 100 mm inner dimension with
2.7 µm particle size) with a C18 pre-column. Reverse-phase chromatography was carried
out with an aqueous mobile phase containing 0.1% (v/v) formic acid and either 3, 8, or
20% (v/v) organic additive (acetonitrile:methanol (6:1)) with a flow rate of 0.3 mL min−1

and an oven temperature of 40 ◦C. Detection was carried out with an API 4000 tandem
mass spectrometer (AB SCIEX, Darmstadt, Germany) operating in MRM mode. Analyte
peaks were integrated and quantified using the Analyst software (Version 1.6.2, AB SCIEX,
Darmstadt, Germany). All analytes, corresponding internal standards, HPLC mobile phase
composition, and MS detection parameters are listed in Supplementary Table S5.

4.4. Calculations

Transporter-mediated uptake was quantified via uptake ratios which are calculated
as the quotient of cellular uptake in transporter-overexpressing cells by uptake of empty-
vector transfected control cells each normalized by total protein content in a control well.
For concentration-dependent analyses, transporter-mediated net transport was calculated
by subtracting cellular uptake into empty-vector control cells from cellular uptake into
the transporter-overexpressing cells. Kinetic parameters were obtained by non-linear
regression analysis according to the Michaelis–Menten (v = vmax × [S]/(Km + [S]) equation
using GraphPad Prism (Version 5.01 for Windows, GraphPad Software, La Jolla, CA, USA).
Vmax is the maximum transport velocity and Km is defined as the compound concentration
required to reach half of vmax. Intrinsic clearance Clint was then calculated as the quotient
of vmax and Km.
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