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Abstract
Background: The clinical success of autologous adoptive
cell therapy (ACT) is substantial but wide application is
challenged by the quality and quantity of the patient’s
immune cells and the need for personalized manufacturing
processes. Induced pluripotent stem cells (iPSCs) can be
differentiated into immune effectors and thus provide an
alternative, allogeneic cell source for ACT. Here, we com-
pare iPSC-derived immune effectors to their PBMC-derived
counterparts and review iPSC-derived ACT products cur-
rently under preclinical and clinical development.
Summary: iPSC-derived T cells, NK cells, macrophages, and
neutrophils largely mimic their PBMC-derived counterparts
in terms of cell-surface marker expression and cytotoxic
effector functions. iPSC-derived immune effectors can be
engineered with chimeric antigen receptors and other
activating receptors to redirect their cytotoxic potential
specifically to tumor-associated antigens (TAAs). However,
several differences between iPSC- and PBMC-derived im-
mune effectors remain and have inspired additional en-
gineering strategies to enhance the antitumor capacity of
iPSC-derived immune effectors. Key Messages: iPSCs can
be engineered to facilitate the generation of immune ef-
fectors with homogenous specificity for TAAs and en-
hanced effector functions. TAA-specific and functionally
enhanced iPSC-derived T and NK cells are currently un-

dergoing clinical evaluation in phase 1 trials. Engineered
iPSC-derived macrophages and neutrophils are in pre-
clinical development. © 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Adoptive cell therapy (ACT) has provided a treat-
ment option with curative potential for patients with
relapsed or refractory hematological malignancies [1].
Lymphocytes are the main cell-type used for ACT, es-
pecially αβT and NK cells. T cells can be targeted against
tumor-associated antigens (TAA) utilizing their inher-
ent T cell receptor (TCR) specificity via expansion and
re-infusion of tumor infiltrating lymphocytes (TILs), or
the selection and expansion of antigen-specific T cell
clones. Alternatively, they can be redirected to a TAA
through the expression of a chimeric antigen receptor
(CAR) or TCR [2, 3]. NK cell antitumor potential can be
triggered through mismatch of their inhibitory receptors
with the tumor HLA [4], antibody-dependent cellular
cytotoxicity (ADCC) or CAR expression [5]. More re-
cently, the potential of re-targeting myeloid cells
through CAR expression is being explored, and the first
CAR-Macrophage clinical trial is currently ongo-
ing [6, 7].

Despite the huge potential of ACT, the autologous
nature provides a challenge for the broader application
of these treatment strategies. Patient eligibility criteria,
the impact of the disease and previous lines of therapy
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on the quality of the patient’s immune cells, the avail-
ability, duration and demands of the manual
manufacturing in specialized facilities, the need for
bridging therapy during manufacturing time and the
high costs associated with ACT are all contributing to
this challenge [8–11]. To overcome these hurdles, the
development of allogeneic, “off-the-shelf” versions of
ACT is highly sought after. To achieve this, two major
allogeneic resources are currently being pursued, namely
the use of healthy donor-derived lymphocytes, and the
differentiation of lymphocytes in vitro from induced
pluripotent stem cells (iPSCs).

iPSCs can be derived from a variety of cell sources
through the expression of four transcription factors,
cMyc, Oct4, Sox2, and Klf4 [12]. The unlimited self-
renewal capacity of iPSCs allows a single established iPSC
line to support repeated production of different immune
effectors, without the requirement of continuous dona-
tions from healthy subjects. Additionally (multiplexed)
gene-engineering can be performed at the iPSC level.
Several engineering strategies have effectively been ap-
plied in iPSCs, including lentiviral transduction [13],
PiggyBack Transposon and CRISPR/Cas9 technologies
[14]. Genetic engineering is followed by clonal selection,
expansion and banking [15]. The iPSC banks can be used
to differentiate the iPSCs into the desired cell type, re-
sulting in a homogenous population with the genetic

modifications of choice, and enabling genetic engineering
strategies for cell types that are more challenging to
genetically engineer and expand at their mature stage,
such as macrophages or neutrophils. Multiple immune
effectors have been generated from iPSCs for the use of
allogeneic ACT, including induced T cells (iT cells), NK
cells (iNK cells), macrophages (iMacs), and neutrophils
(iNeuts) (Fig. 1). These promising preclinical develop-
ments have already triggered phase 1 clinical trials.
iT cells engineered to target CD19 and HER2 through a
CAR are being tested in patients with, respectively, B cell
malignancies and HER2+ solid tumors [16, 17], whilst
CAR-engineered iNK cells are currently in four trials for
several hematological malignancies [18–21]. However,
the realization of iPSC-derived immunotherapy also faces
challenges. The differentiation protocols are lengthy,
typically ranging from 3 to 6 weeks for lymphoid cells,
and 2 to 4 weeks for myeloid cells [13, 22–27]. Addi-
tionally, in some cases the phenotype and effector
functions of the in vitro generated cells are distinct from
the peripheral blood-derived primary cells currently used
in the clinic. Here we will discuss the in situ and in vitro
differentiation of T cells and NK cells, the engineering
strategies deployed to facilitate tumor targeting of in vitro
generated cells, and their characteristics compared to
their primary counterparts. Additionally, we will discuss
the recent development of CAR-iMacs and -iNeuts.

Fig. 1. Overview of cell types reprogrammed into iPSCs and re-differentiated into immune effectors.

28 Transfus Med Hemother 2025;52:27–41
DOI: 10.1159/000540473

Lindenbergh/van der Stegen

https://doi.org/10.1159/000540473


iPSC-Derived T Cells

In situ T Cell Differentiation
During in situ T cell development, hematopoietic stem

cell (HSC)-derived thymus seeding progenitors migrate
from the bone marrow to the thymus where they undergo
an intricate developmental trajectory toward T cell lineage
commitment [28]. This development is driven by Notch
stimulation and TCR chain rearrangement and subsequent
signaling [29]. The thymic environment first induces
thymus seeding progenitors to express T/NK cell marker
CD7 and subsequently T cell marker CD5. The two main
T cell subsets that develop from these thymic CD7+CD5+

intermediates are the αβT cells and γδT cells [30]. These
subsets are defined by the TCR chains expressed on the cell
surface. γδT cells express successfully rearranged genes
encoding the TCRγ and TCRδ chains (TRG and TRD). The
TCRγ and TCRδ chains heterodimerize and bind to soluble
or membrane proteins, or CD1d on antigen-presenting
cells, and γδT cells mature toward CD4−CD8− double
negative (DN) or CD4−CD8αα+ cells [31].

Differentiating αβT cells rearrange the genes encoding
the TCRβ and TCRα chains (TRB and TRA) to form an
αβTCR which binds peptides presented by HLA-I or -II
complexes. Thymic cells committed to the αβT cell lineage
become double positive (DP) for CD4 and CD8αβ. DP
cells undergo positive and negative selection, in which
their αβTCR is evaluated for successful rearrangement and
a lack of response to self-peptide. Only DP T cells that
formed an αβTCR able to bind self-HLA, but failing to
respond to self-peptide are matured into CD4+ or CD8αβ+

single positive (SP) T cells. The matured CD4+ and
CD8αβ+ SP T cells thenmigrate out of the thymus and into
the peripheral blood and secondary lymphoid structures
[32]. In the periphery, TCR engagement combined with
costimulatory and cytokine signals activates the effector
functions of matured T cells, including the production of
cytokines that further support an immune response and
cytolytic granules containing Perforin and Granzyme B
[32, 33]. Consistent with their respective helper and cy-
tolytic effector functions, CD4+ T cells produce more IL-2
and TNFα, whilst CD8αβ+ T cells can accumulate and
secrete more Perforin and Granzyme B [33–36].

In most forms of autologous ACT for cancer, mature
SP αβT cells are harvested from the patient’s tumor or
peripheral blood. Adoptive T cell therapy utilizes the
antigen-specific nature to trigger the T cells’ cytolytic
capacity. In TIL-based therapy, T cells are isolated from a
resected tumor, expanded ex vivo and then infused back
into the patient in large numbers. TIL therapy relies on
the existence of endogenously occurring T cell clones that
express TAA-specific TCRs [3]. In other approaches, the
specificity of peripheral blood-derived T cells is redirected
through the transduction with a TCR or CAR targeting
TAA [1, 2].

iPSC-To-T Cell Differentiation
Current in vitro T cell differentiation procedures have

reported on the induction of CD34+ intermediates in
iPSCs derived from fibroblasts, T cells, monocytes,
erythroblasts, and keratinocytes [13, 37–40] (Fig. 1).
These procedures mimic a selection of the biochemical
signals present in the thymus to instruct iPSC-derived
CD34+ cells to commit to the T cell lineage [41]. Me-
soderm induction and hematopoietic specification re-
sulting in CD34+ cells can be facilitated through iPSC co-
culture with OP9 [42] or feeder-free through embryoid
bodies combined with Bone Morphogenetic Protein 4
stimulation [13]. T cell lineage commitment requires the
engagement of Notch receptors on CD34+ cells, which
can be achieved through 2D or 3D co-cultures with feeder
cells (OP9 or MS5) engineered to express Notch ligands,
or feeder free cultures utilizing recombinant Notch li-
gands [13, 43–47]. Differentiation cultures are supple-
mented with the cytokines IL-7, SCF, and Flt3-L [41].
These conditions induce the expression of early T cell
lineage markers CD7 and CD5 [13, 39, 48] and when the
differentiations are started from fibroblast-derived iPSCs
(FiPSCs), they also support the formation of the
CD4+CD8αβ+ DP cells [40, 49].

However, in differentiations starting from T cell-de-
rived iPSCs (TiPSCs), the successful generation of mature
iT cells was challenged by a divergence toward a DN/
CD8αα+ phenotype, suggesting commitment to a more
innate, γδT cell-like lineage, in lieu of passing through
two hallmark steps of αβT cell development: the DP stage
followed by positive/negative selection [13, 32, 50, 51].
Recent studies have shown that the relatively early TCR
expression of differentiating TiPSCs and the strength of
Notch signal induction are among the determining fac-
tors that can be optimized to enhance DP formation [49,
52]. Currently reported TiPSC-to-iT procedures result in
efficient rates of DP formation, with relative frequencies
ranging up to 90% [52–55].

In vitro differentiating iPSCs that are not derived from
T cells, such as FiPSCs, undergo rearrangement of their
TRB and TRA loci and thereby form a diverse TCR
repertoire [37, 54]. Whilst rearrangement and the crea-
tion of a diverse TCR repertoire is akin to thymic T cell
differentiation, most clinical applications require the
formation of an iT cell pool with known specificity [56].
TiPSCs have been shown to typically maintain their
original rearranged TRB and TRA genes through the
processes of reprogramming and redifferentiation, and to
give rise to pools of iT cells with the same antigen
specificity as the T cell from which the respective TiPSCs
were derived. Utilizing this conservation of specificity,
groups have isolated T cell clones specific to TAA (e.g.,
WT1 or MART1 epitopes) and virus-derived epitopes,
and used these to create TiPSC lines that can give rise to
large pools of antigen-specific iT cells [22, 57–59].
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However, in some studies it was found that differentiating
TiPSCs can undergo a limited form of further TRA re-
arrangement, resulting in a loss of specificity in a minority
of the generated iT cells [38, 57].

For the final stage of T cell development, positive/
negative selection, in vitro procedures mimic positive
selection by delivering a TCR-signal through anti-CD3
antibodies, phytohemagglutinin, or antigen-presenting
cells, often combined with a costimulatory signal en-
gaging CD28 or 4-1BB and always in the presence of one
or more common γ-chain cytokines (such as IL-2, IL-7,
IL-15 or IL-21) [13, 39, 49, 52, 53, 60]. The resulting cells
maintain CD7 and partially CD5 expression, and are
typically a heterogeneous mix of CD4−CD8αβ− DN,
CD8αα+ SP cells, and CD8αβ+ SP cells, notably lacking a
profound CD4+ SP population [46, 49, 52, 53, 61]
(Table 1).

Several groups reported a high efficiency of CD8αβ+

SP generation, with some protocols achieving fre-
quencies over 80% [46, 53]. Similar to in situ differ-
entiated CD8αβ+ T cells derived from peripheral blood
mononuclear cells (PBMCs), iT cells produce Perforin
and Granzyme B and are able to lyse TCR-antigen
expressing target cells [50, 57]. Furthermore, iT cells
produce and secrete IFNγ in an antigen-dependent
manner, with some studies reporting similar and
others reporting lower levels compared to their PBMC-
derived counterparts [49–51]. TCR-activated iT cells
also produce TNFα and IL-2, but it remains to be de-
termined how these levels compare to those produced by
PBMC-derived CD8αβ+ T cells [51]. However, studies of
CAR-engineered iT cells (discussed further below) show
that CAR-iT cells secrete less IL-2 and TNFα compared
to PBMC-derived CD8αβ+ CAR-T cells [39, 49]
(Table 1).

Differences in the cytokine-secretion profile of iT cells
compared to PBMC-derived T cell products are further

enhanced by the absence of CD4+ cells in almost all
currently reported iPSC-derived products. Notably, one
group recently reported the generation of CD4+ iT cells
by knocking out a not-yet disclosed gene in TiPSCs
derived from an HLA-I restricted CD8αβ+ T cell clone
recognizing an Epstein-Barr Virus (EBV)-derived pep-
tide. In in vitro tests, these cells retained their affinity for
the HLA-I-presented EBV-peptide, and when exposed
to the peptide produced less IFNγ and TNFα than
CD8αβ+ iT cells, and more IL-2, IL-4, and IL-10. The
CD4+ iT cells produced Perforin and Granzyme B and
were able to lyse an EBV-associated Lymphoma cell line
[62]. However, it remains to be elucidated if and how the
CD8αβ-derived TCR expressed on these CD4+ iT cells
was able to mediate activation in the absence of a
CD8αβ-cofactor, or if other activation mechanisms were
in place.

Engineered iT Cells
TCR- and CAR-Engineered iT Cells
To redirect the specificity of iT cells, iPSCs have been

engineered to express αβTCRs or CARs against TAA [13,
49, 58, 63]. Two groups have reported DP formation and
subsequent CD8αβ+ iT generation from iPSCs trans-
duced with an αβTCR against a peptide derived from
Wilms tumor 1 (WT1). WT1-TCR-iT cells showed target
specific cytotoxicity and IFNγ production in vitro [58],
and upon repeated dosing were able to significantly slow
down the outgrowth of an intraperitoneally implanted
lung cancer cell line in vivo [53].

Whilst the αβTCR dimer associates with CD3 subunits
to form a signaling complex, CARs comprise their own
intracellular signaling domains derived from CD3ζ alone
(first generation), CD3ζ and one costimulation domain,
generally CD28 or 4-1BB (second generation) or CD3ζ
and two costimulation domains (third generation) [64].
Three studies have shown that the design of the intra-
cellular signaling domains of the CAR affects the efficiency
at which the iPSCs can reach the DP stage, with CAR
designs that induce less tonic (i.e., antigen-independent)
signaling allowing for the most DP formation [49, 52, 65].
Abating tonic signaling through timed expression of an
Immunoreceptor Tyrosine-based Activation Motif
(ITAM)-calibrated CAR from the TCR Alpha Constant-
locus (TRAC-1XX), facilitated differentiating iPSCs to
reach the DP and CD8αβ+ SP stages, resulting in TRAC-
1XX-iT cells that show antigen-specific cytotoxicity and
proliferation in vitro. Compared to PBMC-derived
TRAC-1XX CD8αβ+ T cells, TRAC-1XX-iT cells secrete
less IFNγ and TNFα, and no IL-2. TRAC-1XX-iT cells are
able to induce long-term tumor control in an intravenous
murine model for acute lymphoblastic leukemia [49].
Comparing the effects of first, second and third generation
CARs transduced into hematopoietic stem and progenitor
cells (HSPCs) revealed that 4-1BB-containing second and

Table 1. The expression of phenotype markers and anti-
gen-induced effector molecules by iT cells compared to in situ
differentiated T cells

Phenotype marker distribution
CD7 = [49, 61]
CD5 ▼ [61]
TCRαβ = [61]
DN ▲ [13, 49, 51]
CD8αα ▲ [13, 49, 51]
CD8αβ = [13, 49, 51]
CD4 ▼/absent [13, 49, 51]

Functionality
Perforin = [37, 50]
Granzyme B = [37, 49, 50]
IFNγ =/▼ [39, 49–51]
TNFα ▼ [37, 39, 49]
IL-2 ▼ [37, 39, 49]
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third generation CARs allowed for the most efficient DP
formation. Constitutive expression of a third generation,
GPC3-targeting CAR (GC28BBz) in iPSCs resulted in
iT cells exhibiting antigen-specific cytotoxicity in vitro but
producing less IFNγ and TNFα than PBMC-derived
CD8αβ+ T cells equipped with the same CAR.
GC28BBz-iT cells were able to slow down the outgrowth of
an intraperitoneally implanted ovarian cancer cell line
in vivo, but less so than their PBMC-derived counterparts.
Diacylglycerol kinase (encoded by DGK) downregulates
TCR and CAR signaling by phosphorylating diac-
ylglycerol, which disables diacylglycerol to activate the
MEK/ERK pathway. A knockout ofDGK at the iPSC stage
combined with the expression of an IL-15/IL-15 receptor
fusion (IL15-RF) molecule in mature DGK−/− GC28BBz-
iT cells enhanced their in vivo efficacy [52]. Although
CAR-iT cells can induce remission in multiple in vivo
models (both intraperitoneal and intravenous), they often
require higher and/or repeated doses, as well as exogenous
cytokine support to reach the same therapeutic effect as
similarly engineered CAR-T cells derived from healthy-
donor PBMCs [39, 49, 52, 53, 63].

Engineering Strategies to Avoid Alloreactivity
The clinical safety profile of iT cells will depend on their

lack of graft-versus-host potential [56]. Because in vitro
differentiated iT cell products will not have undergone
intrathymic negative selection, they have the potential to
contain TCRs directed against self-antigens of the recipient.
The graft-versus-host potential of iT cells can be abated by
the knockout of Recombination Activating Gene 2 (RAG2)
in TiPSCs derived from an antigen-specific T cell clone and
in TCR-engineered iPSCs [38]. RAG2 encodes one of the
two proteins that form the RAG1-RAG2 recombinase
complex initiating the double strand breaks between the
V(D)J fragments and thus TRB and TRA rearrangement
[66]. A CRISPR-mediated knockout of RAG2 prevents
additionalTRA rearrangement in TiPSCs and the formation
of a diverse αβTCR repertoire in TCR-engineered iPSC, and
thus renders iT cells with homogenous specificity [38]. This
finding was recently corroborated in an in vitro platform for
T cell generation fromTCR-engineered embryonic stem cell
lines [67]. When iT cell specificity is redirected through a
CAR, graft-versus-host disease can be prevented by the
knockout of the TRAC locus, which results in homoge-
neously αβTCR− iT cells [49].

Engineered iT Cells in the Clinic
The first iPSC-derivedCAR-T cell clinical trial is ongoing

and tests TRAC-1XX-iT cells in patients suffering from B
cell malignancies, including B cell Lymphoma and Chronic
Lymphocytic Leukemia. This phase 1 trial has a dose-
escalation design and tests both a single dose (starting at
90E6 cells per dose) and a fractioned dosing regimen (3
doses in 5 days, starting with 30E6 cells per dose). All

patients undergo lympho-conditioning by a combination of
cyclophosphamide, fludarabine, and bendamustine and in
extra arms of the study the CAR-iT cells are combined with
IL-2 administration [16, 68]. In an interim report on the
first 15 treated patients, 1 patient achieved a partial response
and 3 a complete response [68]. The same TRAC-1XX-
iT cells are being tested in a second trial that enrolls patients
with the B cell-mediated autoimmune disorder systemic
lupus erythematosus [69, 70]. A third trial in patients with
HER2-expressing solid tumors has been initiated recently
and uses a similar lympho-conditioning regimen, as well as
chemotherapeutic agents cisplatin and docetaxel. In addi-
tion to a HER2-targeting CAR and a TRAC knockout, the
iT cells are equipped with an IL-7/IL-7 receptor fusion (IL7-
RF) molecule, which is hypothesized to enhance persistence
in lieu of robust IL-2 production and CD4 help [17, 71].

iPSC-Derived NK Cells

In situ NK Differentiation
Whilst in vitro differentiation of HSCs intoNK cells was

already achieved in the 1990s, the exact cellular localization
and molecular orchestration of NK development in situ
has remained only partially understood [72]. NK devel-
opmental intermediates (NKDI) have been found not only
in the bone marrow, but also in peripheral blood and in
numerous other tissues such as lymph nodes, tonsils, the
thymus, the gastrointestinal tract, the liver, and the uterus,
where they are thought to differentiate into tissue-resident
NK populations [72, 73]. Although tissue-specific differ-
ences have been reported, there are common expression
patterns associated with the differentiation of NK pre-
cursors through immature NKDI stages into mature NK
cells. Generally, NK precursors lose the HSC-marker
CD34 and induce and maintain CD7 expression upon
their transition into theNKDI stages. The expression of IL-
15 receptor subunit B (IL15RB) on NK precursors de-
marcates their final commitment to the NK lineage and is
maintained throughout the differentiation into complete
maturation. During the NKDI stages the cells will tem-
porarily express relatively high levels of CD117 (c-KIT,
SCF receptor), Natural Killer Group 2 member A
(NKG2A) and eventually CD56 (NCAM, with an un-
known role in NK biology). Fully matured NK cells are
CD117−, NKG2A+/−, and CD56dim or CD56high. During
their maturation, NK cells also acquire the expression
NKG2D, Natural Cytotoxicity Receptors (NCRs), Killer-
cell Immunoglobulin-like Receptors (KIRs), and CD16
(FcRIII) [74, 75].

iPSC-To-NK Differentiation
Published in vitro iPSC-to-NK differentiation proto-

cols are similar to iPSC-to-T cell procedures and start
from iPSCs derived from CD34+ cells isolated out of
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umbilical cord blood (UCB) or fibroblasts [23] (Fig. 1).
After hematopoietic specification, the differentiating cells
are co-cultured with stromal cells (e.g., EL08-1D2 or
OP9) in the presence of cytokines including IL-3, IL-7, IL-
15, SCF, and Flt3-L [41]. Unlike T cells, NK cells can
differentiate in the absence of Notch signaling, but several
studies have shown that the lymphoid commitment and
NK differentiation of UCB-derived CD34+ cells are en-
hanced by Notch signaling [76, 77]. Therefore, several
reported iPSC-to-NK procedures use Notch-ligand ex-
pressing OP9 [78, 79]. The differentiating iPSCs are
typically cultured in these conditions for 3 weeks, during
which they lose CD34, and acquire CD7 and CD117 [79].

To expand the newly differentiated NK cells, current
protocols expose the cells to IL-2, IL-21, and 4-1BB-L
[41]. Throughout the differentiation process, the frac-
tion of CD56+ cells goes up gradually [24, 79]. Phe-
notypical comparison to PBMC-derived NK cells
showed that end-stage iPSC-derived NK (iNK) cells
express similar levels of CD56 [80–82]. To our
knowledge, the timing of the induction of the NK lineage
commitment marker IL15RB has not been addressed for
iPSC-to-NK differentiations, but one study found it to be
expressed post-expansion, which is akin to mature
PBMC-derived NK cells [83].

iNK Cell Function
NK cells can induce cytotoxicity by activating ex-

trinsic apoptotic pathways and by the release of cytolytic
granules containing Perforin and Granzyme B. The
extrinsic pathway is mediated by NK-expressed ligands
of death receptors, including TNF-Related Apoptosis-
Inducing Ligand (TRAIL) and Fas Ligand (FASL). The
expression of the TRAIL and FASL receptors on virally
infected and tumor cells can be increased by IFNγ se-
creted by NK cells. The engagement of these receptors
initiates a caspase cascade and the disruption of mito-
chondrial integrity, ultimately resulting in apoptosis
[74]. iNK cells express TRAIL and FASL at similar levels

as PBMC-derived NK cells [5, 80] (Table 2) and produce
IFNγ in response to exposure to target cells [78, 79],
indicating that they mediate their cytotoxicity at least
partially through the extrinsic pathway.

Similar to PBMC-derived NK cells, iNK cells produce
Perforin and Granzyme B and show degranulation when
exposed to tumor cells, although no direct comparisons of
secretion levels between iNK and PBMC-derived NK cells
have been reported [24, 79]. The release of cytolytic
granules is regulated by a wide range of activating and
inhibiting receptors, including the NKG2, NCR and KIR
families, and Fc receptors (FcRγ) [74] (Table 2). NKG2D
is an activating receptor that recognizes ligands that are
normally expressed at low levels but induced by physi-
ological stress or malignant transformation, including
MICA [87]. In phenotypical comparisons to PBMC-
derived NK cells, most studies showed that iNK cells
have similar levels of NKG2D [80, 82, 85], although in
some instances lower levels were reported [23, 81].
NKG2A dimerizes with CD94 to form an inhibitory
receptor that engages HLA-E and prevents NK cells from
hypertoxicity and thus the destruction of healthy tissue
[88]. Compared to PBMC-derived NK cells, most studies
reported similar levels of NKG2A on iNK cells [80–82],
although some studies found that iNK cells express rel-
atively less [84] or more [85] NKG2A.

The NCR family has three members (NKp46, NKp44,
and NKp30) and was discovered for the ability to mediate
NK responses to tumor cells. NCRs recognize a wide
range of endogenous and exogenous, non-MHC-
restricted ligands which can be activating or inhibitory
[89]. Compared to PBMC-derived NK cells, most studies
reported similar levels of NKp46 and NKp44 on iNK cells
[23, 24, 80–85, 90]. Only one study compared NKp30
expression by iNK cells and found levels similar to those
of PBMC-derived NK cells [86].

KIRs constitute a polymorphic class of receptors
engaging HLA-I [91]. The expression of activating and
stimulatory KIRs is consistently lower in iNK cells
compared to PBMC-derived NK cells [23, 78, 81, 83–85,
90]. This has been suggested to reflect a lack of terminal
maturation of iNK cells in vitro, but the ultimate effect of
lower KIR expression on the effector function of iNK
cells remains to be understood [92]. One study com-
pared the cytotoxicity of KIR+ and KIR−/low iNK cells
against neuroblastoma cell lines in vitro. It found that in
short term assays KIR+ cells were significantly more
cytotoxic against three out eight tested cell lines [93],
suggesting that in certain contexts iNK cells could
benefit from higher KIR levels.

Notably, another difference between iNK and PBMC-
derived NK cells is that iNK cells express less of FcRγ
CD16 [23, 81, 82, 84, 85, 90]. Expression of CD16 is not
only a marker of mature NK cells, but functionally it
facilitates antibody-dependent cellular cytotoxicity by

Table 2. The expression of phenotype markers and components
of the extrinsic and intrinsic pathway by iNK cells compared to
in situ differentiated NK cells

Phenotype marker distribution
CD7 = [84]
CD56 = [80, 85]

Extrinsic pathway
TRAIL = [5, 80]
FASL = [80]

Intrinsic pathway
NKG2D = [80, 82, 85]
NCRs = [80, 82, 85, 86]
KIRs ▼ [23, 78, 84]
CD16 ▼ [23, 81, 85]

32 Transfus Med Hemother 2025;52:27–41
DOI: 10.1159/000540473

Lindenbergh/van der Stegen

https://doi.org/10.1159/000540473


binding the Fc tail of endogenous or therapeutic IgG
antibodies bound to a target cell and transducing the
signal intracellularly through the phosphorylation of the
ITAM-containing adapter proteins CD3ζ or the common
γ subunit of FcRγ [94, 95]. The most immediate effects of
CD16 engagement are the stabilization of the immuno-
logical synapse and the subsequent release of Perforin and
Granzyme B, lysing the target cell and thus completing
the ADCC [96–98]. In addition, CD16 signals drive the
proliferation of NK cells and enhance their cytotoxic
potential, priming the NK cells for repeated lysis of target
cells [99]. Given the importance of CD16 signals, the
relatively low level of CD16 on iNK cells has the potential
to limit their cytotoxic clinical capacity. Indeed, in an
in vitro comparison with PBMC-derived NK cells, iNK
cells showed lower rates of ADCC [5].

Engineered iNK Cells
High-Affinity Non-Cleavable CD16
Addressing the relatively low level of CD16 on iNK

cells, several groups have engineered iPSCs to derive NK
cells with stronger or sustained CD16-signaling [5, 84,
100]. The affinity of CD16 for IgG antibodies is de-
pendent on a single nucleotide polymorphism in the
encoding gene (FCGR3A). This single nucleotide poly-
morphism translates into a substitution of phenylala-
nine (F) by valine (V) at residue 158. V158 has a higher
affinity for IgG antibodies than F158 [101]. Under-
scoring the importance of CD16 engagement in the
context of cancer immunotherapy, 3 studies found that
patients who homozygously carried the allele encoding
the high-affinity V158, responded better to monoclonal
antibody treatments targeting CD20 in non-Hodgkin
lymphoma, HER2 in breast cancer and EGFR in colo-
rectal cancer [5, 98].

Zhu et al. [5] engineered iPSCs to express a high-
affinity (V158) and non-cleavable version of CD16
(hnCD16). The extracellular domain of CD16 is cleaved
of the membrane of activated NK cells by A Disintegrin
And Metalloprotease-17 (ADAM17), a process that has
been shown to contribute to the disassembly of the
immunological synapse [102]. CD16 cleavage can be
prevented by mutating the ADAM17 cleavage site, which
results in the sustained expression of intact CD16 on
PBMC-derived NK and iNK cells upon activation [103].
While non-engineered iNK cells performed worse than
PBMC-derived NK cells in an in vitro ADCC assay,
hnCD16-iNK cells outperformed PBMC-derived NK
cells. In a murine model for B cell lymphoma, hnCD16-
iNK cells combined with an anti-CD20 antibody induced
improved tumor control and survival, outperforming
both non-engineered iNK and PBMC-derived NK cells.
hnCD16-iNK cells also showed efficacy against intra-
peritoneally implanted ovarian cancer cells, mediated by
an anti-HER2 antibody [5]. To target hnCD16-iNK cells

with an anti-CD38 antibody (daratumumab) without
inducing fratricide, hnCD16-engineering can be com-
bined with a CD38 knockout in iNK cells [104].

CAR-Engineered iNK Cells
To redirect the specificity of NK cells without the need for

a mediating antibody, PBMC- and iNK cells have been
engineered to express CARs [105]. The first generations of
CARs tested in (i)NK cells were originally designed for T cells
and contained ITAM signaling domains derived from CD3ζ
[64]. Because CD16, NCRs and some KIRs transduce their
signal through ITAM-containing adapter proteins, including
CD3ζ and FcRγ [94, 95, 106], T cell-tailored CARs were able
to mediate antigen-specific activation of NK cells [105, 107].

Li et al. [82] hypothesized that CAR designs could be
optimized for their application in NK cells, and engineered
iPSC lines to express an array of CAR designs targeting
mesothelin. They found that iNK cells expressing a CAR
comprised of the transmembrane domain of NKG2D and
the signaling domains of 2B4 and CD3ζ showed superior
efficacy compared to iNK cells that were not engineered or
engineered to express a CAR designed for T cells in an
in vivomodel of ovarian cancer. iPSCs expressing a BCMA-
targeting CAR with the same transmembrane and signaling
domains gave rise to CAR-iNK cells that showed antigen-
specific TNFα and IFNγ secretion, and cytotoxicity against
tumor cell lines and primary multiple myeloma cells. These
cells were also able to significantly delay tumor outgrowth in
an intravenous in vivo model for multiple myeloma [86].

Engineered iNK Cells in the Clinic
Currently, there are four registered dose-escalating

phase 1 clinical trials ongoing that test CAR-
engineered iNK cells in acute myeloid leukemia, multi-
ple myeloma and B cell lymphoma, including two that
utilize NK-tailored CAR designs. Patients enrolled in
these studies receive a variety of lympho-conditioning
regimens, all including cyclophosphamide and fludar-
abine [18–21, 86]. Interestingly, one study has an arm
that does not receive lympho-conditioning, which will
provide insight into the benefits of such pretreatment
[18]. Three of the tested products combine CAR ex-
pression with other engineering strategies, such as the
expression of IL15-RF to enhance persistence [18–20,
104]. Two of these studies test iNK cells further en-
gineered to express hnC16 in combination with anti-
CD38 (daratumumab) or anti-CD20 (rituximab) anti-
bodies for multiple myeloma and B cell lymphoma [18,
19]. Unlike the clinically applied iT cell products, iNK
cells are not thought to require engineering strategies to
avoid alloreactivity beyond the on-tumor effect because
iNK cells do not express strong, activating receptors with
unpredictable specificity (i.e., TCRs) [92]. In fact, a
seminal clinical trial testing allogeneic, haploidentical NK
cells suggested that a certain level of mismatching
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between the NK cells’ inhibitory KIR repertoire and the
HLA types expressed by the recipient and their tumor
cells can contribute to enhanced clinical efficacy [4].

iPSC-Derived CAR+ Myeloid Cells

Myeloid cells, especially macrophages and neutrophils,
are appealing cell types to add to the cellular immuno-
therapy arsenal. Particularly relevant for solid tumors are
their abilities to infiltrate the tumor microenvironment
(TME) more effectively than T and NK cells and to
modulate the tumorigenic nature of the TME [108].
Primary monocyte-derived macrophages have effectively
been retargeted to HER2 through the expression of a first
generation, CD3ζ-based CAR design (CAR-Macs) and
are currently being tested in a first-in-human phase 1
clinical trial [6, 7]. Patients with HER2-overexpressing
solid tumors or peritoneal disease receive a single or
multi-dosed treatment of a total of 5 billion autologous
CAR-Macs, through intravenous or intraperitoneal ad-
ministration. Initial results have reported grade 1–2 cy-
tokine release syndrome (CRS) but no dose-limiting
toxicities or on-target off-tumor toxicity. The best re-
sponse was stable disease. Additionally, activation of
lymphocytes in the TME could be observed and the trial
has been expanded to include a combination of intra-
venous CAR-Mac administration with PD-1 checkpoint
inhibition (Pembrolizumab) [7, 109]. However, the
broader application of autologous, primary CAR-Macs is
challenged by low yields of patient monocytes, insuffi-
cient in vitro expansion techniques, and limited efficiency
in genetic engineering [110]. In the case of neutrophils,
the short half-life of primary neutrophils, in addition to
their resistance to genetic engineering along with the
neutropenia commonly associated with cancer and its
treatment, renders them inaccessible for autologous
CAR-Neutrophil generation. However, it had been shown
that CAR-engineered UCB-derived HSPCs could be
differentiated along the myeloid lineage, without inter-
ference of the CAR expression [111]. Additionally,
CD34+ cells engineered to express a CD4/CD3ζ or CD4/
FcRγ fusion receptor could be differentiated into neu-
trophils capable to elicit antigen-targeted lysis [112].
These studies suggest that iPSC-derived macrophages
(iMac) or neutrophils (iNeuts) could provide an inter-
esting, feasible approach to enhance accessibility and
explore the clinical potential of myeloid cells in ACT.

CAR-Engineered iMacrophages
Multiple reports have been published on the generation

of iPSC-derived CAR+ macrophages (CAR-iMacs). CAR-
iMacs have been successfully differentiated from human
embryonic stem cells (hES) and [25, 113], PBMC- [114,
115], or CD34+- [27] derived iPSCs (Fig. 1), against a variety

of TAAs, including CD19 [114, 116], mesothelin [117–119],
chlorotoxin [113], EGFRvIII, and Glypican-3 [115]. CAR
designs utilized either “conventional” T cell-derived first- or
second-generation CAR designs or macrophage-optimized
CAR designs [113, 114, 116, 117]. Macrophage-specific
CARs included signaling domains derived from phago-
cytic receptors, such as the FcRγ combined with the p85-
recruitment domain of CD19 [116], DAP12 [111], toll-like
receptor 4 intracellular toll/IL-1R (TIR) domain in com-
bination with CD3ζ [115] or Bai1, MegF10, or MerTK as
signaling domains [117]. The best-performing CAR design
was generally selected utilizing THP-1 derivedmacrophages
[114, 117] or in primary CD34+ cells which were subse-
quently differentiated toward macrophages [116] prior to
CAR-iPSC engineering. Interestingly, CAR designs con-
taining Macrophage-specific signaling domains did not
always have the highest therapeutic potential [114, 116,
117]. Both engineering strategies utilizing random inte-
gration as well as targeted integration into the AAVS1
genomic safe-harbor have successfully been applied for
CAR-iMac generation [113, 117]. There has been only one
report of random integration resulting in downregulation of
CAR expression during differentiation [117]. Similar to the
findings in UCB-derived HSPCs, constitutive CAR ex-
pression in iPSCs does not interfere with myeloid differ-
entiation in vitro [114]. However, the CAR design might
affect the properties iMacs acquire. Macrophages have an
inherent ability to alter their properties, so called plasticity.
Macrophages can acquire anti- (M1) as well as pro-
tumorigenic (M2) characteristics in response to environ-
mental cues. Although macrophage plasticity has been
established to be far more complex than just a gradient
between the M1 and M2 phenotypes, studies still use the
associated phenotypical markers due to the extensive ex-
perience of correlating those phenotypes with tumor
prognosis [120]. iMacs targeted toward CD19 or Meso-
thelin utilizing a conventional T cell-tailored 4-1BB/CD3ζ
design expressed conventional myeloid markers including
CD45, CD11b, and CD14 but had a transcriptional sig-
nature more akin to a M2 phenotype, while functionally
showing increased production of pro-inflammatory cyto-
kines, increased phagocytosis and the ability to control
tumor growth in vivo compared to untreated mice [114].
The pro-inflammatory nature of these CAR-iMacs and their
in vivo antitumor capacity could be further improved
through a knockout of ACOD1, promoting a stronger M1-
like, glycolytic, phenotype and an increase in CD80 and
CD86 cell-surface expression [119]. Alternatively, consti-
tutive expression of a Macrophage-optimized CAR struc-
ture (containing the FcRγ domains and p85-recruitment
domain from CD19) did result in CAR-iMacs with a M1-
like phenotype, showing increased activation of antiviral
and cytokine-mediated responses as well as pro-
inflammatory genes (including CD80, CD40, CCL5, and
CCL2) compared to GFP-transduced counterparts, as well
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as increased phagocytosis and cytokine secretion (IL-6 and
TNFα) [116]. Similarly, the use of a TIR-CD3ζ CAR design
resulted in CAR-iMacmarked by an increased transcription
of CD80, CD86, and CD83, and a decrease in CD206 and
CD163 compared to iMacs expressing truncated CARs
(CARs devoid of an intracellular signaling domain). Besides
increased phagocytosis [115], the addition of checkpoint
blockade, such as anti-CD47 [115, 116, 121], and the re-
duction of sialoglycans on tumor cells, can further increase
the antitumor potential of iMacs [118]. In addition to their
direct antitumorigenic function, iMacs can support T and
NK cell responses and thus have potential in combinatorial
treatment. iMacs have been reported to be able to increase
T cell activation [116], and improve AML tumor cell killing
in vitro when combined with iNK cells [121]. Furthermore,
iPSCs engineered to ectopically express IL-12 give rise to
iMacs that provide enhanced support to T cell responses in
preclinical models [122]. Although direct, functional
comparisons between CAR-Macs and -iMacs have not been
reported, the results suggest that iMacs behave in a manner
similar to their primary counterparts. Therefore, consid-
ering the pivotal role that macrophages play in CRS [123,
124], caution is required with large-scale infusion, especially
when applied in combination with treatment modalities
involving the activation of T cells.

CAR-Engineered iNeutrophils
Although the first CAR+ neutrophils were generated

in vitro in 1998 [112], reports of PSC-derived CAR-
iNeuts for ACT have only started to gain traction more
recently. Besides the early report on CAR-iNeut dif-
ferentiation from CD34+ cells [112], CAR-iNeuts have
been differentiated from hES [26, 125] and FiPSCs [26],
targeting either CD4 [112], PSMA [125], chlorotoxin,
and IL-13Ra2 [26]. Different CAR signaling modalities
have been tested in iNeuts. A first-generation design
utilizing a CD4 transmembrane and a CD3ζ intracellular
signaling domain was consistently the most functional
design [26, 112, 126], compared to designs incorporating
FcRγ [112], NKG2D and 2B4 [26] or CD32a [126]
domains. Although constitutive CAR expression did not
interfere with neutrophil differentiation from CD34+

cells, downregulation of CAR expression has been re-
ported, possibly due to (partial) transgene silencing
[112]. Consecutive studies targeting the CAR transgene
into the AAVS1 locus did not report such down-
regulation [26, 125]. CAR expression from the AAVS1
locus did not affect neutrophil differentiation, resulting
in phenotypes (based on CD16, CD11b, CD15, CD66b,
CD18, and MPO expression) similar to cells derived
from unedited PSC and primary neutrophils [26].
However, RNA analysis suggests that CAR-iNeuts are
potentially more immature in their phenotype and
function, and have reduced sensitivity to chemo-
attractants [26, 125]. In vitro, CAR-iNeuts showed

enhanced killing of glioblastoma multiforme and
prostate cancer targets compared to CAR− iNeuts or
primary neutrophils [26, 125]. Target cell killing was
mediated through reactive oxygen species production,
phagocytosis, and neutrophil extracellular trap forma-
tion [26]. In an orthotopic in vivo model of glioblastoma
multiforme, weekly administration of 5 million CAR-
iNeuts intravenously showed that CAR-iNeuts were able
to effectively cross the blood-brain barrier, control the
tumor burden and provide a marginal increase in sur-
vival [26]. The anti-tumoricidal function of CAR-iNeuts
could be improved in vivo by harnessing their ability to
carry and deliver chemotherapy, increasing the survival
over CAR-iNeuts only [26].

Although the studies into the application of CAR-
iNeuts are still very limited, initial results look promis-
ing. Due to the current inability to generate primary CAR+

neutrophils, direct phenotypic and functional comparisons
to the PBMC-derived counterparts are not feasible.
However, this underscores the potential of iPSC-derived
ACT, rendering cell types accessible which cannot be
derived from peripheral blood. The short half-life of
neutrophils provides an additional challenge for the ef-
fective application of CAR-iNeuts in ACT. Further (pre)
clinical studies will be required to assess the best treatment
design, balancing their antitumor function, capacity to
modulate the TME and possible role in CRS [127].

Discussion

iPSCs provide a source of allogeneic, homogeneously
engineered, “off-the-shelf” immune effectors for adop-
tive cell therapy. As we described here, diverse differ-
entiation protocols and engineering strategies have been
developed to generate iPSC-derived T cells, NK cells,
macrophages, and neutrophils for their application in
oncology. These engineering strategies address tumor
targeting (CAR, hnCD16), alloreactivity (TRAC or
RAG2 knockouts), and histocompatibility (B2M
knockout) (Fig. 2). For allogeneic therapy, the efficiency
of these engineering strategies is of vital importance to
limit toxicities. Even small fractions of allogeneic,
PBMC-derived αβTCR+ T cells can induce graft-versus-
host responses [128] and thus homogeneously edited
iPSC-derived T cells could reduce this risk. Histocom-
patibility is required to avoid immune-rejection of the
effector cell population. Strategies to design “hypo-
immunogenic” iPSCs have been described [129, 130].
Most of the iT and iNK cells currently in clinical trials
are not edited to achieve hypoimmunogenicity, but one
iNK-based clinical trial incorporates the expression of
an “Alloimmune Defense Receptor” (ADR, Fig. 2) to
avoid T- and NK-mediated immune-rejection [131,
132]. Combined, these clinical trials will provide insight
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into the in vivo persistence of iNK and iT cells and the
requirement of hypoimmunogenicity to achieve thera-
peutic efficacy. An alternative to engineering strategies
to avoid rejection is the generation of HLA-homozygous
haplobanks [133, 134]. While such banks are already
being established, this would require the generation of
parallel iPSC master cell banks for each haplotype,
whereas engineering strategies could allow one bank to
accommodate all haplotypes.

The current generation of iPSC-derived immune ef-
fectors largely resembles their PBMC-derived counterparts
in terms of their cell-surface marker expression, effector
functions, and transcriptome. iT and iNK cells show re-
markable tumor control in vivo. However, the current
body of work reviewed here has revealed that notable
differences between iPSC- and PBMC-derived immune
effectors do remain (Tables 1–2). iT cells produce less
cytokines, do not contain a robust CD4+ helper subset and
consistently require higher doses and/or cytokine sup-
plementation to match the antitumor efficacy of PBMC-
derived products. iNK cells’ lower levels of KIR expression
suggest that they are not fully maturated, whilst their lower
CD16 levels limit their ADCC-potential. Future work
should continue to benchmark properties of iT cells
(in vitro proliferation and in vivo persistence), iNK cells
(cytokine production) and myeloid cells (where feasible)
against their PBMC-derived counterparts equipped with
the same genetic edits.

Because iPSCs are a virtually unlimited source of
immune effectors, they allow for the production of
large numbers of cells and therefore higher or repeated
dosing could compensate for lesser effector functions.
However, one advantage of ACT is the requirement of

only one treatment dose. Therefore, strategies to in-
crease the potential of iPSC-derived immune effectors
are being pursued. Single-cell transcriptomics can
provide insights into the difference between in vitro
and in situ differentiation. These comparisons as well
as genetic screens can guide optimization of iPSC-
differentiation protocols to generate immune effec-
tors that more closely resemble their PBMC-derived
counterparts. The potential of this approach was re-
cently exemplified by the enhancement of αβTCR+

iT cell differentiation through the knockdown of
histone methyltransferase EZH1, directing more cells
to a CD8αβ+ phenotype, at the expense of an innate-
like CD8αα+ phenotype [39]. Alternatively, iPSCs can
be engineered to overexpress molecular signals and
receptors their derivatives lack, such as the afore-
mentioned hnCD16 or IL7-RF. However, such engi-
neering strategies need to be carefully designed and
evaluated, since they can disrupt the delicate signaling
balance required for immune effector differentiation.
This includes both the selection of genes to be knocked
out or in, as well as the engineering methodology used.
As discussed here, transgene silencing and promotor
choice can affect its expression and thereby the lineage
commitment of the differentiating immune effector
[49, 112], which can be mitigated by targeted inte-
gration into a locus with an expression pattern that
allows for appropriately timed and stable expression
[26, 49]. Augmenting in vitro differentiation to gen-
erate bona-fide immune effectors combined with en-
gineering strategies to enhance their effector functions,
could potentiate iPSC-derived adoptive cell therapy to
reshape the current therapeutic landscape of oncology.

Fig. 2. Engineering strategies applied in iPSC-derived immune
effectors. Shown is a representative selection of iPSC level engi-
neering strategies currently applied to redirect iPSC-derived im-
mune effector specificity (TCR, CAR, hnCD16), to prevent the
expression of unknown antigen-receptors (TRAC and RAG2

knockouts), to avoid elimination by immune-rejection (B2M
knockout, ADR) or therapeutic anti-CD38 antibodies (CD38
knockout), to optimize redifferentiation (EZH1 knockdown) and
to enhance antitumor function (DGK and ACOD1 knockouts, IL7-
RF, IL15-RF, IL-12, AKT).
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