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Genetic analysis of pathogen genomes is a powerful approach to investi-

gating the population dynamics and epidemic history of infectious

diseases. However, the theoretical underpinnings of the most widely used,

coalescent methods have been questioned, casting doubt on their interpret-

ation. The aim of this study is to develop robust population genetic inference

for compartmental models in epidemiology. Using a general approach

based on the theory of metapopulations, we derive coalescent models

under susceptible–infectious (SI), susceptible–infectious–susceptible (SIS)

and susceptible–infectious–recovered (SIR) dynamics. We show that expo-

nential and logistic growth models are equivalent to SI and SIS models,

respectively, when co-infection is negligible. Implementing SI, SIS and SIR

models in BEAST, we conduct a meta-analysis of hepatitis C epidemics,

and show that we can directly estimate the basic reproductive number (R0)

and prevalence under SIR dynamics. We find that differences in genetic diversity

between epidemics can be explained by differences in underlying epidemiology

(age of the epidemic and local population density) and viral subtype. Model

comparison reveals SIR dynamics in three globally restricted epidemics, but

most are better fit by the simpler SI dynamics. In summary, metapopulation

models provide a general and practical framework for integrating epidemiology

and population genetics for the purposes of joint inference.
1. Introduction
During an ongoing outbreak, understanding the epidemiological dynamics and

predicting the likely course of the outbreak are time-critical tasks essential for

informing intervention [1,2]. If systematic monitoring is in place, key par-

ameters such as R0, the basic reproductive number [1], can be estimated

directly, as in the case of the foot and mouth disease outbreak among British

cattle in 2001 [3] and the outbreaks of severe acute respiratory syndrome in

Asia in 2002 and 2003 [4]. Genetic analysis provides a window into the epi-

demic history of a pathogen that can complement epidemiological analysis,

as in the case of the H1N1 influenza A pandemic in 2009 [5,6], or take its

place in the absence of reliable surveillance data. The ability to sequence patho-

gen genomes in real time, for example during the 2010 cholera outbreak in

Haiti [7], foretells of the increasingly important role for genetic analysis

during outbreak response.

Genetic analysis is a well-established tool for revealing the epidemic history of

pathogen populations [8,9]. It commonly involves the post hoc interpretation of

an evolutionary tree constructed from genetic sequences. Relationships between

isolates may reveal the order of transmission events [10,11], whereas the shape

of the tree is informative about overarching dynamics [12]. However, more

powerful approaches explicitly integrate genetic and epidemiological models.

For example, coalescent methods—which can be used to infer historical changes

in population size [13–15]—have been applied to pathogen populations to infer

historical changes in prevalence. By modelling changes in prevalence using the

susceptible–infectious–susceptible (SIS) model, epidemiological parameters

such as the intrinsic growth rate of the epidemic have been estimated directly [16].
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Figure 1. Metapopulations and epidemiological dynamics. (a) Pathogen populations are metapopulations because they exist as an aggregate of isolated
subpopulations within individual hosts. We refer to infection of susceptible hosts as primary infection, and subsequent infection events as secondary infection. We
use compartmental models from epidemiology to model the dynamics of the metapopulation. (b) The SI, SIS and SIR models are simple compartmental models.
Changes in the proportions of susceptible (S), infected (I ) and recovered (R) hosts are modelled using differential equations. In all three models, the proportion of
infected hosts is assumed to increase at rate b1SI, where b1 is the primary transmission coefficient. In the SIS model, hosts clear infection and return to the
susceptible class at rate g. In the SIR model, hosts that clear infection recover and are no longer susceptible. (c) The models predict different epidemiological
dynamics. In the SI model, the whole population is eventually infected. In the SIS model, a dynamic equilibrium is reached. In the SIR model, the epidemic peaks
and burns out as the supply of susceptible hosts is exhausted.

rstb.royalsocietypublishing.org
PhilTransR

SocB
368:20120314

2

Early applications of the coalescent approach shed new

light on the epidemic behaviour of the hepatitis C virus

(HCV) [16], and the pathogen has continued to attract intense

research attention owing to its medical importance and amen-

ability to genetic analysis. HCV is a major cause of liver

disease, including cirrhosis and liver cancer. Estimated to

infect 160 million people around the world [17], it is implicated

in 350 000 deaths per year [18]. Sharing contaminated needles

and transfusion of infected blood products are thought to be

the main routes of transmission [19]. HCV is an enormously

diverse RNA virus, comprising six major types with varying

geographical distributions [20,21]. Coalescent inference has

been used to date the origin of HCV in different countries

[16,22–28], providing a historical context for the emergence

of epidemics and providing quantitative support for the roles

of iatrogenic transmission [22] and drug use [29].

The advent of population-level whole genome sequencing

has revealed previously unfathomed diversity in pathogenic

bacteria [30], leading to wider interest in integrated approaches

to genetics and epidemiology beyond rapidly evolving viruses

such as HCV. However, theoretical work has shown that

although the central assumption of coalescent approaches—

that effective population size is proportional to prevalence—is

valid at dynamic equilibrium [31], it does not hold more gener-

ally [32,33]. In this study, we derive a new framework for

population genetic inference of epidemiological dynamics

based on a metapopulation model of pathogen populations.

Using coalescent results for metapopulations [34,35], we

expose the assumptions implicit to coalescent approaches and

explore the limits of genetic inference. We implement SI, SIS

and SIR models in BEAST [36], and conduct a meta-analysis

investigating the epidemiological processes that underlie

differences in genetic diversity between HCV epidemics.
2. Models
(a) Metapopulation model of pathogen populations
Metapopulations (literally populations of populations [37,38])

have been used to account for heterogeneity in pathogen

species caused by strain structure or host structure [39,40].

However, pathogen populations are metapopulations in a

more fundamental sense, because the population is an
aggregate of the many isolated subpopulations colonizing

individual hosts (figure 1).

The key feature of a metapopulation that distinguishes

it from other structured populations is the extinction of indi-

vidual demes (i.e. subpopulations) and their re-colonization

by other demes [41]. In pathogens, demes correspond to

hosts, colonization corresponds to infection of an uninfected

host (what we call primary infection) and extinction corres-

ponds to clearance of infection. Migration to a colonized

deme corresponds to secondary infection of an infected

host. To make a concrete population genetics model,

additional assumptions are required [34,35,41], principally

that (i) upon primary infection the infecting genotypes

come from a single host, and (ii) the carrying capacity is

immediately attained within the newly infected host.

Among the advantages of using the metapopulation

model is the wealth of understanding of metapopulation

dynamics [37,38,41–43]. In a series of papers, Wakeley

[44–46] developed coalescent approximations for struc-

tured populations, including metapopulations [34,35], based

on the assumption that the number of colonized demes is

large. The main result from his work is that under disparate,

complex models of population structure, the genealogy of

individuals sampled from different demes is well approxi-

mated by a standard coalescent process whose effective

population size is a function of the demographic parameters.

This puts inference for metapopulations on a practical footing

[36], and the assumption that the number of infected hosts is

large is consistent with the deterministic compartmental

models commonly used in epidemiology.

(b) Compartmental models of infectious disease
Compartmental models are important tools for modelling

infectious disease dynamics [1]. In a simple SI model, the pro-

portions of all hosts that are susceptible (S) and infectious

(I ) are modelled using differential equations. Usually, the

total rate of primary infection is assumed to depend on

the number of susceptible and infectious individuals and a

transmission coefficient (b1). This is known as strong propor-

tionate mixing [1]. In the SIS model, infected individuals

clear infection and return to the susceptible class at rate g.

In the SIR model, individuals that recover from infection

instead become immune. These three models have different
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dynamics, with the SIR model producing the classical epi-

demic expansion and burn out (figure 1).

Initially, when infection is rare and susceptible hosts are

plentiful, the epidemic increases exponentially with rate r0,

the intrinsic growth rate. In the SI model, r0 ¼ b1 and in the

SIS and SIR models, r0 ¼ b1 2 g. During this exponential

phase, the transmission rate per infection is b1, but it slows

as susceptible hosts are exhausted. The clearance rate g corre-

sponds to the inverse of the average duration of infection. An

important quantity is the basic reproductive number R0,

defined as the total number of infections caused by an

index case in a totally susceptible population [1]. In the SIS

and SIR models, R0 ¼ b1/g. In the SIS model, R0 determines

the equilibrium prevalence, whereas it determines the peak

prevalence in the SIR model.

Compartmental models can be elaborated endlessly.

However, the only extension to the basic models we make

is to consider the dynamics of secondary infection. Assuming

strong proportionate mixing, it follows that the total rate of

secondary infection depends on the square of the number

of infectious individuals and a transmission coefficient (b2).

Although this is important for the metapopulation model,

our treatment of secondary infection does not change the

dynamics of the epidemiological models. As noted, the use

of deterministic differential equations to model epidemic

dynamics implies the number of infected hosts is large.

Although this cannot hold in the early stages of the epidemic,

experience suggests these models are nevertheless useful for

epidemiological inference [3–5].
3. Results
(a) Effective population size
The key parameter in a coalescent model is Ne, the effective

population size, because it determines the coalescence rate,

which in turn determines relatedness within the sample

[15]. In the metapopulation model described earlier, the

many-demes limit [34,35] gives the effective population size

as

Ne ¼
D

2ðe0 þmÞF ð3:1Þ

where

F ¼ 1þ e0NP=k
1þ e0NP=k þ 2mNP

:

In these equations, D is the number of infected hosts, e0 is the

rate of primary transmission per infection, m is the rate of sec-

ondary transmission per infection, NP is the pathogen

population size within a host and k is the number of geno-

types transmitted during primary infection. F is the

inbreeding coefficient, which is the probability that two indi-

viduals sampled within the same host are descended from

the same transmission event. See table S1 in the electronic

supplementary material for all parameter definitions.

Assuming strong proportionate mixing, the rates of pri-

mary and secondary transmission per infection are e0 ¼ b1S
and m ¼ b2I, respectively, which yields

Ne ¼
NHI

2ðb1Sþ b2IÞF ð3:2Þ
where

F ¼ N�1
P þ b1S=k

N�1
P þ b1S=k þ 2b2I

;

and where NH is the total number of hosts. Equations (3.1)

and (3.2) resolve the apparently conflicting observations

that (i) Ne is proportional to prevalence at dynamic equili-

brium [31], but (ii) changes in prevalence do not necessarily

induce a linear change in Ne [33] because the rates of primary

and secondary transmission per infection and the inbreeding

coefficient depend, in general, on prevalence. This is true

under assumptions of both strong and weak proportionate

mixing. For further explanation of the determinants of effec-

tive population size in the metapopulation, see electronic

supplementary material, figure S1.
(b) Coalescent SI and SIS models
Equations (3.1) and (3.2) are consistent with the results of a

simpler model [33], which assumes co-infection is negligible

(b2 ¼ 0). Because this assumption will often be reasonable,

and because it reduces the number of parameters to be esti-

mated, we embrace it in the rest of what follows. The SI

and SIS models can be solved in closed form (see §5 and

equations (5.1) and (5.2)), so it is possible to write down the

effective population size under these models. For the SI

model, the effective population size simplifies to

Ne ¼ N0e�r0t; ð3:3Þ

which is an exponential growth curve with parameters N0 ¼

NH(1 2 S0)/(2b1S0), the effective population size at present,

and r0, the intrinsic growth rate. Time is measured from the

present (t ¼ 0) back into the past (t . 0). For the SIS model,

the effective population size simplifies to

Ne ¼ N0
1þ e�r0t50

1þ e�r0ðt50�tÞ ; ð3:4Þ

which is a logistic growth curve with parameters N0, r0 and

t50 ¼ 2 log(r0/(g(1 2 S0)) 2 1)/r0, the time at which Ne

reached half its maximum.

Equations (3.3) and (3.4) show that the exponential and

logistic growth curves, which are commonly used in coalesc-

ent analyses of pathogen effective population size [14,23,29],

arise from simple SI and SIS models under the assump-

tions of strong proportionate mixing and no co-infection.

However, the growth curves describing changes in Ne are

simpler than the underlying growth curves that describe

changes in prevalence, and have one fewer parameter. Con-

sequently, there is no one-to-one correspondence between

the coalescent parameters and the epidemiological par-

ameters, meaning that the epidemiological parameters

cannot be fully identified from genetic analysis alone. An

independent estimate of one of the epidemiological par-

ameters (e.g. rate of clearance of infection or present-day

prevalence) is required to reconstruct historical changes in

prevalence. In this respect, our results differ from Pybus

et al. [16], but we agree with their key result that the intrinsic

growth rate (r0) in an SIS model can be estimated by model-

ling changes in Ne using a logistic growth curve. We also

agree that to estimate the basic reproductive number R0, an

independent estimate of one of the epidemiological

parameters is needed.



(a)

1b

1a

6f

6a

3a

4a2c

5a

1a 1b

4a 1b

1a

6a2c 1b1a6a

5a 1b1a

6f

3a 1b

1a

3a
(b)

Figure 2. Summary of hepatitis C datasets. (a) The geographical distribution of HCV datasets analysed, with country of origin and subtype indicated. Colours
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(c) Coalescent SIR model
Equations for the epidemiological dynamics in the SIR model

cannot be solved analytically, but can be solved numerically

using computational techniques [47]. Unlike the simpler

models, there is no confounding of epidemiological par-

ameters, meaning that, in principle, all the parameters of the

epidemiological model (see table S1, electronic supplementary

material) can be estimated from genetic data alone. Conse-

quently, R0 can also be estimated, in principle, directly from

genetic data. We found that model comparison and

parameter estimation using BEAST were aided by the following

re-parameterization: N0 ¼ NH(1 2 S0 þ glog(S0)/(b1)/(2b1S0),

the effective population size at present, r0 ¼ b1 2 g, the intrin-

sic growth rate, g, the rate of clearance and tpeak, the time since

the epidemic peaked, which must be calculated numerically.

(d) Meta-analysis of hepatitis C
To investigate the practical value of our approach for estimat-

ing epidemiological parameters, reconstructing epidemic

history and explaining variation in genetic diversity between

epidemics, we conducted a meta-analysis of HCV, one of the

most intensively studied pathogens in the context of joint

evolutionary–epidemiological inference. We conducted a

literature search for HCV datasets with well-described

sampling frames and readily available metadata. Initially,

we identified 28 datasets for which subtype, sampling

location, prevalence and NS5B gene sequences were available

[22,23,25,29,48–59]. However, we excluded those with small

sample size (fewer than 20 sequences) and evidence of

recombination (see the electronic supplementary material,

table S2). Recombination is problematic for coalescent infer-

ence [60] and provides evidence of co-infection, which our

method assumes is absent. In total, 18 datasets satisfied

our incorporation criteria (see the electronic supplementary

material, dataset S1).

Figure 2 shows the geographical distribution of the HCV

datasets and a genealogy based on a global alignment of all

sequences, with the subtypes indicated. Subtypes formed dis-

tinct monophyletic groups, but the ancestral histories of

datasets within the same subtype were shared to varying

degrees. We fitted our coalescent SI, SIS and SIR models to

each dataset separately while bearing in mind this overlap.

For the meta-analysis, we estimated N0 (the effective
population size at the time of sampling) and r0 (the intrinsic

growth rate) using a model-averaging approach that assumed

equal prior probability of each scenario (SI, SIS and SIR).

We used linear regression to explore the epidemiologi-

cal determinants of genetic diversity between epidemics.

We measured genetic diversity using p, the mean number of

nucleotide differences between HCV sequences in the same

dataset. Diversity varied considerably, ranging from p ¼ 20.3

to p ¼ 84.3 per kilobase (see the electronic supplementary

material, table S2). We found that the strongest predictor

of diversity was the age of the most recent common ances-

tor (TMRCA), followed by population density and subtype

(figure 3). Table 1 shows the regression coefficients and

p-values, although the latter must be viewed with a degree of

caution owing to pseudo-replication within subtypes. The

overall predictive power of the regression was very high

(R2 ¼ 98.9%). Epidemics with older TMRCA had substantially

higher diversity as would be expected, whereas increased

population density predicted a reduction in diversity. Of the

subtypes represented by multiple datasets, 1b had highest

diversity and 6a had lowest diversity after correcting for the

effects of TMRCA and population density. Surprisingly, there

was no significant relationship between diversity and intrinsic

growth rate, r0, after taking into account other factors.

This would be explained by rapid epidemic growth across

the datasets, resulting in star-shaped genealogies.

Reconstructing historical changes in Ne revealed that most

datasets exhibited strong exponential growth, consistent with

the SI model (figure 4). For each dataset, we calculated the

posterior probability (PP) of the SI, SIS and SIR models,

and a model of endemic infection that implies a constant

effective population size (see the electronic supplementary

material, table S3). The endemic model was rejected outright

for every dataset (PP � 0.002). In 13 cases, the SI model was

clearly preferred (PP ¼ 0.62–0.99). In the subtype 1a dataset

from Belgium, SI dynamics were most probable (PP ¼ 0.44),

but there was also support for the SIS (PP ¼ 0.36) and SIR

models (PP ¼ 0.20). Only in one example—subtype 3a in Bel-

gium—was the SIS model most probable (PP ¼ 0.88). The

preference for the simpler SI dynamics in most of the datasets

is evidence that these epidemics have neither reached

dynamic equilibrium, as in the SIS model, nor begun to

burn out, as in the SIR model. All the epidemics except one

(subtype 4a in Egypt) appear to have emerged during the
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Figure 3. Meta-analysis of HCV diversity. Results of the regression of genetic diversity (p) against age of the most recent common ancestor (TMRCA), subtype,
intrinsic growth rate (r0) and population density. Intrinsic growth rate was not significantly associated with p after accounting for the other effects. (a) Scatterplot of
p against TMRCA, with regression lines shown for subtypes represented by multiple datasets. (b) Fitted diversity against observed diversity. The R2 for the regression
was 98.9%.

Table 1. Linear regression of HCV diversity.

model: p 5 TMRCA 1 r0 1 subtype 1 population density

coefficients

estimate s.e. F-test p-value

intercept 25.3 5.93

TMRCA 0.456 0.0719 40.2 0.0004

pop. density 20.0287 0.00638 20.2 0.0028

subtype n.a. n.a. 6.48 0.0124

r0 6.373 11.7 0.297 0.6027

multiple R2 5 98.9%

subtypes

estimate s.e. t-test p-value

1b versus 1a 3.04 1.48 2.06 0.0782

2c versus 1a 0.222 2.73 0.081 0.9374

3a versus 1a 0.981 2.07 0.473 0.6507

4a versus 1a 12.6 3.68 3.41 0.0112

5a versus 1a 23.05 2.43 21.26 0.2495

6a versus 1a 24.33 2.01 22.15 0.0682

6f versus 1a 22.85 2.34 21.22 0.2631
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past 100 years, reiterating the important role of twentieth cen-

tury phenomena such as blood transfusions and needle

sharing in the global spread of HCV [22,29].
(e) Examples of SIR dynamics in hepatitis C
In three datasets, the SIR model was preferred over the

others: subtype 2c in Argentina, 6a in Hong Kong and 6f in

Thailand. Only in the case of the SIR model can all the epide-

miological parameters be estimated directly from genetic data

alone. Consequently, we were able to estimate R0 and recon-

struct historical changes in prevalence for these three

epidemics. Because the total number of hosts is a parameter,

we were able to obtain separate estimates for prevalence (as a

proportion) and the total number of infected hosts.
HCV-2c is generally uncommon but in the Córdoba pro-

vince of Argentina it is the dominant subtype, found in 50 per

cent of cases or more [54,58]. From 1880 to 1920, the central

regions of Argentina, of which Córdoba is part, received an

influx of European migration, mainly from Italy where sub-

type 2c is also common [54]. The PP of SIR dynamics in

HCV-2c in Córdoba was 53.8 per cent, with the SIS model

next most likely (PP ¼ 45.4%). We reconstructed historical

changes in the number of infected individuals and prevalence

under the SIR model (figure 5). The TMRCA was dated to

between 1915 and 1936. Initially, the epidemic grew exponen-

tially with a doubling time (log(2)/r0) between 3.6 and 6.7

years (see the electronic supplementary materials, table S3).

We estimated that the epidemic peaked some time between

1969 and 2002 and has fallen since.
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Subtype 6a is common in Hong Kong, accounting for 23.6

per cent of all HCV infections and 58.5 per cent of HCV infec-

tions in intravenous drug users [61]. It is a relatively recent

epidemic [55]. The rarity of HCV-6a in China led to the sug-

gestion that HCV-6a was introduced from Vietnam, where it

is dominant, during peaks of immigration around 1979 and

1992 [61]. SIR dynamics were most probable in this dataset

(PP ¼ 71.0%), but there was also some support for the SIS

model (PP ¼ 28.7%). We dated the TMRCA to between 1952

and 1962, following which the number of infections grew
rapidly with a doubling time between 0.7 and 3.8 years. We

estimated that the number of HCV-6a infections in Hong

Kong peaked in 1986, with a broad 95 per cent credible

interval of 1963–1993.

The many subtypes of HCV type 6 are distributed

throughout Asia, but HCV-6f appears to be restricted to Thai-

land, where it is the most common form (56%) [48]. Our

analysis revealed marginally greater support for the SIR

model over the SIS model (PP ¼ 39.6% versus 38.1%). The

difficulty discriminating between the two scenarios is a
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consequence of very recent deceleration in the spread of the

epidemic. We dated the TMRCA to between 1955 and 1968.

Using the SIR model, we reconstructed the historical

number of infected hosts and prevalence (figure 5). We esti-

mated a doubling time between 1.4 and 3.6 years, and

dated the peak prevalence to between 1964 and 2008.

Although the HCV-6 epidemics in Hong Kong and

Thailand appeared to have faster intrinsic growth rates than

the HCV-2c epidemic in Argentina, we obtained similar esti-

mates for R0 and average duration of infectivity for all three

datasets. We estimated basic reproductive numbers of 1.20

(95% CI 1.04–5.51), 1.44 (1.08–13.2) and 1.42 (1.07–19.0)

in Argentina, Hong Kong and Thailand, respectively. We

estimated average durations for the infectious period (1/g) of

1.47 years (95% CI 0.27–27.0), 1.24 years (0.26–14.1) and 1.55

years (0.28–40.0), respectively. We compared the reconstructed

prevalence in the three epidemics with contemporary estimates

of point prevalence in the three sampling locations [56,58].

These estimates are indicated in figure 5 by the intersection of

the red lines. In all three cases, prevalence estimated by indepen-

dent epidemiological investigation fell within the 95 per cent

credible interval of prevalence reconstructed from genetic data.
4. Discussion
Using a metapopulation model of pathogen populations,

we have developed a new approach for integrated genetic

and epidemiological inference. We derived a formula for

the effective population size in a pathogen population that

reconciles previous results [8,31,33] and provides rationale

for widely used genetic analyses. Specifically, we showed

that using exponential and logistic growth curves to analyse

historical changes in pathogen effective population size is

equivalent to assuming underlying SI and SIS dynamics

when co-infection is absent.
Using BEAST to implement our models, we conducted a

meta-analysis of 18 HCV datasets from across the world. As

expected, we found the age of the MRCA to be the strongest

predictor of the diversity of an epidemic. Surprisingly how-

ever, there was no relationship between intrinsic growth rate

and diversity after accounting for age of the MRCA, population

density and subtype. This observation is consistent with rapid

growth during the exponential phase of the epidemics. Under

rapid growth, the MRCA is only marginally younger than the

epidemic. Therefore, it follows that HCV diversity can be used

as rough guide to the age of an epidemic.

We found evidence for SIR dynamics in three datasets:

subtype 2c in Argentina, 6a in Hong Kong and 6f in Thailand.

Using the coalescent SIR model, we were able to directly esti-

mate the basic reproductive number and historical changes in

prevalence and in the absolute number of infected hosts in

these epidemics. We obtained similar estimates of R0 in the

three epidemics (1.2–1.4), although there was substantial

uncertainty. This value is considerably lower than previous

estimates, largely because the duration of the infectious

period that we estimated (1.2–1.6 years) was substantially

shorter than the 10–30 years that have previously been sup-

posed [16]. Estimating short infectious periods for hepatitis C

is surprising in view of the nature of the disease, which is

chronic in 80 per cent of people and has lifelong infectivity

[17,18]. One possible interpretation could be that the majority

of transmission occurs shortly after infection. However, the

broad 95 per cent credible intervals were consistent with

infectious periods up to 27, 14 and 40 years, respectively.

There may also be an element of ascertainment bias to this

result because we can infer only SIR dynamics and R0 once an

epidemic has passed its peak, which is likely to occur sooner

when R0 is smaller. However, the three epidemics exhibiting

SIR dynamics shared features in common other than R0. All

three were globally rare but locally dominant subtypes. The

Argentinean and Hong Kong epidemics appear to have
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been introduced originally by migration [54,61], while both

the Hong Kong and Thai epidemics emerged relatively

recently. Dynamical modelling shows that the number of

infectious individuals falls when the number of susceptible

individuals becomes exhausted. Why this should occur

more quickly in these epidemics than the global subtype 1a

and 1b outbreaks is unclear, but may depend on mode of

transmission, the behaviour of risk groups, local competition

between subtypes and virological differences.

Our approach has a number of assumptions and limitations,

chief among which is the assumption that the number of infected

hosts is large. Although this assumption is consistent with the

use of deterministic compartmental models, it cannot possibly

be true at the beginning of the epidemic. There are a number

of promising avenues for incorporating stochasticity into com-

bined genetic and epidemiological models. Particle Markov

Chain Monte Carlo (MCMC) has been developed to fit stochas-

tic, nonlinear dynamics to gene genealogies, although currently

the genealogy is assumed to be known [62]. Branching processes

have been used as an alternative to the coalescent; however, the

approach is currently limited to simple birth–death processes

[63,64]. Stochastic demography is readily incorporated into the

coalescent [65], and this will be an area of further investigation.

Random mixing is a common assumption in compart-

mental models of epidemiological dynamics that is difficult

to justify empirically. Theoretical work shows that variance

in network connectivity substantially affects epidemiological

dynamics and hence genetic diversity [31,66–68]. There is

hope that such variability can be handled using a more gen-

eral formulation of the metapopulation model than was

needed here [34], in which different classes of hosts, such

as super shedders, are explicitly modelled. Another of our

assumptions, that co-infection is absent, is likely to prove

more difficult to overcome. When there is co-infection, recom-

bination can occur. We found evidence of recombination in

some HCV datasets, which we excluded from further analy-

sis. Although attempts have been made to incorporate

recombination into population genetic inference [69], these

methods are generally computationally prohibitive.

There are a number of other extensions to our approach

that we have left for future research. Changes in the size of

the host population are readily incorporated into our

model, and this might prove fruitful for inference if indepen-

dent data are available to disentangle the effects of host and

pathogen population dynamics, for instance by coupling an

analysis of host and pathogen genetic diversity in BEAST.

When there is no more than a single pathogen sequence per

host, as we assumed here, longitudinal sampling is straight-

forward to account for using the standard technique [70] as

implemented in BEAST, with no adjustments necessary to

the model. When there are multiple pathogen sequences

per host, the genealogy of the metapopulation is conceptually

divided into the scattering and collecting phases [34], which

correspond informally to within- and between-host evol-

ution, respectively. New apparatus would be required for

inference in this situation.

For our analyses, we used a simple HKY85 substitution

model [71], ignoring heterogeneity in the molecular clock rate

between sites, codon positions and branches of the tree. How-

ever, detailed analyses suggest that such heterogeneity does

occur in HCV [26,72]. One of the benefits of implementing

our approach in BEAST is that this complexity can be readily

incorporated in future analyses. There has been considerable
variation in the estimates of the molecular clock rate in HCV

[72]. We assumed a clock rate of 0.58 � 1023 substitutions per

site per year, which was estimated for the NS5B gene [73],

and was previously applied to a number of the datasets we

analysed. However, there is evidence to suggest that the rate

may be closer to 1.0 � 1023 per site per year [26,72]. The

effect of underestimating the clock rate would be to systemati-

cally overestimate the dates of events during the epidemic

history, while overlooking uncertainty and heterogeneity in

the clock rate will cause the credible intervals for some of our

parameters and dates to be anti-conservative.

One of the important points our work demonstrates is

that there are limits to what may be inferred about epidemio-

logical dynamics from genetic data. For example, 13 of the 18

datasets were best fit by the simplest, SI model. Although this

model contains none of the biological complexity inherent to

HCV epidemiology, on statistical grounds, there was no sup-

port for even modest elaborations of the SIS or SIR models.

The SI, SIS and SIR models may be caricatures of true epide-

miological dynamics, but they capture key features of

epidemic processes, including exponential, plateau and

burn-out phases. In this study, we directly compared the good-

ness-of-fit of endemic, SI, SIS and SIR models. In practice, a

useful approach might be to include the non-parametric Baye-

sian skyline plot [74] in the model comparison [72]. This would

allow rejection of the parametric models if none adequately

described the population history of the sample. In such a

case, the Bayesian skyline plot might help motivate and

direct the construction of new, more realistic, parametric

models via our metapopulation approach.

Another limitation of genetic inference, revealed by our

theoretical results and in agreement with previous work [16],

is that R0 cannot be directly estimated from genetic data in

the coalescent SIS model because, although the intrinsic

growth rate (r0) is well identified, the transmission coefficient

(b1) and rate of loss of infection (g) cannot be disentangled.

In stochastic models, b1 and g and therefore R0 can, in prin-

ciple, be deconfounded, but if deterministic models are any

guide, precise estimates cannot be expected unless additional

information is available concerning, for example, the rate of

clearance or prevalence. Fortunately, r0 will often be a con-

venient proxy for R0 because it exhibits the same threshold

behaviour: when r0 � 0 (equivalently, R0 � 1), the infection

persists in the population and when r0 , 0 (equivalently,

R0 , 1), the epidemic dies out. The intrinsic growth rate is

well identified from genetic data during the exponential

growth period of the epidemic, in contrast to R0, which is not

even well defined under the SI model.

Based on comparisons to independent estimates, the SIR

model appeared to provide good predictions of prevalence

(figure 5). However, we saw that only once an epidemic had

peaked could the SIR model be fitted (figure 4). This has reper-

cussions for the utility of genetic analysis for predicting

an outbreak in real time. Although the intrinsic growth rate

can be estimated during the exponential growth phase of

the epidemic, it is not sufficient to predict the course of the

epidemic. Independent estimates of quantities such as the dur-

ation of infection and point prevalence would be needed for

prediction. Consequently, the role of genetic analysis in real-

time prediction of outbreaks will be to complement, but not

replace, epidemiological approaches.

The metapopulation analogy provides a firm grounding

for combining population genetics and epidemiology. We
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have shown how it can be used to derive coalescent models

with underlying SI, SIS and SIR dynamics that are readily

used for practical analysis. With richer genetic data, it will

become possible to detect microevolution on epidemiological

timescales in many more pathogen species [30]. Joint genetic

and epidemiological inference is a fertile area for research,

and the machinery underlying our metapopulation approach

[34] provides building blocks for arbitrary elaboration on the

basic pattern we explored here.
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5. Methods
(a) Epidemiological and coalescent models
To obtain the effective population size for the metapopulation

model, we adapted the results of Wakeley & Aliacar [34] and

Wakeley [35] assuming haploidy and the propagule-pool

model [41] for colonization (equation (3.1)). To model changes

in metapopulation dynamics over time, we used simple SI, SIS

and SIR compartmental models (figure 1). For parameter esti-

mation, we made the simplifying assumption that co-infection

is negligible. In the case of the SI and SIS models, we were

able to obtain analytical solutions for the effective population

size using the following closed-form solutions for the proportion

of susceptible hosts, S, as a function of time. For the SI model,

S ¼ S0

S0 þ ð1� S0Þe�b1t ; I ¼ 1� S: ð5:1Þ

For the SIS model,

S ¼ b1S0 � gþ gð1� S0Þe�ðb1�gÞt

b1S0 � gþ b1ð1� S0Þe�ðb1�gÞt
; I ¼ 1� S: ð5:2Þ

All parameter definitions are summarized in the electronic

supplementary material, table S1. For the SIR model, a solution

for S cannot be obtained analytically. However, assuming

that the number of recovered individuals is initially zero gives

the relationship

I ¼ 1� Sþ g logðSÞ
b1

: ð5:3Þ

This simplifies the system of differential equations in the SIR

model to a single ordinary differential equation that can be

solved numerically:

dS
dt
¼ b1Sð1� SÞ þ gS logðSÞ: ð5:4Þ

In the coalescent with demographic growth, the pairwise

coalescence rate is the inverse of the effective population size,

and calculation of the probability density of a genealogy under

the coalescent model requires the calculation of the integrated

coalescence rate [13]:

LðtÞ ¼
ðt

0

1

NeðuÞ
du; ð5:5Þ

(elsewhere we suppress the dependency on time to avoid clut-

tered notation). Assuming no co-infection (b2 ¼ 0), we can
write this integral as a differential equation

dL

dt
¼ 1

Ne
¼ ð1� S0 þ g logðS0Þ=b1ÞS

N0S0(1� Sþ g logðSÞ=b1)
: ð5:6Þ

Because the effective population size is dependent on S,

equations (5.4) and (5.6) define a system of differential equations

to be solved together. We implemented this as an extension to

BEAST [36] in JAVA using a fifth-order Cash–Karp Runge–

Kutta method with adaptive stepsize control [47]. We also re-

implemented the logistic growth function in BEAST because

our parametrization for the SIS model uses N0, the effective

population size at the present, rather than the carrying capacity.

Example XML code and details of the Bayesian analysis are

provided in the electronic supplementary material, text S1.

(b) Meta-analysis
We searched the literature for HCV datasets with well-described

sampling frames for which subtype, sampling location, preva-

lence and NS5B gene sequences were available. We initially

identified 28 datasets, but we excluded a further 10 that had

small sample size (fewer than 20 sequences), evidence of recom-

bination or questionable sampling on further investigation.

We used a simple permutation test based on the correlation

between physical distance and three measures of linkage disequi-

librium (r2, jD0j and G4), implemented as part of OMEGAMAP [75].

We excluded a dataset if the null hypothesis of no recombina-

tion was rejected at the 5 per cent level by any of the three

tests. This is not unduly conservative because of the similarity

between the measures of linkage disequilibrium. Details of

all 28 datasets are available in the electronic supplementary

material, text S2. We performed multiple sequence alignment

using the GENEIOUS alignment tool [76] to produce a global align-

ment of all sequences and where an alignment was not available

between sequences within the same dataset. All the alignments

that we analysed are available in the electronic supplementary

material, dataset S1.

For each of the 18 datasets that met our incorporation criteria,

we calculated mean pairwise genetic diversity (p) and collated

data on subtype, prevalence, host population size and popu-

lation density (see the electronic supplementary material, text

S2). We obtained point estimates of TMRCA, N0 and r0 averaged

over models. We used multiple regression to explore the effect

of these covariates on p. In the final model, we included all stat-

istically significant covariates and r0, as we had strong prior

interest in the inferred regression coefficient for this covariate.
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