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Abstract. The intestinal epithelium is a heterogeneous 
cell monolayer that undergoes continuous renewal and 
differentiation along the crypt-villus axis. We have 
used transgenic mice to examine the compartmentaliza- 
tion of a regulated endocrine secretory protein, human 
growth hormone (hGH), in the four exocrine cells of 
the mouse intestinal epithelium (Paneth cells, inter- 
mediate cells, typical goblet cells, and granular goblet 
cells), as well as in its enteroendocrine and absorptive 
(enterocyte) cell populations. Nucleotides -596  to 
+21 of the rat liver fatty acid binding protein gene, 
when linked to the hGH gene (beginning at nucleotide 
+3) direct efficient synthesis of hGH in the gastroin- 
testinal epithelium of transgenic animals (Sweetser, 
D. A., D. W. McKeel, E. E Birkenmeier, P. C. 
Hoppe, and J. I. Gordon. 1988. Genes & Dev. 
2:1318-1332). This provides a powerful in vivo model 
for analyzing protein sorting in diverse, differentiating, 
and polarized epithelial cells. 

Using EM immunocytochemical techniques, we 
demonstrated that this foreign polypeptide hormone 
entered the regulated basal granules of enteroendocrine 

cells as well as the apical secretory granules of exo- 
crine Paneth cells, intermediate cells, and granular 
goblet cells. This suggests that common signals are 
recognized by the "sorting mechanisms" in regulated 
endocrine and exocrine cells, hGH was targeted to the 
electron-dense cores of secretory granules in granular 
goblet and intermediate cells, along with endogenous 
cell products. Thus, this polypeptide hormone contains 
domains that promote its segregation within certain 
exocrine granules. No expression of hGH was noted in 
typical goblet cells, suggesting that differences exist in 
the regulatory environments of granular and typical 
goblet cells. In enterocytes, hGH accumulated in 
dense-core granules located near apical and lateral cell 
surfaces, raising the possibility that these cells, which 
are known to conduct constitutive vesicular transport 
toward both apical and basolateral surfaces, also con- 
tain a previously unrecognized regulated pathway. To- 
gether our studies indicate that transgenic mice repre- 
sent a valuable system for analyzing trafficking 
pathways and sorting mechanisms of secretory proteins 
in vivo. 

xoc RI N E cells share with endocrine and neuronal cells 
the ability to store and concentrate specific secretory 
products in membrane-limited cytoplasmic granules 

whose release is regulated by external secretagogues. These 
secretory cells also can export other products, including 
plasma membrane components, that are not stored or exter- 
nally regulated, but are transported rapidly to the cell surface 
in small vesicles. The terms "regulated" and "constitutive" 
have been applied to the former and latter pathways, respec- 
tively, referring to the two modes of release (for review, see 
Kelly, 1985; Burgess and Kelly, 1987). 

A few model cultured cell systems have been used to exam- 
ine the mechanisms underlying entry of secretory protein 
into these two pathways. For example, Kelly, Moore and col- 

leagues have transfected the mouse pituitary cell line ART-20, 
and the rat pheochromocytoma-derived cell line PC-12, with 
genes encoding proteins that normally enter the regulated 
pathway in their cells of origin (Moore et al., 1983; Moore 
and Kelly, 1985; Schweitzer and Kelly, 1985; Burgess et al., 
1985). They demonstrated that these cells can package both 
polypeptide hormones and an exocrine cell product (pan- 
creatic trypsinogen) into their secretory granules (for review, 
see Kelly, 1985; Burgess and Kelly, 1987). One foreign pro- 
tein, kappa light chain (that is normally secreted constitu- 
tively) failed to enter regulated granules in AtT-20 cells 
(Matsuuchi et al., 1988). On the other hand, transfection ex- 
periments in one of our laboratories showed that human 
(pro)apolipoprotein A-l, a constitutive secretory product of 
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hepatocytes and enterocytes, was sorted primarily into the 
regulated pathway of AtT-20 ceils (Fennewald et al., 1988). 
This raises questions about the validity of using results ob- 
tained in these model cell systems to define the mechanisms 
that regulate protein sorting into regulated and constitutive 
pathways in cells in vivo. 

There is evidence that some type of positive signal present 
in polypeptide hormones is required for their selective sort- 
ing into the regulated granule (Moore and Kelly, 1986). The 
observation that a regulated exocrine cell product was di- 
rected into stored, dense-core granules in endocrine cells 
(Burgess et al., 1985) implies that regulated exocrine and en- 
docrine proteins share the putative molecular sorting sig- 
nal(s), and that exocrine cells may use the same sorting 
mechanism as do endocrine and neuronal cells to direct pro- 
teins that bear this signal into their regulated secretory gran- 
ules (Kelly, 1985). If this hypothesis is correct, then exocrine 
cells should recognize and sort foreign endocrine cell prod- 
ucts into storage granules, but this has not been tested using 
transfected cells. Moreover, hypotheses derived from exami- 
nation of model cultured cells concerning protein sorting 
have not been independently audited in other systems. 

Transgenic mice offer a promising alternative to in vitro 
systems, and they have the advantage of providing expression 
of genes encoding foreign secretory proteins in normal, 
highly polarized epithelial ceils present in complex tissues. 
A study of the control of gene expression in the pancreas of 
transgenic mice showed that the elastase gene promoter 
could direct specific expression of a reporter, human growth 
hormone (hGH) t, in pancreatic acinar cells (Ornitz et al., 
1985). Using light microscopic immunocytochemistry, these 
workers noted that hGH was concentrated in the apical 
cytoplasm, presumably in zymogen granules, but they could 
not determine to what degree hGH entered other compart- 
ments with light microscopy methods. Nor was it determined 
how the foreign protein would have been sorted by other 
types of exocrine, endocrine, and nonregulated secretory 
cells in the same animal. 

The intestinal epithelium of adult mice consists of diverse 
cell types of differing polarities, with both regulated and con- 
stitutive secretory pathways. Moreover, this epithelium un- 
dergoes perpetual proliferation and differentiation along the 
crypt-villus axis (Cheng and Leblond, 1974; Leblond and 
Cheng, 1976; Potten and Hendry, 1983; Simon et al., 1979). 
Transgenic mice have recently been generated in one of our 
laboratories that carry fusion genes consisting of a portion 
of the 5' nontranscribed region (nucleotides -596 to +21) of 
the rat "liver" fatty acid binding protein (L-FABP) gene 
linked to the gene encoding hGH (Sweetser et al., 1987, 
1988a, 1988b). In these animals, specific expression ofhGH 
was observed in epithelial cells throughout the intestine. This 
provided for the first time a system in which the fate of a sin- 
gle foreign gene product could be analyzed and compared in 
multiple polarized cell types at various stages of differentia- 
tion (Gordon, 1989). Light microscopy immunoperoxidase 
labeling of this epithelium revealed hGH expression in en- 
terocytes that have both apical and basolateral constitutive 
secretory pathways and also in entero-endocrine cells, a het- 
erogenous cell population that conducts regulated secretion 
of peptide hormones and neurotransmitters toward their 

1. Abbreviations used in this paper: hGH, human growth hormone; L-FABP, 
liver fatty acid binding protein. 

basal cell surfaces (Sweetser et al., 1988a). The intracellular 
compartments that contained the foreign gene product could 
not be resolved in these preparations, however, and hGH was 
not detected in any of the four exocrine cell types in the epi- 
thelium. 

We therefore applied high resolution EM immunocyto- 
chemical methods to determine to what extent hGH is ex- 
pressed in intestinal exocrine cells in these mice, and to 
visualize directly the secretory pathways that hGH enters in 
the various polarized cells of the epithelium. Our results re- 
veal that the L-FABP promoter directs expression of hGH in 
intestinal exocrine cells as well as endocrine cells and entero- 
cytes. In both endocrine and exocrine cells, the foreign hor- 
mone is concentrated in regulated secretory granules despite 
their opposite polarities. This is consistent with the idea that 
exocrine ceils use the same or similar sorting mechanisms 
as do endocrine and neuronal cells to direct selected proteins 
into the regulated secretory pathway. 

Materials and Methods 

Four transgenic mice were used in this study, all derived from founders 13 
and 19 described in Sweetser et al., 1988a. 4-8-mo-old adult males of the 
F 2-4 generation were examined, and all specimens showed the same pat- 
terns ofhGH distribution in intestinal cells. This pedigree contained nucleo- 
tides -596 to +21 of the rat L-FABP gene linked to the hGH gene beginning 
at nucleotide +3 (Fig. 1). Mice of this pedigree carry ,-490-530 copies of 
the hGH gene, and show serum hGH levels up to 548 tzg/ml. Mice were 
maintained on a standard chow diet and strictly cycled light conditions 
(0600-1,800 lights on). They were killed by cervical dislocation, and their 
tissues were rapidly excised and fixed. 

Light Microscopy lmmunocytochemistry 
Intestinal mucosal samples were fixed in Bouin's fluid, embedded in par- 
affin, and sectioned in 5/~m. Sections were incubated with nonspecific goat 
anti-hGH serum (Daughaday et al., 1987) followed by HRP-conjugated 
anti-goat IgG, and a peroxidase-antiperoxidase conjugate (Sternberger, 
1979). 

To determine optimal fixation conditions for EM immunocytochemistry 
of hGH, samples of small intestinal mucosa were fixed in three solutions: 
PLP (periodate-lysine-2 % paraformaldehyde; McLean and Nakane, 1974); 
2% formaldehyde and 0.2% glutaraldehyde in 0.1 M Na eacodylate buffer, 
pH 7.4; or 0.2% picric acid and 1% glutaraldehyde in 0.1 M phosphate 
buffer, pH 7.2. After 18-h fixation at 23°C, tissues were rinsed in the appro- 
priate buffer, infiltrated with 1 M and 2.3 M sucrose (for 5 h each), mounted 
with OCT embedding compound on metal supports, frozen in partially 
solidified Freon 22, and stored in liquid nitrogen. Cryosections (1/~m) were 
stained with the goat anti-hGH serum described above, followed by rabbit 
anti-goat IgG coupled to rhodamine (Hyclone Laboratories, Logan, UT). 
Specific hGH immunoreactivity was equally well preserved after all three 
fixatives (not shown). 

EM Immunocytochemistry 
The 2% formaldehyde/0.2 % glutaraldehyde fixative provided the best ultra- 
structural preservation in tissues embedded in LR Gold resin (Polysciences 
Inc., Warrington, PA). Thin sections were mounted on nickel grids previ- 
ously coated with formvar and carbon, and nonspecific binding sites were 
blocked with 1-10% nonimmune serum of the same species as the secondary 
antibody, (shown to be devoid of anti-hGH immunoreactivity by ELISA). 
Two primary antibodies were used at 1:100 dilution, with identical results: 
the goat anti-hGH serum described above, and rabbit anti-hGH (Dako 
Corp., Santa Barbara, CA). Anti-hGH immunoreactivity was visualized ei- 
ther with protein A 10 nm colloidal gold (Janssen Life Science Products, 
Piscataway, NJ), or with anti-goat or anti-rabbit antibodies conjugated to 
5 or 10 nm colloidal gold (Life Science Products Sigma Chemical Co., St. 
Louis, MO). 

To establish the specificity of anti-hGH immunoreactivity in small intes- 
tinal cells of transgenic mice, two control preparations were examined in 
parallel with all immunolabeled grids. First, primary anti-hGH antiserum 
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Figure 1. Schematic diagram of the L-FABP-hGH 
fusion gene. The nucleotide sequence of the 
L-FABP-hGH junction is shown. Two guanosine 
residues derived from the MI3 vector DNA are 
noted by lowercase letters. For additional details, 
see Sweetser et al., 1988a. 

was replaced by nonimmune or preimmune serum. Second, goat anti-hGH 
serum was twice preabsorbed with purified hGH (Sigma Chemical Co.) 
coupled to Sepharose 4B, a procedure that removed at least 95% of anti- 
hGH activity as assessed by ELISA, before EM immunolabeling. 

Resul ts  

Cell I)~es of  the Mouse Intestinal Epithelium 

The cell types that comprise the small intestinal epithelium 
of the mouse have been described elsewhere (Cheng and 
Leblond, 1974) and are illustrated diagrammatically in Fig. 
2 A. The crypt base contains exocrine Paneth cells with 
large, dense apical granules, undifferentiated cells (including 
both multipotent, proliferative cells and undifferentiated en- 
terocytes), and various types of entero-endocrine cells whose 
small, dense secretory granules accumulate basally. The wall 
of the crypt is populated by differentiating and differentiated 
cells that are in the process of upward migration toward the 
villus, including crypt enterocytes, entero-endocrine cells, 
and three distinct exocrine cell types: intermediate cells, 
granular goblet cells, and typical goblet cells. 

The four exocrine cell types in the epithelium contain dis- 
tinct secretory granules that are readily distinguished by 
EM. Paneth cells synthesize multiple secretory proteins in- 
cluding lysozyme (Lopez-Lewellyn and Erlandsen, 1980) 
and defensin (Ouellette et al., 1989) and package them in 
large, dense apical granules that are rapidly released in re- 
sponse to acetylcholine (Troughton and Trier, 1969). Inter- 
mediate cells, present primarily in the crypts and lower villi, 
contain large, apical secretory granules typical of regulated 
exocrine cells, but the factors regulating their secretion have 
not been defined (Troughton and Trier, 1969; Calvert et al., 
1988). The large dense central region of the granule matrix 
presumably contains protein but does not include Paneth cell 
products; the fibrillar peripheral portion of the granule con- 
tent contains glycoconjugates but fails to label with typical 
mucin markers (Calvert et al., 1988). Typicalgoblet cells are 
characterized by large, closely packed apical secretory gran- 
ules containing a highly glycosylated mucin product whose 
release, at least in crypts, is regulated by acetylcholine (Neu- 
tra and Forstner, 1987). A second population of mucin- 
producing cells in the mouse epithelium, the granular goblet 
cells, are distinguished from typical goblet cells by the pres- 
ence of a single small dense core embedded within the mucin 
matrix of each granule (Merzel and Leblond, 1969; Cheng 
and Leblond, 1974). The nature of the material in the core 
is not known, but its electron density suggests that it consists 
of aggregated, nonmucin protein products. 

Fig. 2 B shows a typical paraffin section of small intestinal 
mucosa from a transgenic mouse containing the L-FABP 
promoter-hGH fusion gene, and expressing the foreign hor- 
mone along the crypt-villus axis. Light microscopic immu- 
nocytochemistry shows that highest levels of intracellular 
hormone were present in entero-endocrine cells, hGH im- 
munoreactivity was also prominent in villus absorptive cells, 
concentrated in the supranuclear Golgi complex. The apical 
mucin granules of villus goblet cells did not contain detect- 
able levels of hGH in the HRP-labeled preparation shown in 
Fig. 2 B, but in immunofluorescently stained frozen semi- 
thin sections, some goblet cells were hGH-positive (data not 
shown). We were unable to distinguish granular goblet cells 
from typical goblet cells and intermediate cells in HRP- 
labeled or fluorescently-labeled preparations. 

Ultrastructural Localization of  hGH in 
Entero-endocrine Cells 

The majority of entero-endocrine cells, both in crypts and 
on villi, possessed abundant, immunoreactive hGH concen- 
trated in the basal dense granules that contain the cell's regu- 
lated hormonal product (Fig. 3 A). hGH was also detected 
in Golgi cisternae in these cells. The morphology of hGH- 
containing granules varied among cells, indicating that mul- 
tiple endocrine cell types expressed the hormone. Control 
sections exposed to anti-hGH serum that had been depleted 
of specific antibody by preabsorption with pure hGH, 
showed no labeling of endocrine cell granules (Fig. 3 B). 
Other control preparations (see Materials and Methods) also 
showed no immunolabeling above background in any epithe- 
lial cell type, confirming that immunoreactivity of granule 
content was due specifically to the presence of hGH. 

Distribution of  hGH in Exocrine Cells 

Paneth cell granules are filled with a homogeneous material 
that showed artifactual shrinkage with the fixation and em- 
bedding protocol used here (Fig. 4). Concentrations of anti- 
hGH serum that produced intense, specific staining of endo- 
crine cell granules, produced much sparser labeling of Paneth 
cell granules; however, the control preparations described 
above confirmed that this label was hGH-specific. The very 
sparse hGH immunoreactivity observed over rough ER and 
the light labeling of Golgi cisternae confirmed that Paneth 
cells synthesize hGH, but at relatively low levels. 

The pattern of anti-hGH immunoreactivity in intermediate 
cells was similar to that in Paneth cells. In these cells, hGH 
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Figure 2. A, Diagrammatic illustration of the polarized cell types of the mouse small intestinal epithelium. A portion of a crypt-villus 
axis is shown. Enteroeytes are present in the crypt and on the villus. Entero-endocrine cells contain basally oriented secretory granules. 
There are four distinct exocrine cell types: Paneth cells, intermediate cells, granular goblet cells, and typical goblet cells. B, Expression 
of hGH in the small intestine of a transgenic mouse. 5-tzm paraffin section immunostained with anti-hGH and peroxidase-antiperoxidase. 
Both crypt and villus enterocytes (E) show hGH immunoreactivity; in villus cells, hGH is concentrated in the supranuclear Golgi region. 
Entero-endocrine cells (E-E) also contain abundant hGH. In this preparation, Paneth cells (P) and goblet cells (G) appear negative, and 
other exocrine cell types are not identified. Bar, 100 p.m. 

was concentrated in the dense central material of  apical 
secretory granules while the peripheral glycoconjugate- 
containing "halo" was devoid of hGH (Fig. 5). 

Typical goblet cells in these preparations were devoid of 
hGH immunoreactivity: their apical granules, Golgi com- 
plex and rough ER were not labeled by the procedures used 
here (data not shown). Granular goblet cells, in contrast, were 

consistently labeled. This cell type was recognized by the 
small electron-dense "cores" contained within the mucin ma- 
trix of  its apical secretory granules (Fig. 6 A). hGH im- 
munoreactivity was associated with the dense cores, but not 
with the mucin matrix (Fig. 6 B).  The supranuclear Golgi 
region of a granular goblet cell is shown in Fig. 6 C. Golgi 
cisternae and associated small dilations or vesicles were 
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Figure 3. Immunolocalization of hGH in basal secretory granules of entero-endocrine cells. A, Immunolabeling with goat anti-hGH and 
secondary antibody: 10-nm colloidal gold shows that hGH is concentrated in the dense granule content. B, Control section treated as in 
A, but using goat anti-hGH serum preabsorbed with purified hGH, shows no label. Bar, 0.2/~m. 

hGH-positive. In mucin granules adjacent to the Golgi com- 
plex, hGH-positive dense cores were embedded in material 
of intermediate density that also showed hGH immunoreac- 
tivity. The electron-lucent periphery of these granules, like 
that of mature granules, was unlabeled. 

Distribution of  hGH in Enterocytes 

Enterocytes have no known exocrine secretory product. 
These cells were examined with two principal questions in 
mind. First, could we deduce the pathways of export of hGH 
in these cells by defining its distribution in intracellular com- 
partments? Second, does comparanentalization of hGH change 
as enterocytes differentiate along the crypt-villus axis? In 
terminally-differentiated enterocytes situated on villi, stacked 
Golgi cisternae and clear, Golgi-associated vesicles con- 
tained abundant hGH immunoreactivity (Fig. 7 A). These 
vesicles were much more abundant in the enterocytes of 
transgenic mice than in those of normal mice. Such a change 
may be related to the very high levels ofhGH expression pro- 

duced by the L-FABP promoter, plus the high copy number 
of the transgene (Sweetser et al., 1988a). The lack of con- 
centrated content in these vesicles and the fact that they did 
not accumulate in the cytoplasm outside the Golgi region 
suggests that their contents were constitutively released. 

In some Golgi complexes, small vesicles with dense con- 
tent also contained hGH (Fig. 7 B). These hGH-positive 
dense vesicles were commonly observed near the apical cell 
membrane (Fig. 7 C), and occasionally, near the lateral 
membrane. Accumulation of hGH in these small, dense-core 
vesicles that are a normal feature of enterocytes suggests that 
a previously unrecognized regulated secretory pathway may 
operate in these cells, hGH immunoreactivity was also pres- 
ent in the lateral intercellular spaces (not shown) and this 
may have been derived from secretion of the clear Golgi- 
associated vesicles. With these methods, however, we could 
not positively identify the vesicles destined for fusion with 
the lateral cell surface. In crypt enterocytes, the level ofhGH 
in Golgi cisternae was lower than in villus cells and relatively 
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Figure 4. Immunolabeling of a Paneth cell with goat anti-hGH and secondary antibody, 5 nm gold. hGH is present throughout the contents 
of apical secretory granules. Clear space surrounding granule content is because of shrinkage during tissue processing. Bar, 0.2 #m. 

few clear Golgi-associated vesicles were observed, but hGH 
again appeared in lateral intercellular spaces. Apical dense 
core vesicles were abundant, as they are in normal crypt cells 
(Madam and Trier, 1987) and these were consistently hGH- 
positive (Fig. 8). 

Discussion 

We have shown that transgenic mice containing a gastrointes- 
tinal tract-specific promoter linked to the gene encoding 
hGH provide a valuable model system for examining the sort- 
ing and intracellular transport of secretory proteins in di- 
verse, highly polarized intestinal epithelial cells. This for- 
eign polypeptide hormone was sorted into basal granules of 
polarized entero-endocrine endocrine cells, as expected. In 
addition, hGH, an endocrine cell product, entered regulated 
apical secretory granules in three types of exocrine cells. Fi- 
nally, we demonstrated accumulation of hGH in dense-core 
granules of enterocytes, suggesting that these cells possess 
a hitherto-unrecognized regulated secretory pathway. 

The Use of Transgenic Mice to Study Protein Sorting in 
the Intestinal Epithelium 

The intestinal epithelium is a continuously regenerating sys- 
tem that arises from pluripotent stem cells that are function- 

ally anchored deep in the crypt. Although the cells of each 
crypt and the adjacent villus surfaces represent a clone de- 
rived from/t single progenitor cell (Ponder et al., 1985), the 
process of differentiation results in an epithelium containing 
several types of entero-endocrine cells and four types of exo- 
crine cells in addition to crypt and villus enterocytes (absorp- 
tive cells) (Cheng and Leblond, 1974; Madam and Trier, 
1987). This heterogenous system of highly polarized cells 
has not been reproduced in monolayer culture (Neutra and 
Louvard, 1989). Thus, it has not been possible to use in vitro 
gene transfection methods to investigate patterns of protein 
sorting in its diverse secretory cells. The regulated secretory 
pathway of exocrine cells has been especially difficult to re- 
produce in vitro, since normal formation, storage, and secre- 
tion of exocrine granules requires prior establishment of a 
specialized apical membrane domain and other conditions 
that have been achieved only recently in monolayer cultures 
of neoplastic pancreatic acinar cells (Logsdon et al., 1984; 
Ingber et al., 1986) and neoplastic intestinal goblet cells 
(Huet et al., 1987; Phillips et al., 1988). In this study, we 
demonstrate the ability of nucleotides -596 to +21 of the 
rat L-FABP promoter to direct efficient expression of a for- 
eign protein not only in polarized endocrine and absorptive 
cells of the intestinal epithelium of transgenic mice, but also 
in three of the four exocrine cell types in this epithelium. 
Moreover, expression is not limited by this promoter to ter- 
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Figure 5. Immunolocalization of hGH in apical secretory granules 
of an intermediate cell. hGH is concentrated in the dense central 
material of each granule, but is not present in the fibrillar peripheral 
material that is known to contain glycoconjugates. Granule mem- 
branes are not visualized in these preparations. Bar, 0.1 /zm. 

minally differentiated cells: efficient expression was also 
noted in cells of the crypts. Because these ~600 nucleotides 
appear to be able to direct "global" expression of foreign pro- 
teins in the gut, they are ideally suited for in vivo analysis 
of protein sorting. 

Entero-endocrine Cells 

Entry of hGH into regulated granules of entero-endocrine 
cells shows that polarized epithelial endocrine cells have the 
capacity for recognizing, sorting, and storing regulated poly- 
peptide hormones, as previously demonstrated in cultured 
nonpolarized endocrine cells derived from nonepithelial tis- 
sues (for review, see Kelly, 1985; Burgess and Kelly, 1987). 
Over six types of entero-endocrine cells have been identified 
in mouse small intestinal epithelium, each with a distinct 
granule morphology and hormone product (Solcia et al., 
1987). In the transgenic mice, diverse entero-endocrine cell 
types packaged hGH in their basal regulated granules, lend- 
ing added support to the idea that a common mechanism for 
sorting of polypeptide hormones is shared among endocrine 
cells. It should be noted, however, that a subpopulation 

(•10%) of intestinal entero-endocrine cells failed to synthe- 
size detectable levels of hGH, indicating that there are subtle 
differences in the regulation of the L-FABP promoter within 
the entero-endocrine cell population. The identity of this 
subpopulation could not be established on the basis of gran- 
ule morphology in our EM immunocytochemical prepara- 
tions and further double-labeling studies will be required to 
define nonexpressing cell type(s). 

Exocrine Cells 

Of the four exocrine cell types in mouse intestinal epithe- 
lium, only one type (the typical goblet cells) did not synthe- 
size detectable levels of hGH. This suggests that the regula- 
tory environment in goblet cells differs from that of all other 
exocrine cells in the epithelium. In contrast, the other three 
exocrine cell types synthesized hGH and concentrated the 
foreign protein in apical regulated secretory granules. 

While sorting appeared to be comparable in the exocrine 
cell types that expressed hGH, the subsequent segregation of 
hGH within the granule matrices seemed to be influenced by 
the nature of their endogenous secretory products. For exam- 
ple, in Paneth cells, hGH was uniformly distributed within 
apical granules, whereas in granular goblet and intermediate 
cells, hGH partitioned into a central, dense domain of the 
granule matrix along with other undefined endogenous pro- 
teins. This implies that hGH possesses the molecular fea- 
tures that permit aggregation of specific proteins within 
secretory granules. Using EM immunocytochemistry, we 
were able to visualize this process in newly formed secretory 
granules in the Golgi region of granular goblet cells (Fig. 6 
C). It will be interesting in future studies to test how other 
prototypic secretory proteins are segregated within these di- 
verse secretory granules. 

The concentration of hGH in apical secretory granules of 
Paneth cells, intermediate cells, and granular goblet cells, 
along with previous observations of pancreatic exocrine cells 
(Ornitz et al., 1985), support the hypothesis that these exo- 
crine cells use the same sorting mechanism as do endocrine 
and neuronal cells to selectively direct protein and glycopro- 
tein products into regulated secretory granules (Kelly, 1985). 
It is also possible, however, that hGH was directed into exo- 
crine granules because it interacts with mucin, lysozyme, or 
other exocrine cell products in the environment of the trans- 
Golgi cisternum and rides "piggy-back" into the regulated 
secretory pathway. Still another alternative is that hGH is not 
"recognized" or "sorted" at all by exocrine cells, and enters 
all available secretory pathways indiscriminately. In this 
case, hGH would be expected to enter the high volume regu- 
lated pathway where it would be stored and concentrated and 
thus readily detectable by immunocytochemical methods. If 
constitutive pathways exist in intestinal exocrine cells as 
demonstrated in pancreatic and parotid cells (Von Zastrow 
and Castle, 1987; Arvan and Chang, 1987), and if hGH en- 
tered these pathways, then it should be rapidly released and 
thus be undetectable in static immunocytochemical images. 
The nonsorting possibility cannot be ruled out in this trans- 
genic mouse system because it is not possible to separately 
collect regulated and nonregulated apical and basolateral 
secretions from single cell types in the heterogenous intesti- 
nal epithelium. Further studies following the fates of non- 
regulated proteins in these same cell types are needed to re- 
solve this issue. 
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Figure 6. Immunolocalization of hGH in granular goblet cells. A, Control section, treated with nonimmune goat serum and secondary 
antibody gold, shows no immunolabel. A single dense core is embedded in the electron-lucent mucin content of most granules. Core mate- 
rial and mucin are released together at the apical cell pole (arrow). B, Section immunolabeled with anti-hGH serum and 10 nm gold shows 
that within apical granules, hGH was concentrated in the dense cores, but not in the mucin matrix. Granule membranes are poorly 
preserved. C, Newly formed secretory granules in the Golgi region show hGH immunoreactivity in dense cores (arrows) and also in as- 
sociated less dense material (asterisks). Such images suggest that the dense core is formed by progressive segregation and aggregation 
of nonmucin proteins. Bar, (A) 0.5 #m; (B and C) 0.1 /zm. 

The Journal of Cell Biology, Volume 109, 1989 3238 



Figure 7. Immunolocalization of hGH in villus enterocytes, using goat anti-hGH and secondary antibody, 10 nm gold (A and B) or 5 nm 
gold (C). A, Golgi cisternae (G) and Golgi-associated clear vesicles (asterisks) contain hGH. B, Dense core vesicles (arrow) in the Golgi 
region also showed hGH immunoreactivity. C, Dense core vesicles containing hGH (arrow) were present near apical cell surfaces. ME 
microvilli. Bar, 0.1 #m. 

Secretory Pathways in Enterocytes 

Absorptive enterocytes conduct constitutive vesicular trans- 
port of membrane glycoproteins toward both apical and 
basolateral surfaces, and most (but not all; Moktari et al., 
1986; Massey et al., 1987) of the available evidence indi- 
cates that sorting of membrane constituents into one or the 
other pathway occurs in the Golgi complex (Danielson and 
Cowell, 1985; Fransen et al., 1985; Hauri et al., 1985). 
Studies of two cultured human colon adenocarcinoma-de- 
rived cell lines, Caco-2 and HT29-18C1, that develop entero- 
cyte-like features in confluent monolayer culture (for review, 
see Rousset, 1986; Neutra and Louvard, 1989), showed that 
basolateral membrane components are continuously exported 

to the cell surface, even in undifferentiated, unpolarized cells 
(LeBivic et al., 1988a; Godefroy et al., 1988). In contrast, 
apical membrane glycoproteins, including microvillar mem- 
brane enzymes, enter a vesicular pathway that seems to be 
selective in that it functions only in polarized cells that have 
tight junctions and an intact, polarized cytoskeleton (Blok et 
al., 1981; Bennett et al., 1984; Trugnan et al., 1987; LeBivic 
et al., 1988b; Achier et al., 1989). Small, Golgi-derived 
vesicles that deliver brush border glycoproteins to the apical 
membrane have been identified in the apical cytoplasm of 
normal enterocytes by EM autoradiography (Bennett et al., 
1974; Michaels and Leblond, 1976; Bennett et al., 1984), 
and EM immunocytochemistry (Fransen et al., 1985; Lor- 
enzsonn et al., 1987). The basolaterally directed vesicles are 
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Figure 8. Immunolocalization of hGH in crypt enterocytes, labeled as in Fig. 7. hGH was concentrated in numerous dense core vesicles 
(arrows) in the apical cytoplasm. Bar, 0.2 #m. 

difficult to visualize under normal physiological conditions, 
presumably because they move rapidly and can be released 
anywhere along the extensive lateral or basal membrane. It 
is assumed that these vesicles also deliver the soluble secre- 
tory proteins of enterocytes (e.g., apolipoproteins) basolater- 
ally (Cardell et al., 1967; Traber et al., 1987; Rindler and 
Traber, 1988). No apical or exocrine secretory products have 
been identified, either in Caco-2 cells or in normal entero- 
cytes (Hauri et al., 1985; Rindler and Traber, 1988). 

Caco-2 cells that were induced by gene transfection to syn- 
thesize rat growth hormone, secreted the protein basolater- 
ally, indicating that in Caco-2 cells the "default" pathway for 
both secretory and membrane proteins is exclusively basolat- 
eral (Rindler and Traber, 1988). These results also confirmed 
that Caco-2 ceils lack the sorting machinery to selectively 
withdraw secretory products such as hGH out of constitutive 
secretory pathways. This is consistent with the apparent ab- 
sence of a regulated secretory pathway in these cells. In our 
transgenic mice, the distribution of hGH in enterocytes and 
in lateral intercellular spaces also suggested that the hor- 
mone was secreted in a constitutive, basolateral pathway. 
High blood levels ofhGH and the large size of these animals 
indicates basolateral secretion of hormone from some abun- 
dant cell source, but this source could theoretically have 
been enterocytes, entero-endocrine cells, hepatocytes, kid- 
ney tubule cells or all of these (Sweetser et al., 1988a,b). 

Enterocytes in vivo, however, may have specialized secre- 
tory pathways not present in Caco-2 cells. In the enterocytes 
of normal mice (especially those in crypts) small vesicles 
with concentrated, electron-dense content are consistently 
present in the apical cytoplasm and in the Golgi region. Al- 
though their position in the apical pole of the cell implies api- 
cal secretion, the nature of the dense content is unknown and 
no studies have yet been done to establish the kinetics, regu- 
lation, or direction of their release (Madara and Trier, 1987). 
We have observed that they do not contain detectable levels 
of sucrase-isomaltase, an apically directed microvillar mem- 
brane enzyme (data not shown). In both crypt and villus en- 
terocytes of the transgenic mice, these dense core vesicles 
contained relatively high levels of hGH. Indeed, in crypt 
cells they were the only non-Golgi compartment that was 
consistently labeled with anti-hGH antibodies. Since con- 
centration of vesicle content is one hallmark of a regulated 
secretory pathway (Kelly, 1985), accumulation ofhGH in the 
dense content of these vesicles suggests that they may repre- 
sent a regulated apical secretory pathway in normal entero- 
cytes that is not present in neoplasic intestinal cell lines. This 
observation again underscores the value of the transgenic 
mouse system for studying fates of foreign secretory proteins 
in the specialized, highly polarized cells of this native epi- 
thelium. 
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