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A generalized heat conduction 
model of higher‑order time 
derivatives and three‑phase‑lags 
for non‑simple thermoelastic 
materials
Ahmed e. Abouelregal1,2*, K. M. Khalil1,3, F. A. Mohammed1,4, M. E. Nasr1,3, 
Adam Zakaria1,5 & ibrahim‑elkhalil Ahmed1,6

In the current work, a new generalized model of heat conduction has been constructed taking into 
account the influence of the microscopic structure into the on non-simple thermoelastic materials. The 
new model was established on the basis of the system of equations that includes three‑phase lags of 
higher-order and two different temperatures, namely thermodynamic and conductive temperature. 
The two-temperature thermoelastic model presented by Chen and Gurtin (Z Angew Math Phys 
19(4):614–627, 1968) and some other previous models have been introduced as special cases from 
the proposed model. As an application of the new model, we studied the thermoelastic interactions 
resulting from sudden heating in an isotropic solid subjected to external body force. The influence 
of the discrepancy parameter and higher‑order of the time‑derivative has been discussed. this work 
will enable future investigators to gain insight into non-simple thermoelasticity with different phase 
delays of higher‑order in detail.

List of symbols
�,µ  Lamé’s constants
αt  Thermal expansion coefficient
Ce  Specific heat
γ = (3�+ 2µ)αt  Thermal coupling parameter
T0  Environmental temperature
θ = T − T0  Temperature increment
T  Absolute temperature
u  Displacement vector
e = divu  Cubical dilatation
σij  Stress tensor
eij  Strain tensor
q  Heat flux vector
K  Thermal conductivity
ρ  Material density
Q  Heat source
t   The time
δij  Kronecker’s delta function
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ϕ  Conductive temperature
τq  Phase lag of heat flux
τθ  Phase lag of temperature
τϕ  Phase lag of ∇ϕ

τ0  Thermal relaxation time
m, n, p  Higher orders
S  The entropy

Duhamel (1837) was the first to suggest entering the coupling term in the heat equation and proposing the cou-
pling between the temperature and the deformation. However, the heat equation was not well established by the 
thermodynamic process.  Biot1 attempted the thermodynamic justification for this equation. The heat equation 
includes, in this case, the dilatation term depend on the thermodynamics of the non-inverse process. The classi-
cal heat conduction theory in thermoelastic solids is based on the assumption that the heat flow is proportional 
to the temperature gradient. Based on this assumption, the heat equation is governed by a parabolic system of 
partial differential equations, which predicts that the thermal disturbance in the material will immediately affect 
all points of the body. The phenomenon of infinite velocity of heat waves conflicts with physical phenomena.

To overcome this defect, generalized thermodynamic theories were introduced. Lord and  Shulman2 intro-
duced a generalized theory of thermoelasticity that provides one relaxation time and thus the system that governs 
the heat equation has turned into a hyperbolic type. Green and  Lindsay3 proposed another model involved two 
relaxation times.

The following generalization of the theory of thermoelasticity is known as the dual-phase-delay model which 
was improved by  Tzou3 and  Chandrasekharaiah4.  Tzou3 reflected a constitutive equation to explain the lagging 
behavior in the heat conduction in solid materials.  Tzou5,6 presented a thermoelastic model including dual-
phase-delay to the heat flux vector and the temperature gradient.

The two-temperature theory (2TTE), proposed by Chen and  Gurtin7, Gurtin and  Williams8,9 and Chen 
et al.10,11, based on two distinct temperatures; conductive ϕ and the thermodynamic θ temperatures. According 
to this theory, the difference between these two temperatures is proportional to the applied heat source. Also, in 
the absence of the heat source, the two temperatures are  equal12. Based on this theory of thermoelasticity with 
two-temperature, several authors have studied several problems of  thermoelasticity13–18.  Quintanilla19 discussed 
the structural stability, existence, and spatial behavior of the solution of some problems in 2TT. For isotropic 
and homogeneous bodies,  Youssef20 introduced the theory of thermoelasticity with relaxation time and two-
temperature. Mukhopadhyay et al.21 also, extended generalized thermoelasticity with two temperatures and 
dual-phase-lag. The two temperatures theory has attracted a lot of attention in the recent  years22–26.

Recently, many efforts have been introduced to modify the classical heat conduction law. In one of these 
efforts,  Abouelregal27–29 introduced some generalized models of heat conduction including higher-order time-
derivative. Earlier, Chiriţă30 investigated the high-order Fourier law to illustrate the lagging performance of 
heat transfer.

The current paper is concerned with a generalized model that combines the two-temperature theory and 
the heat conduction of higher-order time-derivatives with two-phase-lags. To further study the accuracy of the 
current model, the model was applied to study the interaction in an isotropic solid exposed to external body 
force and due to sudden heating. Some special cases of concern were also deduced from the proposed model. 
For further clarification and comparison, the numerical results were tabulated and illustrated graphically. The 
effects of the parameters of temperature distinction, phase delay, and high-orders on all field variables inside 
the material have been studied. The numerical results obtained in this paper were found to be as good as with 
the results in the current literature. Also, the results and observations also showed that the analytical solutions 
correspond well with numerical solutions.

Derivation of the modified model
The Fourier’s  law31, is the closest model representing heat conduction, which assumes that there is a linear rela-
tionship between the heat flow q and the temperature gradient ∇θ on the following form:

The following relations are achieved by the increment in entropy S

From Eqs. (2) and (3), we obtain the energy equation as

Among the governing equations in the two-temperature model (2TT), in addition to the energy Eq. (4), the 
equation that connecting the two temperatures θ and ϕ is given  by7–12:

which, a > 0 is the temperature distinction parameter (two-temperature).

(1)q(x, t) = −K∇θ(x, t)

(2)divq + Q = −ρT0Ṡ

(3)ρT0S = ρCeθ + γT0divu

(4)ρCe
∂θ

∂t
+ γT0

∂

∂t
(divu) = −divq + Q

(5)θ =
(

1− a∇2
)

ϕ
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The classical Fourier’s law (1) has been replaced, according to  Quintanilla29 with

In the DPL model, the heat Eq. (6) is modified by introducing two phase-lags  as11:

In the above equation, τq and τϕ are respectively the phase lags of the heat flux and conductive temperature 
gradient.

Introducing the phase lag of the temperature τθ , in addition to the phase lag τq of conductive temperature, 
we get the following relation

Taylor-series-expansion is applied to both sides of Eqs. (7) and (8) and maintain the terms up to a suitable 
higher-order of time-deferential ( m, n, p ) in τq , τϕ , and τθ respectively, to acquire

It was highlighted that the proposed models associated with the higher-order time-differential have been 
extensively considered in many papers regarding their thermodynamic consistency and also with regard to well-
presented issues and stimulating  stability32–37. If we adjoin Eq. (9) with the energy Eq. (4), we get

By studying a system of equations similar to the foundational equations of type (9) or (10), Chiriţă et al.35 
explain that there are some restrictions to choosing the higher orders m, n, and p , for example when m ≥ 5 leads 
to an unstable system, and therefore cannot describe a real physical state.

In addition, the field equations, the constitutive relations and the train–displacement relation to thermoelastic 
isotropic materials at uniform environmental temperature T0 are:

Application to the model
As to achieve the accuracy of the presented model, we are now studying a thermoelastic body that is exposed 
to thermal shock and is affected by an external force. It is assumed that all field variables depend only on the 
distance x and instant time t  . Then displacement components have the form

The non-zero strain is given by

The components of the external body strength can be chosen as

Equations (9), (11), (12) and (14) then reduce to

(6)q(x, t) = −K∇ϕ(x, t)

(7)q
(

x, t + τq
)

= −K∇ϕ
(

x, t + τϕ
)

(8)θ(x, t + τθ ) =
(

1− a∇2
)

ϕ
(

x, t + τϕ
)

(9)

(

1+

m
∑

r=1

τ rq

r!

∂r

∂tr

)

q = −K

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

∇ϕ

(10)

(

1+

p
∑

r=1

τ rθ

r!

∂r

∂tr

)

θ =
(

1− a∇2
)

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

ϕ

(11)K

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

∇2ϕ =

(

1+

m
∑

r=1

τ rq

r!

∂r

∂tr

)

(

ρCe θ̇ + γT0ė − ρQ
)

(12)σij = 2µeij + δij
[

�eij − γ θ
]

(13)2eij = uj,i + ui,j

(14)µui,jj + (�+ µ)uj,ij − γ θ,i + Fi = ρüi

(15)ux = u(x, t), uy = 0, uz = 0.

(16)e =
∂u(x, t)

∂x

(17)Fx = e−ωx , ω > 0, Fy = 0, Fz = 0.

(18)(�+ 2µ)
∂2u

∂x2
− γ

∂θ

∂x
+ ρe−ωx = ρ

∂2u

∂t2

(19)K

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

∂2ϕ

∂x2
=

(

1+

m
∑

r=1

τ rq

r!

∂r

∂tr

)

(

ρCe
∂θ

∂t
+ γT0

∂2u

∂t∂x

)
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We will consider the dimensionless quantities:

The governing Eqs. (18)–(21), by using Eq. (22) may be reformulated in the non-dimensional forms as 
(neglecting the primes):

where ε =
γ 2T0
ρ2c20Ce

.
Homogeneous initial conditions are assumed to be

From the description of the previous problem, we find that the boundary conditions are in the form

where the parameter ϕ0 is constant and H(t) denotes the Heaviside unit step function.

Solution of the problem
To get the solution of the problem, we perform the Laplace transform described by

Transforming Eqs. (23)–(26), we obtain

where

(20)

(

1+

p
∑

r=1

τ rθ

r!

∂r

∂tr

)

θ =

(

1− a
∂2

∂x2

)

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

ϕ

(21)σxx = σ = (�+ 2µ)
∂u

∂x
− γ θ

(22)

{

x′, u′
}

= ηc0{x, u}, σ ′ =
σ

�+ 2µ
,
{

t ′, τ ′q, τ
′
θ , τ

′
ϕ

}

= c20η
{

t, τ0, τ1, τθ , τq
}

,

a′ = η2c20a, θ
′ =

γ

�+ 2µ
θ , F ′ =

ρ

ηc0(�+ 2µ)
F, c20 =

(�+ 2µ)

ρ
, η =

ρCec
2
0

K
.

(23)∂2u

∂x2
−

∂θ

∂x
+ e−ωx =

∂2u

∂t2

(24)

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

∂2ϕ

∂x2
=

(

1+

m
∑

r=1

τ rq

r!

∂r

∂tr

)

(

∂θ

∂t
+ ε

∂2u

∂t∂x

)

,

(25)

(

1+

p
∑

r=1

τ rθ

r!

∂r

∂tr

)

θ =

(

1− a
∂2

∂x2

)

(

1+

n
∑

r=1

τ rϕ

r!

∂r

∂tr

)

ϕ,

(26)σ =
∂u

∂x
− θ

(27)
θ(x, 0) =

∂rθ(x, 0)

∂tr
= 0, ϕ(x, 0) =

∂rϕ(x, 0)

∂tr
= 0,

u(x, 0) =
∂ru(x, 0)

∂tr
= 0, r =

{

m, n, p
}

.

(28)
σ(0, t) = 0

ϕ(0, t) = ϕ0H(t)

(29)f (x, t) =
∞

∫
0
f (x, t)e−stdt

(30)s2u = D2u− Dθ +
1

s
e−ωx

(31)ℓϕD
2ϕ = ℓq

(

θ + εDu
)

,

(32)ℓθ θ = ℓϕ
(

1− aD2
)

ϕ,

(33)σ = Du− θ
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Eliminating θ  from Eqs. (30)–(32), we obtain

where

Eliminating e between Eqs. (35) and (36), we get

where

The general solution of Eq. (39) which is bounded as x → ∞ is given by

where C3 = α4/
(

ω4 − Aω2 + B
)

 and C1 and C2 are some parameters.
Also, the parameters m1 and m1 are the roots of the equation

Substituting (41) into Eqs. (36) and (32), we obtain

Introducing Eq. (43) into Eq. (16), we get

Using Eqs. (41) and (43) into Eq. (37) we have

By taking the Laplace transform to the boundary conditions (28), we get

Substituting the functions of σ  and ϕ given in (41) and (46) into the boundary conditions (47), we can obtain 
the integral parameters C1 and C2.

(34)

ℓq = 1+

m
∑

r=1

τ rq

r!
sr , ℓθ = 1+

p
∑

r=1

τ rθ

r!
sr

ℓϕ = 1+

n
∑

r=1

τ rϕ

r!
sr , D =

d

dx
.

(35)
(

D2 − s2
)

e = α1
(

D2 − aD4
)

ϕ +
ω

s
e−ωx

(36)
[

D2 − α2
]

ϕ = α3e

(37)σ = e − α1
(

1− aD2
)

ϕ

(38)α1 =
ℓϕ

ℓθ
, α2 =

ℓq

aℓq + ℓθ
, α3 =

εℓθ ℓq

aℓqℓϕ + ℓϕℓθ
.

(39)
(

D4 − AD2 + B
)

ϕ = α4e
−ωx

(40)A =
s2 + α2 + α1α3

1+ aα1α3
, B =

s2α2

1+ aα1α3
,α4 =

ωα3

s(1+ aα1α3)
.

(41)ϕ(x) = C1e
−m1x + C2e

−m2x + C3e
−ωx

(42)m4 − Am2 + B = 0

(43)e(x) =

(

m2
1 − α2

)

α3
C1e

−m1x +

(

m2
2 − α2

)

α3
C2e

−m2x +

(

ω2 − α2
)

α3
C3e

−ωx

(44)
θ(x) = α1

(

1− am2
1

)

C1e
−m1x + α1

(

1− am2
2

)

C2e
−m2x

+ α1
(

1− aω2
)

C3e
−ωx

(45)u(x) = −

(

m2
1 − α2

)

m1α3
C1e

−m1x −

(

m2
2 − α2

)

m2α3
C2e

−m2x −

(

ω2 − α2
)

ωα3
C3e

−ωx

(46)

σ(x) =

[

(

m2
1 − α2

)

α3
− α1

(

1− am2
1

)

]

C1e
−m1x

+

[

(

m2
2 − α2

)

α3
− α1

(

1− am2
2

)

]

C2e
−m2x

+

[

(

ω2 − α2
)

α3
− α1

(

1− aω2
)

]

C3e
−ωx

(47)
σ = 0 on x = 0
ϕ = ϕ0/s on x = 0
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Special cases

• The classical coupled thermoelasticity (CTE)1 is yielded when τq = τθ = τϕ = 0 , a = 0,θ = ϕ . In this case, 
the heat conduction equation can be expressed as

• Lord–Shulman theory (LS)38 is given by setting τq = τ0 > 0, a = 0 , θ = ϕ , τθ , τϕ → 0 and taken m = 1 . In 
this case, the heat equation has the form

• The heat equation proposed by Tzou (DPL)3,6 is given when a = 0 , θ = ϕ , τθ = τϕ , n = 1 , m = 2 and take 
the following the form

• Tzou3 and  Chandrasekharaiah4 models with dual-phase-lags (DPL) are obtained by setting a = 0 , θ = ϕ , 
τθ = τϕ , m = n = 1 . The heat equation in this case is given by

• The two-temperature thermoelasticity model with phase-lags introduced by Mukhopadhyay et al.21 (MTTE) 
is given when we take a > 0 , τθ = τϕ , m = n = p = 1 . In this case, the two-temperature relation and the heat 
equation are:

• The governing equations proposed  by20 (YTTE) can be acquired as special case by taking a > 0 , τθ = τϕ = 0 , 
τq = τ0 > 0, m = n = p = 1 . In this case

• The generalized two-temperature thermoelasticity theory with two-phase-lags and high-order (HTTE) is 
obained when a > 0 , τq, τθ , τϕ > 0 , n,m, p ≥ 1.

numerical results
In the current section, we will try to provide a practical example to validate the accuracy of the current model. 
Also, the results can be scheduled to support other researchers to compare their results and verify their accu-
racy. For the purposes of numerical discussions, we have taken the values of the copper material constants  as39:

We performed the calculations when t = 0.12 s , ϕ0 = 1 , and ε = 0.0168 . By observing previous literature, 
most researchers have addressed such a problem without providing tabular results. They provide only some 
graphical examples to explain and clarify the phenomena.

To obtain the solutions for the distributions of conductive and dynamical temperatures, stress, strain displace-
ment fields in the real domain, we have to employ a numerical inversion technique of the Laplace transform to 
Eqs. (43)–(46) respectively. Details of these techniques can be found in Honig and  Hirdes40. In this technique, 
any function g(x, s) in Laplace domain can be inverted to the time domain g(x, t) numerically by the relation

(48)K∇2θ = ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

(49)K∇2θ =

(

1+ τ0
∂

∂t

)(

ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

)

(50)K

(

1+ τθ
∂

∂t

)

∇2θ =

(

1+ τq
∂

∂t
+

τ 2q

2

∂2

∂t2

)

(

ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

)

(51)K

(

1+ τθ
∂

∂t

)

∇2θ =

(

1+ τq
∂

∂t

)(

ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

)

(52)θ =
(

1− a∇2
)

ϕ

(53)K

(

1+ τθ
∂

∂t

)

∇2ϕ =

(

1+ τq
∂

∂t

)(

ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

)

(54)θ =
(

1− a∇2
)

ϕ

(55)K∇2ϕ =

(

1+ τ0
∂

∂t

)(

ρCe
∂θ

∂t
+ γT0

∂e

∂t
− ρQ

)

CE = 383.1

(

J

kg K

)

, T0 = 293(K), αt = 1.78× 10−5

(

1

K

)

, K = 386

(

W

mK

)

,

� = 7.76× 1010
(

N

m2

)

, µ = 3.86× 1010
(

N

m2

)

, ρ = 8954

(

kg

m3

)

.

g(x, t) =
eωt

t





1

2
g(x,ω)+ Re

Nf
�

n=1

g

�

x,ω +
inπ

t

�

(−1)n



,
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where Nf  is a finite number of terms, Re is the real part and i is imaginary number unit. For faster convergence, 
numerous numerical experiments have shown that the value of ω satisfies the relation ωt ∼= 4.741. The numerical 
analysis were performed using the procedure proposed  by40 with the help of MATHEMATICA programming.

Now we will analyze the effect of higher expansion orders m, n, p and the temperature discrepancy a on the 
physical variables. To study the influence of the higher-order time-derivatives (HOTD) m, n, p as well as the 
distinction parameter of two-temperature a on the different fields, we introduce the current numerical results 
in the form of tables and graphs. Note that if a = 0 indicates the one-temperature model with HOTD and when 
a = 0.02 �= 0 indicates the two-temperature model with a higher order. The distributions of thermodynamic and 
conductive temperatures θ and ϕ , displacement u and axial stress σ are all illustrated in Figs. 1, 2, 3 and 4 and in 
Tables 1, 2, 3 and 4 for different values of the space x. In this section, we compare also the numerical calculations 
due to the HTTE thermoelastic model to other thermoelasticity models (DPL, LS, YTTE and MTTE).

The phenomenon of limited wave propagation speeds is observed from tables and figures. Also, it is evident 
from tables and figures that all models display distinctly different values near the surface boundaries, and the 
differences decrease with increasing distance, due to the effect of thermal shock applied to the stress-free bound-
ary. The conductive temperature profile takes the maximum value at the surface x = 0 (thermal shock) and then 
gradually ultimately decreases to zero. It is detected that thermal stress σ disappears on the surface x = 0 , which 
meets the state of the mechanical condition of the problem given in the Eq. (47). In Tables 1, 2, 3 and 4, various 
terms have been considered of the modified heat Eq. (24) and also in the equation related to the conductive and 
thermodynamic temperatures (25).

It can be clearly observed from the tables that the HTTE thermoelastic model gives perfect results for all 
HOTD parameters ( m, n, p ). As appeared on Tables 1, 2, 3 and 4, it is enough to put m = 4, n = 2, p = 1 for very 

Figure 1.  The displacement u for different models of two temperatures.

Figure 2.  The thermodynamic temperature θ for different models of two temperatures.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13625  | https://doi.org/10.1038/s41598-020-70388-1

www.nature.com/scientificreports/

Figure 3.  The conductive temperature ϕ for different models of two temperatures.

Figure 4.  The stress σ for different models of two temperatures.

Table 1.  Effect of the higher-order time-derivatives on the displacement u.

x LS DPL YTTE MTTE

HTTE

m = 1 m = 2 m = 3 m = 4 m = 5

0.0 − 0.01383 − 0.01383 − 0.01342 − 0.01349 − 0.01462 − 0.01458 − 0.01458 − 0.01458 − 0.01458

0.2 0.33773 0.224234 0.318957 0.201787 0.201735 0.279931 0.281169 0.281293 0.281303

0.4 0.272633 0.179314 0.257051 0.161196 0.161186 0.224568 0.225578 0.225679 0.225688

0.6 0.213114 0.137053 0.200226 0.122816 0.122809 0.17307 0.173882 0.173963 0.17397

0.8 0.166416 0.104538 0.155781 0.093365 0.09336 0.133167 0.133818 0.133883 0.133889

1.0 0.129946 0.07973 0.121197 0.070969 0.070965 0.102457 0.102979 0.103031 0.103036

1.2 0.101469 0.060809 0.094291 0.053945 0.053942 0.078829 0.079247 0.079288 0.079292

1.4 0.079232 0.046378 0.073358 0.041005 0.041002 0.06065 0.060984 0.061017 0.06102

1.6 0.061868 0.035372 0.057072 0.031168 0.031166 0.046663 0.046929 0.046956 0.046958

1.8 0.04831 0.026978 0.044402 0.023692 0.02369 0.035902 0.036114 0.036135 0.036137

2.0 0.037723 0.020575 0.034545 0.018009 0.018007 0.027623 0.027791 0.027808 0.02781
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accurate and close numerical results. Besides the first and second-order approximation, higher-order approxima-
tions, leading to higher-order DPL models, were also considered in the  literature42.

Wang et al.43 investigated a well-posedness problem, given some suitable restrictions on the parameters of 
phase lags τq, τθ and τϕ . Quintanilla and  Racke44 observed that there an area of influence result when m = n , 
however when m = n+ 1 they have founded some spatial approximations explaining the Phragmén–Lindelöf 
alternative. It is worth noting that our choices of the HOTD parameters 

(

m, n, p
)

 are capable to involve several 
models of heat conduction: when we take m = n , we have a diffusive behavior; but by taking m = n+ 1 , we get 
a wavelike  behavior6,30.

Table 2.  Effect of the higher-order time-derivatives on thermodynamic temperature θ.

x LS DPL YTTE MTTE

HTTE

m = 1 m = 2 m = 3 m = 4 m = 5

0.0 1.00028 1.00028 0.970667 0.97551 1.05677 1.05423 1.05418 1.05418 1.05418

0.2 0.77677 0.760218 0.762884 0.744943 0.807008 0.817053 0.817222 0.817238 0.81724

0.4 0.606432 0.579712 0.593729 0.566372 0.613558 0.628817 0.629074 0.6291 0.629102

0.6 0.47353 0.442134 0.461924 0.430514 0.466381 0.48381 0.484105 0.484134 0.484137

0.8 0.369756 0.337209 0.359375 0.327242 0.354505 0.372237 0.372539 0.372569 0.372572

1.0 0.288724 0.257184 0.279592 0.248743 0.269465 0.286394 0.286684 0.286713 0.286716

1.2 0.225451 0.19615 0.217522 0.189074 0.204825 0.220348 0.220615 0.220642 0.220644

1.4 0.176043 0.149601 0.169231 0.143719 0.155691 0.169533 0.169773 0.169797 0.169799

1.6 0.137464 0.114098 0.131661 0.109243 0.118343 0.130436 0.130647 0.130668 0.13067

1.8 0.107339 0.087021 0.102432 0.083038 0.089955 0.100356 0.100538 0.100557 0.100558

2.0 0.083815 0.066369 0.079691 0.063119 0.068376 0.077213 0.077369 0.077384 0.077385

Table 3.  Effect of the higher order Taylor expansions on the conductive temperature ϕ,

x LS DPL YTTE MTTE

HTTE

m = 1 m = 2 m = 3 m = 4 m = 5

0.0 1.00028 1.00028 1.00028 1.00028 1.00028 1.00028 1.00028 1.00028 1.00028

0.2 0.77677 0.760218 0.774147 0.757909 0.757899 0.766281 0.766422 0.766436 0.766437

0.4 0.606432 0.579712 0.602173 0.576012 0.576002 0.589462 0.589688 0.589711 0.589713

0.6 0.47353 0.442134 0.468485 0.437834 0.437826 0.453521 0.453786 0.453813 0.453815

0.8 0.369756 0.337209 0.364479 0.332806 0.332799 0.348933 0.349207 0.349235 0.349237

1.0 0.288724 0.257184 0.283563 0.252972 0.252966 0.268464 0.26873 0.268756 0.268758

1.2 0.225451 0.19615 0.220611 0.192289 0.192284 0.206553 0.206799 0.206823 0.206825

1.4 0.176043 0.149601 0.171634 0.146162 0.146158 0.158919 0.15914 0.159162 0.159164

1.6 0.137464 0.114098 0.133531 0.111101 0.111097 0.12227 0.122465 0.122484 0.122486

1.8 0.107339 0.087021 0.103886 0.08445 0.084447 0.094073 0.094242 0.094259 0.09426

2.0 0.083815 0.066369 0.080823 0.064192 0.06419 0.072379 0.072523 0.072537 0.072539

Table 4.  Effect of the higher order Taylor expansions on the stress σ.

x LS DPL YTTE MTTE

HTTE

m = 1 m = 2 m = 3 m = 4 m = 5

0.0 0 0 0 0 0 0 0 0 0

0.2 − 0.34847 − 0.23475 − 0.32951 − 0.21209 − 0.2129 − 0.29123 − 0.29247 − 0.2926 − 0.29261

0.4 − 0.28102 − 0.18733 − 0.26526 − 0.16903 − 0.16967 − 0.23326 − 0.23428 − 0.23438 − 0.23439

0.6 − 0.21966 − 0.14317 − 0.20661 − 0.12877 − 0.12926 − 0.17976 − 0.18058 − 0.18066 − 0.18067

0.8 − 0.17153 − 0.1092 − 0.16075 − 0.09789 − 0.09826 − 0.13832 − 0.13897 − 0.13904 − 0.13904

1.0 − 0.13394 − 0.08329 − 0.12506 − 0.07441 − 0.07469 − 0.10642 − 0.10694 − 0.107 − 0.107

1.2 − 0.10459 − 0.06352 − 0.0973 − 0.05656 − 0.05677 − 0.08188 − 0.0823 − 0.08234 − 0.08234

1.4 − 0.08167 − 0.04845 − 0.0757 − 0.04299 − 0.04316 − 0.06299 − 0.06333 − 0.06337 − 0.06337

1.6 − 0.06377 − 0.03695 − 0.05889 − 0.03268 − 0.0328 − 0.04847 − 0.04874 − 0.04876 − 0.04877

1.8 − 0.04979 − 0.02818 − 0.04582 − 0.02484 − 0.02493 − 0.03729 − 0.0375 − 0.03753 − 0.03753

2.0 − 0.03888 − 0.02149 − 0.03565 − 0.01888 − 0.01895 − 0.02869 − 0.02886 − 0.02888 − 0.02888
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Also, we have found that the HOTD parameters 
(

m, n, p
)

 and the two-temperature parameter a have a distin-
guished influence on the studied fields. Consequently, according to the results, it is significant to separate between 
the thermodynamic and the conductive temperatures. The presence of the high-order parameters increases the 
magnitude of the strain. The HTTE and MTTE models are largely closed to one another while the YTTE and 
LS models are closed to each other.

Table 1 discusses the effect of the HOTD parameters 
(

m, n, p
)

 on the displacement u for different models of 
thermoelasticity. It is clear from the table that the HTTE model with ( m = n = p = 1 ) gives the smallest values 
of the displacement, while the LS theory gives the largest displacement values when we take the parameters 
τq = τ0 > 0, a = 0 , τθ , τϕ → 0 , θ = ϕ and m = 1.

The variations of the displacement u versus distance x for the YTTE, MTTE and HTTE models are illustrated 
in Fig. 1. It can be seen that the displacement beginning at x = 0 with the minimum values for all the models 
and increases with x to achieve the maximum value at x = 0.4 . After that, the values of the displacement u drop 
quickly with distance.

The effect of the HOTD parameters 
(

m, n, p
)

 on the distributions of thermodynamic temperature θ and 
conductive temperature ϕ of the medium are displayed in Tables 2 and 3 as well as Figs. 2 and 3 for different 
thermoelasticity theories when the two-temperature parameter a is present or absent.

From the Tables and figures, we can see that the influences of the HOTD parameters on the fields θ and ϕ are 
very notable. Also, the parameter a has a fundamental role in varying the values of the studied fields. It is noted 
that from Tables and Figs. 2 and 3, the variations of the fields θ and ϕ is qualitatively similar for all different 
thermoelastic models. Moreover, it is observed that the conductive and thermodynamic temperatures increase 
when the high-order approximations parameters decrease. Also, the HTTE model displays the temperature field 
values compared to the LS, DPL, YTTE and MTTE models.

In the last set of 3D graphs (5–8), the numerical results of studied variables are introduced along the axial 
axis ( 0.0 ≤ x ≤ 3.0 ) and for different time ( 0.0 ≤ t ≤ 0.2 ) under the HTTE model. The HTTE theory with 
m = 4, n = 3, p = 2 is used in all the 3D figures. Figure 5 displays the variation of the displacement profile n 
against the axial distance due to the presence of time effects. The displacement profile grows to reach its maxi-
mum value and then decomposes as we move away from the boundary.

Observing the various results, we find that due to the presence of time, it was observed that the profiles of 
displacement, conductive and thermodynamic temperatures fields increase with time, which supports the physi-
cal reality. A general observation from all these numerical results and graphs (5–8), it is noted that all physical 
fields are sensitive to the time that is included. Figure 8 shows that the thermal stress field has an equal starting 
point with a value of zero, which indicates that the mechanical boundary condition is satisfied. Figure 6 displays 
the conductive temperature variance with distance x and time t  . From Fig. 7, we can see that all the profiles of 
ϕ have a coincident beginning point with value ϕ = 1 , which satisfies the thermal boundary conditions (Fig. 8).   

conclusions
In the current paper, a modified two-temperature thermoelasticity model with higher-order-time derivatives 
(HOTD) and three different phase-lags has been constructed. The derived model was established by taking into 
account the Taylor series expansions of Fourier’s heat conduction and the relation for the two temperatures and 
keeping terms up to appropriate higher-orders in the phase-lags τq , τϕ and τθ . Also, the two temperature model 
with one relaxation time (YTTE) and two temperature theory with two phase-lags (MTTE) are compared with 
the higher-order model with two-temperature and three-phase-lags.

Figure 5.  The displacement u with different time instant t  and distance x.
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To validate the proposed model and show that it is more accurate, the results are tabulated. From the Tables 
and figures, we observed that the effects of the HOTD parameters on θ and ϕ fields are very significant. The sen-
sitivity of the physical fields to the variation of the high-order parameters is investigated. For the current HTTE 
model, m = 4 is sufficient to obtain valid and effective results.

It is also evident from the results that when the HOTD parameters are lower than or equal to four, the rel-
evant model can be thermodynamically compatible, providing that it makes suitable appropriate assumptions 
upon the delay times.

This result is consistent with the results got by Chiriţă25,31. Finally, this work describes that the theory of 
thermoelasticity with two-temperature and three-phase-lags and HOTD parameters explains the behavior of the 
particles of the thermoelastic body more realistically than the model of thermoelasticity with two-temperature 
with one or two phase-lags. Also, the current study helps some researchers to show how they choose the values 
of these parameters.

Figure 6.  The thermodynamic temperature θ with different time t  and distance x.

Figure 7.  The conductive temperature ϕ with different time instance t  and distance x.
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