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Density-wave fronts on the brink of 
wet granular condensation
Andreas Zippelius & Kai Huang

Density-wave fronts in a vibrofluidized wet granular layer undergoing a gas-liquid-like transition are 
investigated experimentally. The threshold of the instability is governed by the amplitude of the vertical 
vibrations. Fronts, which are curved into a spiral shape, propagate coherently along the circular rim of 
the container with leading edges. They are stable beyond a critical distance from the container center. 
Based on an analysis of the emerging time and length scales, we propose a model for the pattern 
formation by considering the competition between the time scale for the condensation of wet granular 
particles from a gas-like state and that of the energy injection resisting this process.

Understanding the collective behavior of granular matter, i.e., large assemblages of macroscopic particles1, 2, is 
crucial to widespread applications ranging from predicting natural disasters such as landslides to increasing the 
efficiency of mining, pharmaceutics, civil and chemical engineering industries, as well as to emerging new tech-
nologies such as powder based additive manufacturing (three-dimensional printing)3–6. In the past decades, there 
have been substantial advances in understanding the statics and dynamics of granular matter from a physical 
perspective7, 8. Kinetic theories for granular gases9, 10, hydrodynamic descriptions of the rapid flow of granular 
liquids11–13, as well as hyperplastic models for granular solids such as soil14, 15 have been proposed. However, 
describing granular matter as a continuum, particularly in the vicinity of critical behavior such as pattern for-
mation and the transitions between solid- (e.g., a sandpile), liquid- (e.g., sand flowing in an hourglass), and 
gas-like (e.g., Saturn’s rings) states still remains a challenge. Due to dissipative particle-particle interactions such 
as friction, inelastic deformation and cohesion9, 16–18, the stationary states in granular matter are typically far from 
thermodynamic equilibrium, which hinders a direct implementation of statistical mechanics tools for describing 
the collective behavior of granular matter.

To face this challenge, it is indispensable to explore instabilities in granular matter driven far from thermo-
dynamic equilibrium. From Faraday crispations and heaping19–21 to sand dunes and ripples22, 23, from convec-
tion24–27 to segregation28–30, from parametric wave patterns such as strip, square and hexagons31–33 to localized 
excitations34, 35, from spiral patterns36 to kink fronts37, 38, agitated granular matter has been demonstrated to be 
a rich pattern forming system. Understanding the emerging time and length scales at criticality using nonlinear 
dynamics approaches and numerical simulations has also advanced out understanding of granular dynamics 
from a different perspective39–41.

Motivated by the fact that moisture is ubiquitous in nature and its influence on the collective behavior of 
granular matter is inevitable42, 43, there has been a growing interest in partially wet granular matter44–46. Due to 
the cohesive interactions induced by liquid bridges formed between adjacent particles, the transitions between 
different stationary states in wet granular matter exhibit interesting features such as phase separation and surface 
melting in comparison to its dry counterpart47–54. For the same reason, an oscillated wet granular layer has a dif-
ferent pattern forming scenario: Instead of instabilities reminiscent of Faraday crispations32, 34, 36, period tripling 
induced rotating spirals and propagating kink-wave fronts were found to dominate in a wet granular liquid55–57.

Here, we report a different type of pattern on the brink of the transition from a gas- to a liquid-like state. It 
consists of density-wave fronts (DWFs) coherently propagating along the circular rim of the container with indi-
vidual particles flowing in the opposite direction, reminiscent of traffic waves. Based on an analysis of the particle 
mobility, we elucidate the emerging DWFs as a competition between the time scale for the energy injection to 
keep a gas-like state and that for the condensation of the particles due to the cohesion induced by the wetting 
liquid in combination with the compression induced by the mechanical agitations.

Stability Diagram
Figure 1 shows typical top-view snapshots of DWFs in a vertically oscillated thin layer of wet granular matter 
composed of glass spheres with an averaged diameter of d = 0.78 mm and purified water with a surface tension of 
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σ = 0.072 N/m. The sample is confined in a cylindrical container of radius R = 8 cm and an adjustable height H. 
The liquid content W, defined as the volume ratio of water to the glass spheres, is kept within a few percent so as to 
keep the sample in a pendular state (i.e., cohesion is induced predominately by the formation of capillary bridges 
at the contact points between adjacent particles)44.

The coherently propagating fronts are localized beyond a certain radial distance rc to the container center. 
Within rc, the particles stay in a gas-like state without temporal or spatial inhomogeneities (see Supplementary 
Video S1). As the image intensity represents the amount of scattered light from the glass beads on a dark back-
ground, it can be considered as the number density of the particles. The fronts are slightly curved from the radial 
direction, exhibiting a certain chirality. They can be fitted with Archimedean spirals sharing the same origin at 
the container center. As shown in Fig. 1(c), the chirality determines the rotation direction. More specifically, the 
fronts are curved such that their outer edges (i.e., intersection points with the container) lead the rotation. This 
feature is in contrast to the spirals formed by kink-wave fronts (KWFs), where the spiral arms are trailing and 
connect at a common core55. The fronts prefer to arrange symmetrically in the azimuthal direction and rotate in 
the same direction. In case a counter-rotating front emerges, it decays quickly through collisions with the other 
fronts. The number of fronts N may vary from two to six. No clear dependence of N on the vibration frequency f 
and dimensionless acceleration Γ = 4π2f 2z0/g, with z0 the vibration amplitude and g gravitational acceleration, are 
observed. At the same f and Γ, different experimental runs may yield patterns with a different number of fronts 
and chirality.

The DWF pattern is closely associated with the transition from a dilute gas-like state, in which the particles are 
isolated from each other, to a dense liquid-like state, in which the particles diffuse freely while keeping contacts 
with their neighbors via liquid bonds. As shown in the stability diagram (Fig. 2), the stable regime for DWFs 
(highlighted in red) is relatively narrow in comparison to the other instabilities including propagating KWF and 
granular “gas bubbles” (GB) (coexistence of a dilute gas-like state and a liquid-like state)49, 55, 57. Further decreas-
ing Γ leads to a featureless liquid-like state. We explore the f − Γ parameter space through both increasing and 
decreasing Γ at fixed f. The DWF pattern arises predominately (>90% probability) as Γ decreases. As Γ increases, 
a direct transition from KWF or GB state to a gas-like state is more favorable. Moreover, the DWF state may also 
be replaced by a direct transition into the KWF or GB state, depending on the initial Γ. As indicated by the red 
curve shown in Fig. 2, the onset of the pattern corresponds to a critical vibration amplitude Ac ≈ 2.7d. Cohesion 
plays an essential role in the formation of the DWF pattern. Without wetting liquid, only the pure gas-like state 
is observed for the same parameter range. As the liquid content increases from W = 1.5% to 2.0%, we observe 
qualitatively the same stability diagram. Quantitatively, the threshold of condensation increases slightly due to the 
increased binding energy of the wet particles50. The stability diagram is also dependent on system dimensions: A 
decrease of the granular layer thickness h or an increase of the container height H leads to a more favorable GB 
state at the gas-liquid-like transition and an enhanced threshold Γ. The opposite trend is found if H decreases 
or h increases. As suggested in a previous investigation57, this influence is associated with the change of the free 
space above the granular layer, H - h, which determines the time scale for the traveling of a granular layer from 
the bottom to the lid of the container or vice versa. The liquid-gas-like transition being governed by the vibration 
amplitude is qualitatively in agreement with a previous investigation using particles with a larger d50, although 
quantitatively Ac/d obtained here is larger. A more quantitative understanding of how the different length scales 
in the system (h, H and d) are coupled with each other to tune the collective behavior of the system will be a focus 
of further investigations.

Figure 1. Top-view snapshots of DWFs, which propagate along the rim of the container (thick black circle), in 
an oscillated wet granular layer. (a–e) Representative snapshots for two to six curved fronts. In (c), the arrows 
show the propagation direction of the wave fronts and the dashed circle marks the region in which no DWFs 
exist.
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Emerging time and length scales. In order to quantify the emerging time (rotation frequency frot) and 
length scales (rc) associated with the pattern, we analyze the captured snapshots in a polar coordinate system 
centered at the container center. From the intensity fluctuations I(θ), we identify the positions of the fronts as the 
local maxima of I(θ) [red crosses in Fig. 3(a)]. As a first order approximation, we fit the maxima for each front 
with an Archimedean spiral φ φ φ= + −r c( ) 1 ( )i i i , where =r r R/i i  is the rescaled radial distance ri of the maxima 
belonging to the i-th front, φ is the corresponding phase, the winding parameter ci and φi are fitting parameters 
associated with the shape and orientation of the front. Subsequently, the rotation frequency is determined with 
frot = 〈 〉
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i  of a front is determined by a linear fit of φi(t) obtained from 300 

consecutive frames of synchronized images (i.e., the frame rate is the same as f), and 〈…〉i denotes an average over 
all fronts. The winding parameter ci fluctuates strongly around a constant mean value due to changes of the front 
shape while propagating.

As shown in Fig. 3(b), the rotation frequency frot grows with f at a fixed N, while it decreases monotonically 
with N at fixed f. Although DWFs with N = 3 to 6 are observed at fixed f = 90 Hz, the probability for DWFs with 
smaller N to emerge is slightly larger at small f. If we suppose each collision of the granular layer with the con-
tainer provides a kick (a certain amount of energy injection) to the fronts, more frequent collisions at larger f 
will lead to a larger frot. Therefore, it is intuitive to rescale the rotation frequency with f. As the overlapping of frot 
obtained at different f in the frot/f  −  N plane [see the inset of Fig. 3(b)] demonstrates, the scaling with f is appro-
priate. Moreover, it again shows that frot/f decreases as N increases, indicating that interactions between adjacent 
fronts hinder the propagation. We note that the force acting on the granular layer, which scales with Γ, does not 
play an important role in determining the rotation speed. For N = 5, the frot/f obtained in a range of Γ from 45 to 
70 are quantitatively the same. As N is related to the wave number at a certain r, we can also consider the relation 
between frot/f and N as the dispersion relation of the DWFs.

In order to quantify rc, we measure the level of intensity fluctuations with = −⟨ ⟨ ⟩ ⟩I I I( )rms
2 , where 〈…〉 

denotes an average over all θ. In order to avoid the influence of inhomogeneous illuminations, I is obtained from 
background-removed images. As shown in the inset of Fig. 3(c), Irms, averaged over all 300 frames captured, 
increases rapidly as the rescaled radial distance r  grows from 0.49 to 0.75. Visual inspections suggest that the 
initial decay of Irms with growing r  arises from the increase of number density, which leads to a more homogene-
ous distribution of the particles and thus a more uniform intensity profile. Due to the existence of DWFs, Irms 
grows rapidly as r increases further. Using the largest gradient of I r( )rms , we obtain rc. A comparison between the 
quantified rc [see dashed circle in Fig. 3(a) for an example] and visual inspections for various parameter sets sug-
gests that this approach captures the critical radial distance reasonably well. An average of rc for various N and f 
yields 0.7 ± 0.1, which is in agreement with the prediction of the model [~1 2 , dashed line in Fig. 3(c)], to be 
explained below. At f = 90 Hz, rc deviates systematically from 0.7 as N decreases from 5 to 3, showing an opposite 
trend as frot/f. Such a relation indicates that the higher momentum carried by the fronts with smaller N can effec-
tively push the DWF region further toward the container center.

Pattern forming mechanism. To understand the formation and transport mechanism of the DWFs, we 
analyze the mobility of individual particles in the vicinity of the fronts. As shown in Fig. 4(a), the particles in the 
dilute (dark) region ahead of the propagating front are more blurry than those away from the region, suggesting 
a higher mobility of particles there. This difference in mobility is characterized with spatially resolved covari-
ance at the length scale of a single particle. At time t and position (x, y), the covariance is calculate with Icov(x, y, 
t) = 〈[It(x + Δx, y + Δy) − 〈It〉][It+Δt(x + Δx, y + Δy) − 〈It+Δt〉]〉, where Δt is the time step between subsequent 
frames, Δx and Δy ∈ [0, d], and 〈...〉 denotes an average over different Δx and Δy. As Icov in Fig. 4(c) illustrates, 
the dilute region ahead of the front has the largest mobility, while the particles behind the front move much 

Figure 2. Stability diagram measured by decreasing Γ at various f for h ≈ 3.5 mm and H = 10.7 mm. DWFs are 
observed in the hysteresis region of the transition between the gas-like state (Gas) and kink-wave fronts or “gas 
bubbles”. Inset: onset of DWFs in the Γ-A plane. The red line corresponds to A = 2.7d, which is the mean value 
of the onset at various f. The mass of the sample and the liquid content are m = 113 g and W = 1.5%, respectively.



www.nature.com/scientificreports/

4Scientific RepoRts | 7: 3613  | DOI:10.1038/s41598-017-03844-0

slower. Such a dramatic difference in particle mobility arises from the strong cohesion due to wetting, because, 
as will be discussed below, the condensed wet granular regions are much more difficult to disassemble in com-
parison to the cohesionless dry case. The comparison of particle mobility suggests that the front is not pushed 
by the granular flow behind it, but pulled by the migration of particles to the fronts. This is also illustrated in 
the representative trajectory of a tracer particle (dots) shown in Fig. 4(b). Individual particles migrate in the 
opposite direction of a propagating front. The migrating speed differs from time to time: In the first few frames, 
the mobility is so small that the data points in the trajectory are overlapping with each other. It suggests that the 
granular layer is being compressed by the upward moving container. In the following frames, the tracer migrates 
in the counter-clockwise direction, representing the free flying period in which the granular layer detaches from 
the container and moves freely. The intermittent movements continue while the next front is approaching (see 
Supplementary Video S2). The overall displacement of the tracer in one vibration cycle increases due to the 

Figure 3. (a) A snapshot of four coherently propagating fronts captured with f = 80 Hz and Γ = 47.8. The fronts 
are identified as the peaks (red crosses) in the intensity profiles I(θ) along the azimuthal direction. The dotted 
curves are fits with Archimedean spirals originating at the container center. The dashed circle marks the critical 
radial distance rc. (b) Rotation frequency of the fronts frot as a function of f for various N. Inset: Rescaled rotation 
frequency frot/f for various N. (c) Rescaled critical radial distance rc as a function of f. The horizontal dashed line 
marks =r 1/ 2c . Inset: The level of intensity fluctuations Irms as a function of the rescaled radial distance r for 
the image sequence corresponding to (a). Other parameters are the same as in Fig. 2.
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reduced number density ahead of the front. Because of the density difference, mobilized particles are more likely 
to flow towards the approaching front. Nevertheless, the flow stops at the next DWF because of the large den-
sity gradient [see the intensity profile in Fig. 4(d)] and strong energy dissipation there. This is also the region 
where the granular temperature drops, as the mobility of the particles there changes dramatically [see Fig. 4(c)]. 
Consequently, the front propagates one step further in the opposite direction of the particle flow.

For vibrofluidized granular materials, theoretical, numerical and experimental investigations have demon-
strated that mechanical perturbations will evolve into shock waves in which abrupt changes of pressure, tempera-
ture and density arise58–60. Based on a hydrodynamic description of granular materials58, there is a time scale ts ∝ 
d/v(ηmax/η0 − 1) for a vibrating plate to compress granular particles [see Fig. 5(a) for a sketch showing an interme-
diate state] into a closed packed state, where v, ηmax and η0 correspond to the peak vibration velocity, maximum 
and initial packing densities, respectively. For partially wet particles used here, the cohesive force arising from 
the formation of liquid bridges is expected to dominate the collective behavior, because it is much larger than 
the gravity of a single particle G (a rough estimation of the ratio of the capillary force to G yields πdσ/G = 7.1). 
Consequently, as the particles are being compressed by the shock waves, they form rigid clusters that are much 
more difficult to break up than the cohesionless dry case. Therefore, it is reasonable to assume that ts also corre-
sponds to the time scale for initially gas-like particles to condense.

If ts is smaller than the time scale for the energy injection ti ~1/(2f), the granular layer will collapse locally into 
a jammed front [see Fig. 5(b)]. We note that there is an interesting similarity to the Jeans instability in star for-
mation61, although the cause of particle collapsing is the cohesive force instead of the gravitational one. Because 
of the reduced pressure in the collapsed region, influx of particles from the surrounding a gas-like region is 
expected. Moreover, the highly dissipative particle-particle interactions enhance the local condensation process 
because the probability for an isolated particle to be trapped by the collapsed region is higher than by a gas-like 
region. This is reminiscent of the clustering instability in a free-cooling granular gas9, 62, 63. In other words, the 
jammed front serves as an energy sink in the system. Note that the energy injection into the jammed region is 
reduced as the granular layer fills up to the lid of the container.

The nonequilibrium stationary state with DWFs suggests a dynamic balance of the two time scales. Due to the 
additional energy dissipation from the side walls, η0 is larger close to the rim of the container than in the center 
region. Consequently, the smaller ts results in a higher probability for the particles close to the rim to collapse into 
a DWF. As a representative example, Fig. 5(c) shows the image sequence of a DWF evolving with time. At time 
t = 0 s, an arc shaped front nucleates at the rim of the container. While propagating toward the center of the con-
tainer, the front elongates and deforms with a growing radius of curvature until it splits into three parts at 
t ≈ 0.03 s. The left one continues to propagate along the container rim. The middle part keeps an arc shape but 
decays quickly while traveling into the center region marked with the dashed circle, presumably owing to the 
small density inhomogeneity there. The right part initially behaves like the left part. However, it does not persist 

Figure 4. (a) A close view of a DWF propagating in the clockwise direction with the positions of a tracer 
particle in the following three vibration cycles marked with yellow dots (uncertainty ~0.1d). The snapshot is 
captured directly after the granular layer collides with the container bottom. (b) A zoom-in view of the tracer 
trajectory with the migration direction marked with a red arrow. The images are captured with seven frames per 
vibration cycle and an exposure time of 2 ms. (c) Spatially resolved covariance between (a) and its subsequent 
frame. It corresponds to the center region of (a), as marked by the dashed square. The brightness corresponds 
to the mobility of the particles averaged over a region of d × d. (d) A normalized intensity profile for illustrating 
the front propagation mechanism (see text for details). One of the six DWFs is highlighted in red. Other 
parameters are the same as in Fig. 2.
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as a DWF because of the interactions with other fronts. An increase of damping by gluing a thin layer (~2 mm 
thick) of foamed material on the side wall leads to a smaller rc (i.e., a larger liquid-like region) than the case with-
out the modification, demonstrating the role played by the boundary. In addition, fixing a cylindrical object of 
height H and radius R/2 in the center of the container (i.e., creating an annular geometry) results in a favorable 
nucleation of the DWFs from the additional wall. In short, the above analysis suggests that density inhomogenei-
ties arising from the additional damping of the container wall are crucial for triggering and maintaining DWFs.

In order to understand the propagation mechanism, we start with the simplest case of a one-dimensional 
DWF. Because of mass conservation, the velocity of the front in the laboratory system is vf = (ρava − ρbvb)/
(ρa − ρb), where va, vb correspond to the mean velocities of particles ahead and behind the front, and ρa, ρb are the 
number densities of particles ahead and behind the front. If there exists any imbalance between the mass inflow 
qa = ρava and outflow qb = ρbvb rates, the front will propagate. In the situation of DWFs, the collapse of particles 
into locally jammed state dramatically reduces qb since the particles are effectively immobile. Together with the 
increased number density associated with the collapse, vf will be negative, explaining why the direction of DWFs 
is opposite to that of the particles. This is reminiscent of the case when a driver breaks while noticing a traffic jam 
ahead, leading to a backward propagating shock wave front64.

In the quasi-two-dimensional case here, a front nucleated at the rim of the container cannot maintain a con-
stant vf because of the additional mass influx close to the container wall. If we suppose the front takes the form of 
a line and propagates along the radial direction toward the container center [see Fig. 5(d)], vf will be larger close 
to the rim of the container because of the additional mass transfer there, leading to a curved front with leading 
edges. More quantitatively, we estimate the additional contribution from the additional in- and outflow rate in 
comparison to the same front propagating in a channel with parallel walls with dvf = (dqa − dqb)/(ρa − ρb), where 
dqa = ρaHdSa/dt and dqb = ρbHdSb/dt. For small propagating steps, we estimate dSa = dSb = (Rdθ)2 sin(2θ)/2. 
Subsequently, we have dvf = R2frot sin(2θ)Hdθ/2, which indicates that the increase of the velocity due to the circu-
lar geometry reaches its maximum at θ = π/4. Therefore, it is intuitive to speculate that the front is most likely to 
deform and split at ≈r 1/ 2c , which corresponds to the dashed circle marked in Fig. 5(a). Note that the front 
deforms such that the angle between the front and the container wall tends to decrease, explaining why the outer 

Figure 5. (a) A sketch illustrating the collapse of wet granular particles as they are being compressed by the 
upward moving container. (b) Further collapse of particles leads to a locally jammed region with reduced 
mobility, an influx of surrounding particles, and subsequently DWFs propagating outwards in the horizontal 
direction. (c) Top-view snapshots showing the initialization process of a DWF from the rim of the container 
driven at f = 90 Hz and Γ = 55.7. The dashed curve corresponds to a concentric arch of radius R 2. The green 
curves, which highlight the fronts, are guides to the eyes. (d) A schematic showing a front (dark gray region) 
propagating one step further (from solid to dashed lines) with various definitions. dSa and dSb denote the gained 
and lost area of the propagating front in comparison to a rectangle of the same area.
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end of the front is leading. As shown in Fig. 3(c), rc obtained from the experiments is mostly quite close to 1 2 , 
supporting the argument above. In experiments, the spatial inhomogeneities, different mobility of the particles, 
as well as interactions between coherently propagating fronts will have additional influence on the curved front 
and consequently a distribution of rc is observed.

Conclusions and outlook. Density-wave fronts (DWFs) emerging in a vibrofluidized wet granular layer are 
investigated experimentally. This instability arises predominately at the transition from a homogeneous gas-like 
to a liquid-like state, and the onset is governed by the vibration amplitude. Upon nucleation, the fronts arrange 
themselves symmetrically in the azimuthal direction, curved in an Archimedean spiral shape, and coherently 
propagating along the container rim. The rotation frequency of the fronts, which scales with the vibration fre-
quency, decays as the number of fronts increases. The fronts are localized close to the container rim, giving rise to 
a critical distance ∼ .r 0 7c  below which no DWFs exist. Based on a characterization of particle mobility and 
number density, we explain the formation and propagation mechanisms of the fronts. Our argument considers a 
balance between the time scale for the collapse of cohesive particles as the granular layer is being compressed by 
the vibrating plate and that of the energy injection for keeping a gas-like state, reminiscent of the Jeans instability 
for galaxy formation with capillary interactions replacing gravitational ones. Based on a model for traffic flow, we 
explain qualitatively why the fronts are curved and quantitatively the critical distance rc.

The emerging time and length scales associated with the instability provide a model system for developing 
hydrodynamical models for cohesive granular materials. The DWFs are effectively pulled by the dilute gas-like 
region ahead. Could they be understood in the context of existing nonlinear dynamics models for front propaga-
tion65? How do they compare with other traveling waves in Newtonian fluids66, 67? In rare cases (less than 1% 
probability), the fronts merge with each other and propagate inwards without being limited by rc. More detailed 
analysis of this secondary instability in connection with the synchronization and interactions between fronts, as 
well as its dependence on the length scales of the system and liquid content, will be a focus of further 
investigations.

Methods
The glass beads (SiLiBeads S) have a density of ρg = 2.50 g·cm−3 and 10% polydispersity. The tracer particles (dark 
glass beads, SiLiBeads S) have the same density but a slightly larger diameter of 1 mm. The particles are cleaned 
with ethanol, isopropanol, acetone and water, and then dried in an oven before use. Purified water (LaborStar 
TWF) is used as wetting liquid. The filling fraction is estimated with m/(πR2ρgH), where m is the mass of the par-
ticles. The height of the granular sample is estimated with h ≈ m/(πR2ρgη), where the packing density is estimated 
to be η = ηmax ≈ 0.64. The container is agitated vertically against gravity with an electromagnetic shaker (Tira 
TV50350). The frequency f and amplitude z0 of the sinusoidal vibration are controlled with a function generator 
(Agilent FG33220) and the dimensionless acceleration Γ = 4π2f2z0/g, where g is the gravitational acceleration, is 
measured with an accelerometer (Dytran 3035B2). The collective behavior of the sample is captured with a high 
speed camera (IDT MotionScope M3) mounted above the container. The camera is triggered by a synchronized 
multi-pulse generator to capture images at fixed phases of each vibration cycle. A ring shaped LED mounted on 
the container lid is used for illumination. To enhance the contrast of the captured images, we use a black back-
ground beneath the container bottom. A sketch of the experimental setup and more details on the setup control 
can be found in ref. 55.
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