
sensors

Article

A Data-Driven Adaptive Sampling Method Based on
Edge Computing

Ping Lou 1,2, Liang Shi 1,2 , Xiaomei Zhang 1,2, Zheng Xiao 3 and Junwei Yan 1,2,*
1 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;

louping@whut.edu.cn (P.L.); shiliang@whut.edu.cn (L.S.); May125z@whut.edu.cn (X.Z.)
2 Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of

Technology, Wuhan 430070, China
3 School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China;

reallylaugh@whut.edu.cn
* Correspondence: junweiyan@whut.edu.cn

Received: 16 March 2020; Accepted: 9 April 2020; Published: 12 April 2020
����������
�������

Abstract: The rise of edge computing has promoted the development of the industrial internet of
things (IIoT). Supported by edge computing technology, data acquisition can also support more
complex and perfect application requirements in industrial field. Most of traditional sampling
methods use constant sampling frequency and ignore the impact of changes of sampling objects
during the data acquisition. For the problem of sampling distortion, edge data redundancy and energy
consumption caused by constant sampling frequency of sensors in the IIoT, a data-driven adaptive
sampling method based on edge computing is proposed in this paper. The method uses the latest data
collected by the sensors at the edge node for linear fitting and adjusts the next sampling frequency
according to the linear median jitter sum and adaptive sampling strategy. An edge data acquisition
platform is established to verify the validity of the method. According to the experimental results,
the proposed method is more effective than other adaptive sampling methods. Compared with
constant sampling frequency, the proposed method can reduce the edge data redundancy and energy
consumption by more than 13.92% and 12.86%, respectively.

Keywords: edge computing; industrial internet of things; data acquisition; adaptive sampling; linear
median jitter sum

1. Introduction

With the arrival of the era of industrial internet of things (IIoT) [1] and big data [2], more and
more data can be collected and analyzed. Industrial big data [3] has become an important driving
force of the new round of industrial revolution. As the most practical and highest frequency demand
of industrial big data in the production process, data acquisition [4–6] is also used as one of the
measurement standards of industrial field automation integration. Data collection is widely used
in many fields such as signal detection, equipment monitoring, signal processing and instrument
detection. Although the data collection system has different definitions according to different application
requirements, the purpose of each system is to provide a worry-free environment for the construction
of smart manufacturing systems [7] in the future. In industrial field monitoring [8], a series of problems
pose challenges to the development of industrial big data, such as the various of industrial equipment,
the complexity of monitoring data, the long duration of monitoring and the large amount of data
accumulation. According to the Cisco Cloud Index [9], by 2021, there will be more than 50 billion
terminal devices worldwide and the total amount of data generated by these devices will reach 847ZB
per year, about 10% of which will need to be processed. In contrast, global data centers are expected

Sensors 2020, 20, 2174; doi:10.3390/s20082174 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6414-7920
https://orcid.org/0000-0002-5905-3217
http://dx.doi.org/10.3390/s20082174
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/8/2174?type=check_update&version=2


Sensors 2020, 20, 2174 2 of 16

to have only 2.6ZB of storage capacity and 19.5ZB of network traffic. If all the data on the edge
side is uploaded to the cloud computing center for analysis and processing, it will cause a serious
problem of insufficient network resources. This large amount of data also poses new challenges to the
development of cloud computing [10,11].

The emergence of edge computing [12,13] technology provides an ideal direction for the
development of industrial big data. Edge computing refers to the open platform that integrates
the core capabilities of network, computing, storage and application at the edge of the network near the
object or data source to provide edge intelligent services nearby. Through the embedded computing
platform [14], the terminal equipment will be continuously intelligent. It can carry out all offline
computing or part of the calculation locally, which provides the possibility for the realization of edge
computing. With the deployment of the edge computing layer [15], basic computing and control can
be applied to the edge of the network without being handed over to the cloud. Being closer to the
user, the edge device can help the user filter and process confidential data [16] and desensitize it to the
cloud. Because the process is realized in the edge computing layer, real-time field control and feedback
can be carried out on the site, which greatly improves the processing speed and efficiency.

With the continuous development of China’s industry, energy shortage has become the focus
of China’s economic development and social progress. In order to better promote the rational and
full use of energy in China, promoting the green development of industry has become a standard of
industrial production. More and more green products have entered industrial production. Due to
some special circumstances, the sensors need to be powered by batteries in the monitoring of industrial
environment. The battery-powered sensors can effectively solve the problem of field wiring and
interference. For such battery-powered sensors, energy consumption from data collection is the main
way to affect service time. Adaptive sampling reduces unnecessary data collection and unnecessary
energy consumption which extends the service time of battery-powered sensing devices. Therefore,
reasonable data collection is particularly important.

The nodes of industrial sensor networks usually adopt the data collection method with equal
time interval when collecting data: Collect data periodically according to the preset time interval.
This method completely ignores the characteristics of data changes. The data collection method, using
equal intervals, may cause two extreme situations: (1) When the sampling object changes slowly, a
large amount of redundant data is collected because the data collection interval is too small, which will
occupy a large amount of storage space; (2) If the data collection interval is too long, the information of
the sampling object will be lost, and some sampling information at rapidly changing times will be lost,
resulting in serious degradation of original data quality. The sampling frequency should be decreased
to reduce unnecessary information collection when the sampling object changes slowly. By increasing
the sampling frequency when the sampling object changes rapidly, the value of the sampling object at
the sensitive time can be observed more deeply and more subtly, thus reducing the distortion of the
sampling object and improving the system efficiency. In the process of data acquisition, unnecessary
data acquisition not only takes up a lot of memory space, but also wastes the energy of sensing
equipment. Aiming at the problem of sampling distortion, edge data redundancy [17] and energy
consumption caused by the constant sampling frequency of traditional IIoT, a data-driven adaptive
sampling method based on edge computing is proposed in this paper. Through the transformation
of the network edge layer, the data collected on the edge data acquisition platform according to the
adaptive sampling method. Adaptive sampling can reduce the sampling distortion, the redundancy of
the edge data and the energy consumption during the data collection process.

The remainder of this paper is organized as follows: Previous research on adaptive sampling are
stated in Section 2. Section 3 elaborates the construction of edge data acquisition platform and the
detailed method of data-driven adaptive sampling-based edge computing, including how to change
the sampling frequency according to the adaptive sampling strategy. Section 4 demonstrates the
experimental setup and provides some experimental results. Finally, Section 5 concludes the paper.
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2. Related Work

The international organization for standardization has its own specific minimum standard
frequency value for sampling objects in industrial sites. The change urgency of different sampling
objects varies greatly, so different sampling objects should adopt different sampling frequencies to
collect data. Long-term data collection results show that even the same sampling object will change
gently in one time interval and rapidly in another time interval, which requires the sampling frequency
of the same sampling object to be adjusted appropriately in the sampling process to cope with the
change of the sampling object. Due to the problems existing in traditional data collection methods, a
reasonable solution is to adopt adaptive sampling frequency [18], dynamically adjust the sampling
frequency according to the changes of the sampling objects: Decreasing the sampling frequency and the
amount of data collection when the sampling object changes gently; Increasing the sampling frequency
and the amount of data collection when the sampling object changes rapidly.

There are some researches on sampling frequency adjustment. Ilaria Scarabottolo put forward
a kind of adaptive sampling frequency method based on spectral change detection for low-power
embedded devices [19]. By detecting the variation of the signal spectrum through the change detection
test (CDT), the purpose is to extract the variation of the signal. Thus, the sampling frequency can be
adjusted adaptively; Jinyou Xiao proposed a method of using transient boundary element analysis
to realize adaptive sampling frequency in the frequency domain [20]. This method used the vector
fitting method [21] to fit the frequency response function of the rational function and then solved it.
However, the algorithm is relatively complex and the limitation of computing resources will make it
difficult to implement the adaptive strategy in a large range; Yanlong Sun put forward an adaptive
sampling method to solve the problem of underwater node energy constraints and unbalanced energy
dissipation [22]. Through using double input and single output fuzzy logic controller from the
adjustment sampling interval to minimize the sampling frequency and reduce the energy consumption
of the information exchange. Tongxin Shu put forward, a kind of, applied to battery performance
management based on data driven adaptive sampling algorithm [23]. The key parameters in the water
were collected by the sensor and the sampling frequency was adapted according to the fluctuation
of the parameters. By reducing the data sampling, data processing and transmission of energy, the
battery life was effectively extended. However, this method cannot completely detect the moment
of rapid change of the sampling object and the information of rapid change of the sample object that
is not within the specified range will be lost. Some important information would be hidden at this
moment; Wassim Drira designed an adaptive data collection scheme based on location perception
in the vehicle network data collection system [24]. In this scenario, they continuously compared the
latest sampling data with a set of historical data to determine the frequency of messages transmitted
between the traffic management center and the vehicle. However, their method is mainly to reduce
energy consumption by reducing the number of data uploads after data collection, but the energy of
unnecessary data collection has been consumed. The proposed method is mainly to save energy by
reducing the number of unnecessary sampling during data collection.

The above adaptive sampling methods can be roughly divided into two categories: Spectrum-based
adaptive sampling method and parameter fluctuations adaptive sampling method. The research works
promote the adaptive variable frequency data acquisition strategy to a certain extent. However, most
research work do not consider the feasibility of complex algorithm implementing on edge devices
and the rapid response of the system to the fluctuation of the sampling values, so a data-driven
adaptive sampling method based on edge computing is proposed in this paper. By applying the
method proposed in this paper to the sensor, the effect of extremum value on the result is reduced
and the accuracy of the method is improved. Table 1 summarizes the advantages and disadvantages
of the existing methods and the method proposed in this paper. The adaptive sampling method
needs to continuously adjust the sampling frequency in the sampling process according to the latest
sampling value. The data-driven method will help keep it up to date. By applying the method
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proposed in this paper to sensors, sampling distortion, data redundancy and energy consumption can
be effectively reduced.

Table 1. Comparison of methods.

Spectrum-Based Parameter Fluctuations Data-Driven

Accuracy
√ √

Rapid response
√ √

Feasibility of edge device
√ √

3. The Method of Data-driven Adaptive Data Acquisition Based on Edge Computing

The main idea of data-driven adaptive data acquisition based on edge computing is to dynamically
adjust the interval time between the sampling points at the data acquisition node according to the
changes of the sampling objects. The sampling interval will increase as the data changes smoothly,
and decrease as the data changes violently. For the analysis of data collection and data-driven adaptive
sampling frequency method mentioned above, an edge data acquisition platform [25] at the edge
of the internet of things is established firstly. Then, a data-driven adaptive sampling method based
on edge computing is proposed to analyze the function modules of the edge platform in the edge
gateway section.

3.1. Edge Data Acquisition Platform

This section proposes a data acquisition platform based on edge computing. According to the
flow direction of the IIoT field data, the data can be divided into two categories:

1. Uplink state data, data generated and collected during the production process of the product,
including processing monitoring data, production environmental monitoring data and products
quality feedback data.

2. Downstream control data, data received by production equipment, including control data and
configuration data for industrial equipment. Aiming at the collection and feedback of IIoT
field data.

The upstream data in the data acquisition platform is equipment processing data and environment
monitoring data. The downstream data is configuration data, such as the sampling frequency of
sensors. As shown in Figure 1, the acquisition platform mainly includes the following parts:

• Collection node: The collection node is used to collect data by various protocols on the industrial
site. Through the sensing and collection of industrial field production data, the collection and
transmission of equipment parameters and environmental data are realized.

• Edge gateway [26]: Edge gateway has the function of providing computing, storage, network
and other infrastructure resources. Considering the complexity of communication connection
among industry terminal equipment, edge gateway also requires the ability to have abundant
interface/contracts. The edge gateway supports a variety of physical equipment protocol parsing
and transformation, simple analysis, temporary storage and small batch data query. Edge gateway
can transfer specific data to the management platform, realizing the communication between
operation technology (OT) and information technology (IT).

• Management platform: The management platform is used to manage the edge gateway cluster,
to set up the database cluster for the data uploaded by the edge device and to manage the data
uniformly. The management platform provides a number of field-level applications to facilitate
the management of production equipment. The long-term benefits, quantity and quality of
information can be greatly improved through the establishment of the management platform.
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Based on the above edge computing platform, the IIoT data collection system is realized. The system
completes the analysis and storage functions of collected data on the edge side. It can also combine with
the management platform to support more complex and perfect industrial application requirements.

3.2. Data-driven Adaptive Sampling Method

Based on the above description of the edge data acquisition platform, we adopt data-driven
adaptive sampling methods at edge gateway with infrastructure resources such as computing,
storage and network. The data-driven adaptive sampling method is mainly divided into three
stages. The process of the data-driven adaptive sampling method is shown in Figure 2. In the first
stage, the acquisition process is established on the edge acquisition device. The latest collected data
continuously drives and adjusts the parameters of the linear fitting in the next stage and the output of
the adaptive sampling strategy. In the second stage, a linear fitting relationship is established based on
the sampling data. In the third stage, the linear median jitter sum is calculated based on the established
linear fitting relationship and the next sampling interval of the sensor is adjusted according to our
proposed adaptive sampling strategy.
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3.2.1. Establishment of Acquisition Process

According to the time correlation of the measured data collected by the same sensor over a
period of time, a linear regression model of the sampling value is constructed to fit the perception
data. The method of dynamically updating the model is adopted to make the sampling model meet
the requirements of the current adaptive adjustment strategy of the collected data and maintain the
timeliness of the model. The adaptive sampling process is mainly divided into three stages, as shown
in Figure 3. The first stage collects data based on the initial sampling interval. The second stage trains
the model from the latest collected N sampling points, and the third stage is to estimate whether the
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model has reached the update time. When the model does not reach the update time, the sampling
frequency is adjusted according to the model’s estimation results. When the model reaches the update
time, it returns to the second stage to rebuild the model.Sensors 2020, 20, x 6 of 16 
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3.2.2. Fitting of Regression Curve

Assuming a linear relationship between two physical quantities, the functional form can be written
as: y = αx + β, which is called a linear regression equation. The constant α and β are called a linear
regression coefficient. However, the actual collected data does not always strictly satisfy the linear
characteristics. When the data of each group is substituted y = αx + β, the two sides are not equal.
The data points cannot be accurately placed on the straight line corresponding to the formula when
drawing, as shown in the Figure 4:
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The difference between the actual value and the fitted value of y is defined as the fitting error or
residual ∆yi, and the sum of squares of all fitting errors is added to obtain the sum of squares of errors.
The best fitting line is also the line that minimizes the error sum of squares. The principle of evaluation
extremum value is used to convert the problem of finding the best fit straight line into the smallest
square of the error.

Assuming that y = αx + β, if there are N actual calibration test points, the residual between the
i-th calibration data and the corresponding value on the fitted line is:

Vi = ∆yi = yi − (αxi + β) (1)
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The principle of fitting a straight line by least squares is to make
∑

V2
i the minimum value.

The first-order partial derivative of
∑

Vi
2 to α and β is equal to 0 and finding the expressions of α and

β, where y = αx + β is the best fit curve, x =
i−1∑

k=i−N
xk, y =

i−1∑
k=i − N

yk

α1 =

i−1∑
k=i−N

(xk − x)(yk − y)

i−1∑
k=i−N

(xk − x)2
(2)

β1 = y− α1x (3)

Within a certain time interval, the relationship between the sampling value and the sampling time
can be approximately expressed as a linear relationship. By using this relationship, a linear fitting line
is established between the sampling value and the sampling time, which is used to calculate and adjust
the sampling frequency.

3.2.3. Adaptive Sampling Strategy

This section adjusts the sampling frequency based on the adaptive sampling strategy [27]. Firstly,
it calculates the linear median jitter sum based on the straight line fitted by the linear regression. xi is
used to represent the time of the next sampling point. xi−1,xi−2,xi−3 . . . xi−N represents the sampling
time of the first N sampling points. yi−1,yi−2,yi−3 . . . yi−N represents the corresponding sampling value.
y = α1x + β1 represents the straight line fitted by N sampling points. The jitter of the sampling point
is represented by the difference from the sampling point to the Y-axis of the median value of the line.
The sum of the jitter size of N sampling points relative to the median value of the fitting line is called
the linear median jitter sum Ω.

Ω =
i−1∑

k=i−N

|β1 + α1(
xi−N + xi−1

2
) − yk| (4)

In the result of linear regression fitting, the value of the linear median jitter sum Ω represents the
change trend of the sampling object, which reflects the change speed of the variable of the curve at
this point.

The adaptive sampling strategy is shown in Figure 5. The sampling frequency is adjusted
according to the adaptive sampling strategy. When initialized: T0 = (Tmax + Tmin)/2, where Tmax is the
maximum sampling time interval of the sampling object; Tmin is the minimum sampling time interval
of the sampling object; T is the current sampling interval; Tnext is the next sampling interval; Taunit
and Tsunit are the unit sampling interval of the increase and decrease to adjust sampling frequency.
The Tnext can be calculated by:

Tnext =


max(T − Tsunit, Tmin) Ω > Ω1

min(T + Taunit, Tmax) Ω < Ω2

Tbefore Ω1 ≤ Ω ≤ Ω2

, (5)

The larger Ω is, the greater jitter variation of the sampling object in the sampling process. Ω1, Ω2

represent the threshold of the linear median jitter sum and Ω2 < Ω1. In the formula, Ω > Ω1 represents
the change increase of the sampling object in unit time; Ω < Ω2 represents the change decrease of the
sampling object in unit time; Ω2 < Ω < Ω1 indicates that the degree of change of the sampling object is
not significantly different from the previous time.

It should be noted that the unit sampling time interval of increasing and the unit sampling time
interval of decreasing are two independent system parameters, and the values should be different.
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Generally, in order to improve the accuracy of the sampling fitting curve, the unit sampling time
interval of increase Taunit is set to less than the unit sampling time interval of decrease Tsunit. In this
way, it is more cautious to decrease the sampling frequency when the data collection system determines
the sampling object changes gently to avoid loss of the information of the sampling object during the
sampling process. If the system determines that the sampling object parameters are abrupt, than the
sampling frequency will be obviously increase to enhance the corresponding speed of the system for
such data changes. By setting the two system parameters to be different, the sensitivity of the adaptive
sampling method to the sharp change of the sampling object is improved and the distortion of the
sampling object during the sampling process of the edge data acquisition platform is reduced.
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4. Case Study

An edge data collection platform is built in this section, as shown in Figure 6. Our experimental
environment located in a machine tool workshop and the research object was the machine-tool spindle.
In the experiment, we compared the method proposed in this paper with constant sampling frequency,
spectrum-based adaptive method and parameter fluctuations adaptive method in three aspects:
Sampling distortion, edge data redundancy and energy consumption. Various sensors were connected
by the Raspberry Pi 3B+ [28]. Raspberry Pi 3B+ devices were used as the edge data acquisition node
of this experiment. The data-driven adaptive sampling method based on edge computing proposed
in this paper was deployed on the Raspberry Pi 3B+. The data collected through Modbus protocol.
Modbus [29] was used as the communication protocol between the physical environment and the
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network environment. The data was stored in InfluxDB [30] database. InfluxDB is a time series
database that was deployed as a container [31].
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The types and number of sensors used in this experiment are shown in Table 2. Five types of data
were collected in the experiment: Temperature, humidity, sound, displacement and power. There were
21 sensor nodes in the experiment. For example, there were 16 temperature nodes in the experiment.
Each node was connected to 8 temperature sensors, so there were 128 temperature sensors.

Table 2. Types and number of sensors.

Number of Nodes Number of Sensors in a Single Node Total

Temperature sensor 16 8 128
Humidity sensor 2 1 2

Sound sensor 1 2 2
Displacement sensor 1 3 3

Power sensor 1 3 3

In the experiment, we collected data for eight hours. A total of 3974400 pieces of raw data were
collected. The number of data of various types of sensors is shown in Table 3. The raw data includes
temperature, humidity, sound, displacement and power which serve as the data source to verify the
effectiveness of the data-driven adaptive sampling method.

Table 3. Number of sensor data.

Temperature Humidity Sound Displacement Power

Number 3686400 57600 57600 86400 86400

4.1. Improvement of Sampling Distortion

When collecting data in the traditional industrial site, a constant sampling frequency was generally
set according to the physical characteristics of the sampling object. However, the equal time interval
data collection methods can easily cause the loss of sampling object information: When the sampling
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object changes rapidly, the sampling information was lost due to the low sampling frequency at the
current moment, causing the quality of the original data to be severely reduced.

In order to prove that the proposed method can effectively improve the sampling distortion, we
compared the constant sampling frequency method (T = 4 s), spectrum sensing adaptive method, data
fluctuation adaptive method and the data-driven adaptive sampling method proposed in this paper
for three types of humidity, displacement and power sensor. The three sampling objects results are
shown as Figures 7–9.
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Figure 7. (a) constant sampling curve of humidity; (b) spectrum-based curve of humidity; (c) parameter
fluctuations curve of humidity; (d) data-driven adaptive curve of humidity.
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Figure 8. (a) constant sampling curve of displacement; (b) spectrum-based curve of displacement; (c)
parameter fluctuations curve of displacement; (d) data-driven adaptive curve of displacement.
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Figure 9. (a) constant sampling curve of power; (b) spectrum-based curve of power; (c) parameter
fluctuations curve of power; (d) data-driven adaptive curve of power.

In Figures 7, 8 and 9a is the traditional sampling curve with constant sampling frequency (T = 4 s);
(b) is the adaptive sampling curve with spectrum-based method; (c) is the adaptive sampling curve with
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parameter fluctuations adaptive method; (d) is the sampling curve using the adaptive sampling method
proposed in this paper. The location of the loss of sampling information caused by the traditional
constant sampling frequency is shown with red circle in the figure. According to the sampling curve,
we can find that the sampling curves obtained by the adaptive sampling method proposed in this paper
can better restore the actual change curve of the sampling object and the sampling curve is closer to the
actual change of the sampling object. The change trend of the sampling object at the sensitive moment
can be observed more clearly by adjusting the sampling frequency adaptively at the edge node.

4.2. The Edge Data Redundancy

At present, the traditional data acquisition system mostly adopts the data acquisition scheme of
equal interval, while some acquisition systems with high processing efficiency hope to reduce the
storage space of data. The use of the traditional equal-interval data sampling method tends to lead to an
extreme case: When the information of the sampling object changes slowly, a large amount of redundant
data was collected due to the small data acquisition interval which will take up a large amount of
storage space and seriously degrade the quality of original data. In order to prove the proposed
method can effectively improve the edge data redundancy, we used the constant sampling frequency
method (T = 4 s), spectrum-based adaptive method, parameter fluctuations adaptive method and the
data-driven adaptive sampling method proposed in this paper for five types of sensors: Temperature,
humidity, sound, displacement and power. We observed the amount of edge data collected of four
sampling methods. The edge data volume of temperature, humidity, sound, displacement and power
data under different sampling strategies are shown in Figure 10.
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Figure 10. The quantities of edge data.

It can be seen from Figure 10 that all kinds of adaptive sampling methods can reduce the degree of
edge data redundancy compared with traditional constant sampling frequency methods. The method
proposed in this paper is more effective than other adaptive sampling methods in edge data redundancy.
Compared with constant sampling frequency, the quantities of edge data for temperature, humidity,
sound, displacement and power data collection decreased by 31.5%, 14.67%, 15.11%, 29.14% and
13.92%, respectively.

Since the data of the temperature sensor is the main data source in this experiment, we analyzed
the data of the 16 temperature collection nodes in detail. In order to prove the universal applicability of
our method, we divided the eight sensors of each temperature sensor node into four groups. We used
the constant sampling frequency method (T = 4 s), spectrum-based adaptive method, parameter
fluctuations adaptive method and the data-driven adaptive sampling method on four groups of
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temperature sensors to collect data. Eight hours of collected data were recorded. The data volume
of four different sampling methods in each temperature collection node and the reduction in data
compared to the constant sampling frequency are shown in Table 4:

Table 4. Comparison of data collected by various methods.

Node 1 2 3 4 5 6 7 8

Constant sampling 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400
Spectrum-based 9984 9874 10,122 9857 10,063 10,008 9992 10,206

Parameter fluctuations 11,809 11,058 10,868 11,399 12,276 11,752 11,625 11,314
Data-driven 9648 9254 9462 9545 10,636 10,502 9292 9440

Decrease 33.00% 35.74% 34.29% 33.72% 26.14% 27.07% 35.47% 34.44%

Node 9 10 11 12 13 14 15 16

Constant sampling 14,400 14,400 14,400 14,400 14,400 14,400 14,400 14,400
Spectrum-based 11,086 11,321 11,632 10,012 9971 10,282 9521 9597

Parameter fluctuations 12,541 12,360 12,888 12,932 11,187 12,406 12,254 12,030
Data-driven 11,089 10,049 11,669 9921 9310 9697 9215 9209

Decrease 22.99% 30.22% 18.97% 31.10% 35.35% 32.66% 36.01% 36.05%

It can be found from Table 4 that the adaptive sampling method proposed in this paper can reduce
the temperature data by at least 18.97% and at most by 36.05%. The data-driven adaptive sampling
method based on edge computing is more effective than other adaptive methods. Compared with the
traditional constant sampling frequency method, the data-driven adaptive sampling method proposed
in this paper can reduce the temperature data redundancy by an average of 31.45%.

4.3. The Energy Consumption

In the monitoring of industrial environment, the energy consumption caused by data collection
should also be taken seriously. The energy consumption of unnecessary data collection does not bring
any economic benefits. In industrial field data collection, due to some special circumstances, some
battery-powered sensing devices will be used. For such battery-powered sensors, energy consumption
from data collection is the main way to affect service time. Adaptive sampling can reduce unnecessary
data collection and unnecessary energy consumption which extends the service time of battery-powered
sensing devices. In order to roughly calculate the energy consumption of the sensor, we unified
the power supply voltage of all sensors to 5 V, the corresponding time is 1/e (e = 2.718281828 . . . ),
the power consumption of the measurement is 1.5 mA and the power consumption of the dormant
is 10 uA according to the relevant information. In the experiment, the power consumption of the
dormant has little effect on the results of this experiment, so the energy consumption caused by the
sensor dormancy is ignored. The energy consumption of the data collected by the sensor once can be
roughly estimated to be:

5×
1.5

1000
×

1
e
= 0.00276 = 2.76× 10−3 J (6)

We respectively used the constant sampling frequency method (T = 4 s), spectrum-based adaptive
method, parameter fluctuations adaptive method and the data-driven adaptive sampling method
proposed in this paper on five types of sensors. We compared and observed the energy consumption
caused by the four sampling strategies applied to the sensors for 8 h. The energy consumption of
data collection for temperature, humidity, sound, displacement and power under different sampling
strategies as presented in Figure 11:
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It can be seen from Figure 11 that the data collection energy consumption by the constant sampling
frequency method is relatively larger. Although the spectrum-based adaptive sampling method and
the parameter fluctuations adaptive sampling method can reduce energy consumption, the method
proposed in this paper is the best in terms of energy consumption. By deploying a data-driven adaptive
sampling method at the edge, the data collection energy consumption of different sampling objects
can be reduced. Compared with the traditional constant sampling frequency method, the energy
consumption for temperature, humidity, sound, displacement and power sensors decreased by 35.83%,
18.47%, 13.33%, 33.14% and 12.86%, respectively.

5. Conclusions

For the problem of sampling distortion, edge data redundancy and energy consumption caused by
constant sampling frequency of edge devices under the IIoT, a data-driven adaptive sampling method
based on edge computing is proposed in this paper. The linear median jitter sum and adaptive sampling
strategy are used to adjust the sampling frequency. The constant sampling frequency method (T = 4 s),
spectrum-based adaptive method, parameter fluctuations adaptive method and the data-driven
adaptive sampling method proposed in this paper were compared and observed, respectively, in terms
of sampling distortion, edge data redundancy and energy consumption. Compared with constant
sampling, the results show the proposed method can reduce the edge data redundancy by more than
13.92% and the energy consumption by more than 12.86%. The proposed method is more effective
than other adaptive sampling methods. By applying the method proposed in this paper to the sensors
(temperature, humidity, noise, displacement and power sensors), the sampling distortion, edge data
redundancy and energy consumption can be effectively reduced.

Possible future work will consider an adaptive sampling method for high-speed and real-time
data acquisition. Due to the resource limitation of edge nodes, the flexibility of adaptive sampling
method can also be improved according to the real-time calculation of resource availability of edge
nodes to maximize the resource utilization of edge nodes.
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