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Introduction
With COVID-19 sweeping across the world, the challenge of the pandemic has rap-
idly accelerated the pace of scientific publications [1, 2]. As approximately 10,000 new 
articles on COVID-19 and SARS-CoV-2 are published every month [3], the ability to 
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Background: The COVID‑19 pandemic has increasingly accelerated the publication 
pace of scientific literature. How to efficiently curate and index this large amount of 
biomedical literature under the current crisis is of great importance. Previous litera‑
ture indexing is mainly performed by human experts using Medical Subject Head‑
ings (MeSH), which is labor‑intensive and time‑consuming. Therefore, to alleviate the 
expensive time consumption and monetary cost, there is an urgent need for automatic 
semantic indexing technologies for the emerging COVID‑19 domain.

Results: In this research, to investigate the semantic indexing problem for COVID‑
19, we first construct the new COVID‑19 Semantic Indexing dataset, which consists 
of more than 80 thousand biomedical articles. We then propose a novel semantic 
indexing framework based on the multi‑probe attention neural network (MPANN) to 
address the COVID‑19 semantic indexing problem. Specifically, we employ a k‑nearest 
neighbour based MeSH masking approach to generate candidate topic terms for each 
input article. We encode and feed the selected candidate terms as well as other con‑
textual information as probes into the downstream attention‑based neural network. 
Each semantic probe carries specific aspects of biomedical knowledge and provides 
informatively discriminative features for the input article. After extracting the semantic 
features at both term‑level and document‑level through the attention‑based neural 
network, MPANN adopts a linear multi‑view classifier to conduct the final topic predic‑
tion for COVID‑19 semantic indexing.

Conclusion: The experimental results suggest that MPANN promises to represent the 
semantic features of biomedical texts and is effective in predicting semantic topics for 
COVID‑19 related biomedical articles.
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accurately extract the crucial semantic topics from the large rapidly-growing COVID-19 
literature has become of great importance to many biomedical applications [4–7].

In recent decades, curators at the National Library of Medicine (NLM) have been 
employing Medical Subject Headings (MeSH) to manually identify and curate seman-
tic topics for scientific articles [8–10], which is also known as the process of semantic 
indexing. However, it is non-trivial to manually curate such substantial biomedical arti-
cles, which heavily relies on intensive labour and tremendous investment. In this sce-
nario, experts have to examine the full body of each biomedical article and manually 
assign it with a series of suitable pre-defined semantic topic terms from the large vocab-
ulary of MeSH headings. Although this manual topic assignment has relatively reliable 
accuracy, it is inevitably time-consuming and prohibitively expensive [11–13]. In addi-
tion, due to the emerging hotspots of COVID-19, such manual topic curation is much 
more difficult to keep up to date. Moreover, lacking a pertinent biomedical taxonomy 
will further increase the challenges of the topic curation for COVID-19. Hence, there is 
an urgent need for automatic semantic indexing techniques that are able to efficiently 
and robustly identify biomedical topics in a newly emerged topical field, such as the 
COVID-19 domain. Figure 1 shows an example to illustrate the challenges of the seman-
tic indexing task for the COVID-19 domain. In the figure, the article (PMID: 32,373,993) 
has already been curated and indexed by MEDLINE experts with nine different MeSH 
semantic topics.

In view of machine learning, automatic semantic topic indexing with MeSH termi-
nologies is considered a large-scale multi-label topic identification problem. Despite the 
promising results from early efforts [14–17], there is still a significant gap between such 
automatic methods and their applications for effective searching and querying in the 
COVID-19 domain. On the one hand, there is a lack of a specialized biomedical taxon-
omy for COVID-19 as traditional MeSH indexing research concentrates on the general 
scientific domains. Even worse, with tens of thousands of topic terms in the large-scale 
vocabulary of MeSH headings, it almost inevitably leads to extremely imbalanced label 

Fig. 1 An example of MeSH semantic indexing  taken from PubMed
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distribution for the ground-truth semantic topics [17]. On the other hand, there is also 
a severe lack of benchmark datasets for the COVID-19 semantic indexing research. At 
present, fighting the COVID-19 pandemic poses an extreme scenario that highlights the 
importance of automated semantic indexing techniques as professionals and practition-
ers desperately require a well-structured knowledge base to acquire new insights from 
recent coronavirus findings [18–20]. However, lacking such a standard dataset drasti-
cally limits the development of the topic identification techniques for the COVID-19 
domain. Therefore, constructing a universal dataset for COVID-19 semantic indexing is 
of great importance.

In light of these concerns, this article is devoted to the topic identification problem 
of COVID-19 semantic indexing. Theoretically, the COVID-19 semantic indexing can 
be conceptualized as a typical case of labeling texts with a range of centralized topics 
from heterogeneous sources. The need for such kind of semantic labeling is crucial for 
an emerging thematic area. Typically, neither consensus domain taxonomy nor sufficient 
annotated training data are available in such emerging topical areas. In addition, such an 
emerging domain also lacks a conventionalized venue for publications and likely finds 
a variety of related publications in neighboring fields. In this regard, we first introduce 
a new COVID-19 Semantic Indexing (CovSI) corpus constructed from a wide range 
of COVID-19 related biomedical articles, which addresses the data absence in such an 
emerging domain. We then propose a novel deep neural network adopting a multi-probe 
attention mechanism to address the challenges of semantic indexing from heterogene-
ous data for the specific field, i.e., COVID-19. Since there is no such specialized topic 
taxonomy for COVID-19 so far, the classic and widely used MeSH controlled vocabulary 
is employed for the study. To construct the CovSI corpus, we extract the metadata from 
multiple authoritative resources, including MEDLINE [12], PubMed Central (PMC) [21], 
and COVID-19 Open Research Dataset (CORD-19) [1], respectively. All extracted meta-
data is then merged to build the CovSI corpus. On top of the CovSI corpus, we propose 
a novel semantic indexing framework based on multi-probe attention neural network 
(MPANN) to address the fundamental problem of semantic indexing for the emerging 
domain of COVID-19. The proposed method begins by ranking all MeSH topic terms 
for each article through a k-nearest neighbor (KNN) based masking approach, which 
is able to select the most relevant candidate topics and significantly reduce the com-
plexity of the MeSH controlled vocabulary without any prior knowledge of the domain. 
It then represents multiple context-aware inputs for potential biomedical clues with a 
transformer encoder and subsequently feeds the encoded representations to the down-
stream attention-based neural network for further feature extraction. Specifically, four 
different semantic probes, namely Context Probe, Candidate Term Probe, Journal Probe, 
and Dynamic Topic Probe, are exploited during the feature extraction phase in order 
to address the heterogeneous nature of the data sources. The basic idea of these probes 
relies on that the context-aware textual information carries meaningful biomedical back-
ground knowledge from different semantic aspects, which provides informative features 
to discriminate topics for the input article. For instance, COVID-19 related literature 
is likely to express the conceptional terminologies of Coronavirus and SARS-CoV-2, 
which are suggestive indicators for topic selection. In this view, associating the expres-
sive contexts with the sieved candidate topic terms can help the MPANN model pay 
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more attention to the possible target topics during the classification. Moreover, given a 
wide variety of sources of publications, COVID-19 articles may allow attention directly 
to the journals that are most likely within a relationship to the specific topic, such as 
journals on respiratory diseases for COVID-19. After extracting the feature representa-
tions at both term-level and document-level, MPANN adopts a linear multi-view classi-
fier to conduct the final MeSH recommendation. To improve the overall performance, 
the proposed method is pre-trained using a large number of MEDLINE articles to learn 
the general biomedical representation, and further fine-tuned on the CovSI dataset to 
better obtain COVID-19 related knowledge.

Our primary goal is to construct a publicly available dataset for the COVID-19 seman-
tic indexing research and develop a versatile machine learning approach with robust-
ness and generalizability, which can be easily applied to COVID-19 and robustly scaled 
up to other biomedical domains, especially those new emerging topics. Experimental 
results on the dataset show the merit and effectiveness of our proposed approach in such 
a specific domain of COVID-19. The main contributions of this work are summarized as 
follows:

(a) We construct a pertinent and comprehensive corpus targeting the COVID-19 
semantic indexing research. We believe such a corpus could largely benefit the 
related works for COVID-19 and foster the development of biomedical text mining 
technologies.

(b) We propose a novel semantic indexing approach that is able to effectively scale up 
to the COVID-19 domain. Our study demonstrates the superiority of the proposed 
method which outperforms the current state-of-the-art performance.

(c) We make the related resources of the proposed method publicly available to the 
research community. We believe that our work is capable of offering some essential 
foundations for researchers under the current pandemic crisis.

Related work
In recent decades, to facilitate the research of biomedical topic curation, a series of auto-
mated methods [22–32] and challenging competitions [33, 34] have been developed to 
improve the time-consuming, costly, and labor-intensive semantic indexing process.

Learning-to-rank (LTR) is one of the most popular information retrieval approaches 
developed for semantic indexing [35]. The main idea of LTR is to model the topic identi-
fication problem as a ranking problem, where the top-ranked semantic topics are recom-
mended as true labels. To this end, NLM developed the famous retrieval tool Medical 
Text Indexing (MTI) [13, 22], which has been assisting NLM human curators since 2002. 
Specifically, MTI has two separate components: MetaMap Indexing and PubMed 
Related Citations. Once texts from a biomedical article are fed into MTI, it automatically 
recommends suitable MeSH topics to the human curators.

To encourage worldwide research on biomedical topic curation, a series of semantic 
indexing competitions have been held annually by the BioASQ community since 2013 
[33]. Participants involved are required to predict new MEDLINE articles with relevant 
MeSH topics. As the competitions have provided large-scale practical and realistic 
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benchmarks, many efficacious studies have emerged since then. MeSHLabeler [23] 
developed an LTR-based hybrid system with textual representations for multiple inte-
grated classifiers. To handle the prediction bias generated by the integrated classifiers, 
MeSHLabeler adopted a normalization schema to improve prediction accuracy and won 
first place in the BioASQ 2014 competition. MeSHNow [24] proposed another hybrid 
machine learning approach, which combined multi-label classification, KNN, and MTI, 
to generate the set of candidate MeSH terms for each article. Under the effectiveness of 
the LTR-based framework, MeSHNow successfully extracted the highest-ranked seman-
tic topics and reached the state-of-the-art performance on the BioASQ 2014 dataset.

With the success of deep neural networks [36–40], deep learning-based approaches 
have brought remarkable breakthroughs in various biomedical semantic indexing tasks 
[25–30]. DeepMeSH [27] proposed a neural semantic representation method to address 
the BioASQ 2015 semantic indexing task. It first utilized the feature representations 
of ‘document to vector’ (D2V) and ‘term frequency with inverse document frequency’ 
(TFIDF) to tackle the topic selection problem. It then ranked the identified topics via 
an LTR-style framework to determine the final MeSH recommendation. FullMeSH [28] 
took advantage of an Attention-based Convolution Neural Network (AttentionCNN) to 
tackle the large-scale semantic indexing problem. Specifically, it combined the Atten-
tionCNN with traditional machine learning methods (including KNN, SVM, etc.) to 
generate semantic evidence for the topic selection problem. Instead of manual feature 
engineering, the attention mechanism exhibited remarkable potential on account of 
an automatic feature representation without too much human interference. Benefiting 
from the AttentionCNN structure, all evidence extracted from the full text is fused into 
the downstream LTR module to conduct the final MeSH recommendation. Attention-
MeSH [29] was another effective attention-based neural model. It utilized a bidirectional 
Recurrent Neural Network (RNN) with an attention mechanism to index MeSH top-
ics for biomedical articles. It first narrowed down the large MeSH vocabulary through 
a masking method and then employed the RNN to derive deeper contextual represen-
tations. As a result of the capability of the deep neural representation, AttentionMeSH 
enabled the model to associate more textual evidence with plausible MeSH topics. 
MeSHProbeNet [25] and MeSHProbeNet-P [26] are two homogenous deep learning 
methods, which incorporated both RNN and attention mechanisms. The main differ-
ence between the two methods is that MeSHProbeNet-P presented multiple semantic 
probes as inputs based on MeSHProbeNet, which is able to acquire deeper semantic 
insights into biomedical knowledge from original plain texts. Contrasting the LTR-
based models, MeSHProbeNet and MeSHProbeNet-P take the entire topic vocabulary 
of MeSH headings to perform the unified multi-label classification without any ranking 
solutions. Both MeSHProbeNet and MeSHProbeNet-P reached state-of-the-art perfor-
mance on the dataset of BioASQ 2018 Task8a, and MeSHProbeNet won first place dur-
ing the online competition.

Recently, in response to the worldwide pandemic, the focus of research has drastically 
shifted towards the specific concepts and sub-concepts of coronavirus. The BioCreative-
VII community proposed the challenging task of the LitCovid Track [34], which targets 
identifying semantic topics to the COVID-19 relevant literature. Accordingly, the Lit-
Covid task is regarded as a multilabel classification problem and engaged worldwide 
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efforts to provide practical benefits to the COVID-19 topic curation. In particular, seven 
elaborated semantic topics, i.e., Treatment, Diagnosis, Prevention, Mechanism, Trans-
mission, Epidemic Forecasting, and Case Report, are designated for the task. However, 
although advanced participating systems [31, 32] achieved remarkable performance in 
the LitCovid challenge, such a small set of coarse-grained semantic topics still limits 
its applications to real-world scenarios. In contrast, BioTrans [30] suggested leverag-
ing the MeSH taxonomy to enrich the topic abundance for COVID-19 topic curation. 
Specifically, BioTrans explored a sophisticated pre-trained transformer to address the 
COVID-19 topic identification problem. With the powerful representation capability of 
the transformer, BioTrans exhibited a promising achievement in the COVID-19 relevant 
literature. However, the lack of publicly available benchmark datasets still remains chal-
lenging when transferring recent advances to the newly emerged COVID-19 domain, as 
models cannot be re-trained and fine-tuned without adequate annotations.

Inspired by previous research [26, 30, 34], this article is devoted to the COVID-19 
semantic indexing problem. Our goal is to develop a benchmark dataset and a robust yet 
flexible semantic topic identification framework for the COVID-19 domain, which has 
not been addressed in previous research.

Dataset

In this section, a new dataset of the COVID-19 Semantic Indexing (CovSI) corpus is 
illustrated. Specifically, we first depict its construction steps, and then we present the 
data statistics accordingly.

Corpus construction

Since there is a lack of specialized datasets for COVID-19 semantic indexing, it is of 
great importance to build such a corpus, laying the foundation for research. In this arti-
cle, we utilize various kinds of existing COVID-19 related resources to construct such a 
corpus.

As the COVID-19 Open Research Dataset (CORD-19) [1] provides the largest 
COVID-19 relevant dataset, it is natural to be leveraged as the fundamental resource 
for the construction of the CovSI corpus due to its expansive coverage and public acces-
sibility. Currently, CORD-19 consists of more than 500,000 scholarly articles related 
to COVID-19, SARS-CoV-2, and other coronaviruses collected from more than 3,200 
journals. However, although CORD-19 carries lots of fundamental ingredients for CovSI 
(e.g. titles and abstracts), it does not provide any relevant clues for handling semantic 
indexing problems, which brings difficulties to building such a benchmark dataset.

To complement the indexing annotations for the CovSI corpus, the worldwide used 
databases curated by the PubMed search engine are considered as the preferred supple-
mentation. Specifically, databases of MEDLINE [12] and PMC [21] indexed by PubMed 
are employed in this research. MEDLINE is a large bibliographic database that contains 
more than 27 million scientific references with titles and abstracts, while PMC is a full-
text derived biomedical collection that curates more than 6 million publicly available 
articles. Unlike CORD-19, which is merely concentrated on the topics of coronavirus, 
MEDLINE and PMC present a more comprehensive subject scope and carry the essen-
tial semantic indexing annotations for CovSI.
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On the basis of the above-described resources, we propose to extract the metadata 
from each resource and merge them to construct the new benchmark dataset of the 
CovSI corpus. However, regarding the heterogeneous data structures among different 
resources, data inconsistency and incompleteness are therefore crucial to be tackled 
during the construction phase. For instance, PMIDs/PMCIDs are treated as the unique 
keys for articles in MEDLINE and PMC, while some are occasionally missing for the 
articles curated by CORD-19, leading to an inability to map these articles. Moreover, 
CORD-19 does not provide any information for semantic indexing, while the metadata 
from MEDLINE and PMC do support the critical annotations for MeSH terms.

Figure 2 depicts the construction architecture of the CovSI corpus. Note that the keys 
of PMID and PMCID are used as unique identifiers when extracting and mapping the 
metadata from different resources. In the figure, we first extract all various kinds of 
attribute fields from different databases, we then filter the redundant information and 
reserve the extracted attribute fields as new metadata. During the extraction phase, arti-
cles without valid PMIDs or PMCIDs are discarded. After merging the extracted meta-
data, the CovSI corpus is finally constructed. It is worth noting that all contents in the 
CovSI corpus are converted and stored in the JSON format, which is one of the most 
effective and widely used archive formats for data usage and storage.

Corpus analysis

Table 1 presents the statistical information of the constructed CovSI corpus. After the meta-
data merging, there are 87,207 COVID-19 related biomedical articles reserved in the CovSI 
corpus. Each article contains 15 different attribute fields, such as PMID, title, abstract, 
body text, journal name, and MeSH terms. These abundant attributes assure comprehen-
sive coverage for research on COVID-19 topics. Most of the curated articles are filled with 
valid contents, including title, abstract, journal name, as well as MeSH annotations, which 

Fig. 2 The construction framework of the CovSI corpus
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guarantee the indispensable information for the downstream semantic indexing research. 
A large number of 1,161,962 MeSH topic terms with more than 10 thousand unique term 
types are kept as annotations in the corpus. However, despite trying the best to fill the 
attributes, approximately 50% of body texts, keywords, and chemical information are still 
missing due to the incompleteness of the online information. It is observed that articles 
have around 13 indexed MeSH terms on average, which indicates an extremely imbalanced 
term distribution, as most MeSH terms may never be observed in an article.

After the data construction, the CovSI corpus is further randomly divided into three sub-
sets by the ratio of 8:1:1, which indicates the training set, development set, and test set, 
respectively. Table 2 shows the statistics of the three subsets. Note that each article is able 
to bring around 13 MeSH terms on average, which guarantees a similar term distribution 
for all subsets. The CovSI corpus will be freely available to global research communities 
for applying recent advances in natural language processing and other artificial intelligence 
techniques to generate new insights in support of the ongoing fight against the pandemic.

Method
In this section, a novel Multi-Probe Attention Neural Network (MPANN) is proposed 
for automatic COVID-19 semantic indexing. Figure  3 illustrates the architecture of 
the proposed method, which is a universal deep learning framework integrating mul-
tiple semantic evidence generated by different biomedical aspects. The architecture 

Table 1 The attribute statistics in the CovSI corpus

Attribute name Count

PMID 87,207

PMCID 46,487

Title 87,192

Abstract 87,162

Body Text 45,968

MeSH Terms 1,161,962

MeSH Identifiers 1,161,962

Journal Name 87,207

Year 87,207

Authors 87,128

Affiliations 83,749

Keywords 35,928

Chemicals 43,711

DOI 77,776

URL 87,207

Table 2 The statistic information of different CovSI datasets

Type Training set Development set Test set

#Articles 71,207 8,000 8,000

#MeSH term types 17,758 9,035 8,991

#Total terms 945,462 106,088 110,412

#Average terms per article 13.28 13.26 13.80
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of MPANN mainly consists of four modules: MeSH Masking, Probe Encoding, Multi-
Probe Attention, and Multi-view Classifier. The details are discussed as follows.

As shown in the figure, the proposed method introduces a masking mechanism lev-
eraging a KNN-derived approach to identify the most similar articles from the train-
ing set for each input article. It then ranks and extracts the most frequent MeSH terms 
from these similar articles as the candidate MeSH terms for each target article, which 
significantly reduces the complexity of the indexing problem. The extracted candidate 
MeSH terms are then embedded and fed into the downstream neural networks.

Moreover, the proposed neural network takes multiple textual components from 
different semantic aspects as inputs as well as the extracted candidate terms for 
each input article. These inputs are considered to be semantic probes and would be 
encoded under word embeddings and transformer encoders to generate further fea-
ture representations.

Additionally, the proposed neural network employs an attention mechanism to 
automatically assign different attentive weights to input probes and consequently 
attends to the most important semantic aspects of the input article. After the feature 
extraction at both term-level and document-level, the feature representations are fur-
ther utilized to perform the following MeSH indexing prediction.

Finally, a linear multi-view classifier is adopted to take the extracted features from 
different semantic aspects to conduct the final MeSH classification. For each candi-
date term, the model is able to predict a probability score. In the training phase, the 
binary cross-entropy loss is utilized with a gradient-based method to optimize the 
model parameters. A more detailed description of the proposed method is provided 
in the following subsections.

Fig. 3 The framework of the multi‑probe attention neural network
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MeSH masking

COVID-19 semantic indexing is regarded as an extreme multi-label classification prob-
lem, which requires assigning appropriate labels from more than twenty thousand MeSH 
terms for each input article. How to reduce the high classification dimension is essential 
to the overall system performance. To tackle this problem, we employ a KNN algorithm 
to generate a refined subset of candidate terms for each input article. Technically, this 
generation procedure is considered to be MeSH Masking. The main ideas accounting 
for taking a small subset of candidate terms instead of the entire MeSH vocabulary are 
as follows: (i) Since each article merely carries around 13 MeSH annotations, there are 
far more negative terms than positive ones. The down-sampling of the negative samples 
is applicable by taking a recommended small subset of terms as candidates, in order that 
the classifier only needs to concentrate on predicting the most suitable terms from a 
plausible subset; (ii) During the training phase, a small subset of candidate terms is able 
to narrow down the prediction complexity as the neural network does not need to pre-
dict for the entire term vocabulary, which efficiently saves the model storage and calcula-
tion costs.

For each article, titles and abstracts are first split into a sequence of tokens, a word 
embedding matrix Ee ∈ R

|Ve|×de is then utilized to convert all the tokens into low-dimen-
sional dense vectors, where |Ve| is the vocabulary size and de is the embedding size. In 
this regard, each input article can be represented by the sequence of word embeddings 
in accordance with its tokenized result, which can be consequently denoted as:

where D is viewed as a sequence of vectors that represents the input article. L is the 
sequence length and wi is the embedding vector for the word at position i. We further 
apply the KNN-driven strategy to choose the most similar articles from the training 
dataset for each input article. To this end, each article is represented by the Term Fre-
quency-Inverse Document Frequency (TFIDF) weighted word embeddings:

Cosine similarity is adopted to find the most similar articles from the training set for 
each input article:

After finding K nearest neighbors for each article, all MeSH terms in these neighbors 
are collected and ranked according to their frequency. In this way, top M MeSH terms 
are finally reserved as the candidate terms for each input article.

Probe encoding

Regarding the abundance of meaningful representations from different semantic 
aspects, we propose to take advantage of multiple context-aware inputs of each article 

(1)D = [w1,w2, . . . ,wL] ∈ R
L×de

(2)d =

L
i=1 tfidfi · wi

L
i=1 tfidfi

∈ R
de

(3)Similarity(i, j) =
dT
i dj

�di� ·
∥

∥dj

∥

∥
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as semantic probes to extract potential biomedical clues for MeSH recommendations. 
Specifically, we mainly exploit four different semantic probes: Context Probe, Candidate 
Term Probe, Journal Probe, and Dynamic Topic Probe. We argue that each probe is able 
to carry certain semantic information of biomedical knowledge and fertilize the mean-
ingful expression for each input article. The details of the above-mentioned semantic 
probes are introduced as follows:

Context probe

For each input article, its word sequence is considered to be the context probe, which 
conveys narrative textual information and offers implicit cues for determining MeSH 
recommendations. However, despite the meaningful representation of word embed-
dings, the word vectors are still less informative for text representation due to the lack 
of contextual comprehension. In this regard, a transformer encoder is adopted to read 
and encode the context probe as shown at the bottom of Fig. 3, which has shown prom-
ising results in many Natural Language Processing (NLP) areas [38–40]. This encoder 
makes use of both explicit and implicit textual correlations between the adjacent words. 
Specifically, each word in the context probe is represented by its hidden state generated 
from the encoder:

where θ represents the parameters of the encoder, dt stands for the hidden size, and ti is 
the encoded hidden state of the i-th word. The entire context probe is then represented 
accordingly by the sequence of the encoded hidden states, which is denoted as follows:

where T ∈ R
L×dt is a L-by-dt matrix concatenating all hidden states of words.

Candidate term probe

MeSH Masking procedure guarantees a handful subset with M most relevant terms 
for the recommendation, which are further taken as the candidate term probes for 
each input article. The refined small subset of candidate terms can notably mitigate the 
noise introduced by the extremely unbalanced negative term samples and provide a 
plausible semantic scope of topics to which the article pays attention. In practice, each 
term is taken as a single probe and is then converted through an embedding matrix 
Ef ∈ R

|Vf |×df  , where |Vf| is the vocabulary size and df is the embedding size. As word 
length usually differs in different term names, an RNN encoder is accordingly applied to 
acquire the name representation within a fixed length. In addition, in order to enhance 
the term representation, five kinds of statistical indicators are concatenated to the name 
representations, which are (a) a vector of length 2 indicating whether the candidate term 
occurs in the title and its frequency; (b) a vector of length 4 indicating whether the can-
didate term occurs in the first sentence, last sentence, and middle part of the abstract 
and its frequency; (c) a vector of length 2 indicating whether the candidate term can be 
recognized by MTI Online System [13, 22] and its score; (d) a vector of length 2 indicat-
ing whether the term is recognized by KNN and its score; (e) a scalar value indicating 

(4)t i = Transformer(θ;wi) ∈ R
dt

(5)T = [t1, t2, . . . , tL]
T ∈ R

L×dt
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the global probability of term occurrence in the journal. The candidate term probes of 
the input article can be finally denoted as follows:

where mi is the probe representation of the i-th candidate term and M is the number of 
the recommended terms after the MeSH Masking stage.

Journal probe

In addition to Context Probe and Candidate Term Probe, Journal Probe is another 
informative semantic probe for MPANN. In the scientific area, articles are prone to be 
published in specific journals that are devoted to distinct research topics, such as chemi-
cals, cancers, or coronavirus. This distinct information about journals is also important 
and instructive to provide essential cues for MeSH recommendations. To this end, each 
journal name that occurs in the corpus is taken as the journal probe. Specifically, each 
word in the journal probe is converted into a low-dimensional dense vector using the 
embedding matrix Ej ∈ R

|Vj |×dj , where |Vj| is the vocabulary size, and dj is the embed-
ding length. Since the word length is not identical among different journals, an RNN 
encoder is then leveraged to encode the word vectors to acquire the final hidden state c 
within a fixed length which is utilized to represent the journal probe.

Dynamic topic probe

Inspired by [25, 26], the dynamic topic probes are also introduced to the multi-probe 
attention neural network. Although MeSH Masking is able to sharply reduce the pre-
diction space, some existing implicit yet general semantic aspects probably still exist 
beyond the scope of the current candidate term probes. For instance, an article dedi-
cated to the new variant virus SARS-CoV-2 probably also discusses other general topics 
related to clinical treatments that might be missed in the candidate terms. Therefore, in 
order to capture this potential and meaningful topic information, a new kind of dynamic 
topic probe is proposed to represent additional informative topic aspects contained in 
the article. Compared with the candidate term probes which are explicitly related to 
some specific topics of the input article, the dynamic topic probes are more relevant to 
the general aspects of background knowledge beyond the candidate term probes. To this 
end, we employ the embedding matrix  Ep ∈ R

|Vp|×dp to represent the i-th dynamic topic 
probe using a low-dimensional dense vector pi, where |Vp| is the vocabulary size and dp 
is the size of the embedding vector. Accordingly, dynamic topic probes are inherent vec-
tors of the model parameters, and each carries a certain aspect of general biomedical 
knowledge. Suppose there are N dynamic topic probes assigned to an input article, we 
can obtain the corresponding representation as an N-by-dp matrix denoted as follows:

Multi‑probe attention

After encoding all the above-mentioned probes, we calculate the dot products among 
them to obtain the attended weight representations for different semantic aspects. The 

(6)H = [m1,m2, . . . ,mM]T ∈ R
M×df

(7)P = [p1,p2, . . . ,pN ]
T ∈ R

N×dp
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attentive feature representations at both the term-level and documental-level are pri-
marily taken into consideration and further extracted for the downstream MeSH predic-
tion. Specifically, we group these semantic probes into multiple pairs and calculate five 
different types of attention to obtain the attentive features. The calculation includes Con-
text-Term Attention, Journal-Term Attention, Journal-Context Attention, Journal-Topic 
Attention, and Context-Topic Attention.

Feature representation at term level

For feature representation at the term level, we separately represent and extract the 
attentive features by calculating Context-Term Attention and Journal-Term Attention. 
For Context-Term Attention, given the encoded context probes T and candidate term 
probes H, we first compute their attentive weight matrix G and then adopt a SoftMax 
function to get the normalized attention weights as follows:

where αG
i ∈ [0, 1]L is the i-th weight vector over the context probe T and 

∑L
k=1 α

G
ik = 1 . 

Technically, the higher the weight value, the more related the attention is paid to the 
probe. Each term-specific representation is then computed by the attentive weight vec-
tors and textual probes:

where eGi  is i-th term-aware specific representation. The term-aware contextual feature 
eG ∈ R

dt is the mean value of the summation of 
∑M

i = 1 e
G
i .

For Journal-Term Attention, we calculate and extract the term-aware feature in the 
same way as follows:

where αJ ∈ [0, 1]M is the attention weight over the term probe mi and eJ ∈ R
dm is the 

feature representation. We concatenate the extracted feature vectors eG and eJ into the 
vector rT as the feature representation for the term level.

Feature representation at documental level

Apart from the feature extraction at the term level, we also propose to extract the fea-
tures from the document level. Particularly, we extract the attentive features through 
Context-Topic Attention, Journal-Context Attention, and Journal-Topic Attention, 
respectively. Given the encoded probes T and P, we extract the topic-aware contextual 

(8)G = [Tm1,Tm2, . . . ,TmM]T ∈ R
M×L

(9)α
G
i = SoftMax(Tmi) ∈ R

L

(10)SoftMax(G) = [αG
1 ,α

G
2 , ...,α

G
M]T ∈ R

M×L

(11)eGi = [αG
i ]

TT ∈ R
dt

(12)α
J = SoftMax(Hc) ∈ R

M

(13)eJ = [αJ ]TH ∈ R
dm
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feature by computing the Context-Topic Attention. The calculations are denoted as 
follows:

where U is the weight matrix, αU
i ∈ [0, 1]L is the weight vector over the context probes, 

and 
∑L

k=1 α
U
ik = 1 ; eUi  is i-th topic specific representation. The topic-aware contextual 

feature eU ∈ R
dt is represented using the mean value of the summation of 

∑Q
i=1 e

U
i .

Similarly, features encoded by Journal-Topic Attention and Journal-Context Attention 
are extracted in the same way as follows:

where αS ∈ [0, 1]N and αS ∈ [0, 1]N are the normalized weight vectors over the dynamic 
topic probes and context probes, respectively; eS ∈ R

dp and eQ ∈ R
dt are the respective 

feature representations. The extracted feature vectors eU, eS and eJ are concatenated into 
the vector rD which is considered as the feature representation for the document level.

Multi‑view classification

Benefiting from the attention mechanism, the feature representations at both term level 
and document level are finally extracted. To compute the confidence of MeSH recom-
mendation, the feature representations rT and rD are further concatenated to form the 
final feature vector v and are fed into the linear projection layer with a Sigmoid activa-
tion function. The final output o ∈ R

M is used to calculate the probability score for each 
corresponding MeSH term:

where W ∈ R
M×dv is the linear transformation matrix, b ∈ R

M is the bias, and σ is the 
Sigmoid activation function. The value M equals the number of the candidate MeSH 
terms for the classification and each output can be interpreted as the confidence score of 
the corresponding recommendation.

To learn the parameters of the network, the binary cross-entropy loss function is used 
via the calculation of the predicted terms and the gold MeSH annotations in the training 
set:

(14)U = [Tp1,Tp2, . . . ,TpN ]
T ∈ R

N×L

(15)α
U
i = SoftMax

(

Tpi
)

∈ R
L

(16)eUi = [αU
i ]

TT ∈ R
dt

(17)α
S = SoftMax(Pc) ∈ R

N

(18)eS = [αS]TP ∈ R
dp

(19)α
Q = SoftMax(Tc) ∈ R

N

(20)eQ = [αQ]TT ∈ R
dt

(21)o = σ(Wr + b)
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where yj ∈ [0, 1] is the ground-truth label of the j-th MeSH term; yj = 0 means the j-th 
MeSH term is not annotated to the article by human indexers, while yj = 1 means the j-
th MeSH term is annotated. We can calculate the total loss by summing them up:

The entire framework of MPANN is trained end-to-end by a gradient-based optimiza-
tion algorithm to minimize the loss of L.

Results
In this section, we first introduce the evaluation metrics and the experimental settings 
for COVID-19 semantic indexing; we then systematically evaluate MPANN on the 
CovSI corpus and compare it with the state-of-the-art systems. Furthermore, to verify 
the effectiveness and generalizability of MPANN, we perform additional experiments on 
the BioASQ Task9a dataset and compare it with highly relevant systems. Finally, we con-
duct the error analysis at the end of this section.

Evaluation metrics

Generally, there is no such unified evaluation standard for COVID-19 semantic index-
ing, which is essentially a multi-label classification problem. In this research, following 
the previous works [25–29], we adopted the evaluation metrics proposed by BioASQ [9] 
to evaluate our proposed method.

Let K denote the size of all MeSH labels (i.e. MeSH terms), and N denotes the number 
of the input instances (i.e. biomedical articles). Let yi and ŷi ∈ {0, 1}K  be the true and 
predicted labels for instance i, respectively. We mainly adopted three different metrics 
based on F-measure at different levels to evaluate the performance of our models.

Example‑based F‑measure (EBF):

EBF is utilized to evaluate the system performance at the instance level. EBF can be 
computed by the harmonic mean of example-based precision (EBP) and example-based 
recall (EBR) as follows:

where

where

(22)Lj = −(yj log(ŷj)+ (1− yj) log(1− ŷj))

(23)L =

M
∑

j=1

Lj

(24)EBF =
1

N

N
∑

i=1

EBFi

(25)EBFi =
2 · EBPi · EBRi

EBPi + EBRi
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Note that EBP and EBR are calculated by summing  EBPi and  EBRi over all instances, 
respectively.

Macro F‑measure (MaF)

MaF is utilized to evaluate the system performance at the macro level of labels. In 
MaF, all the labels are treated equally regardless of their distribution. MaF can be 
computed by the harmonic mean of macro-average precision (MaP) and macro-aver-
age recall (MaR) as follows:

The macro-average precision and recall are obtained by first computing the preci-
sion and recall for each label (i.e. Mesh term) separately, and then averaging them 
over all labels as follows:

where

Micro F‑measure (MiF):

MiF is utilized to evaluate the system performance at the micro level of labels. In MiF, 
the distribution of each label is taken into consideration, and the labels with larger 
numbers are more influential to the final results during the calculation. MiF can be 
computed by the harmonic mean of micro-average precision (MiP) and micro-aver-
age recall (MiR) as follows:

where

As is suggested by BioASQ [9], among all the evaluation metrics, MiF is the crucial 
evaluation criterion for determining the overall quality of the involved system.

(26)EBPi =

∑K
k=1 y

k
i · ŷ

k
i

∑K
k=1 ŷ

k
i

EBRi =

∑K
k=1 y

k
i · ŷ

k
i

∑K
k=1 y

k
i

(27)MaF =
2 ·MaP ·MaR

MaP+MaR

(28)MaP =
1

K

K
∑

k=1

Pk MaR =
1

K

K
∑

k=1

Rk

Pk =

∑N
i=1 y

k
i · ŷ

k
i

∑N
i=1 ŷ

k
i

Rk =

∑N
i=1 y

k
i · ŷ

k
i

∑N
i=1 y

k
i

(29)MiF =
2 ·MiP ·MiR

MiP+MiR

MiP =

∑K
k=1

∑N
i=1 y

k
i · ŷ

k
i

∑K
k=1

∑N
i=1 ŷ

k
i

MiR =

∑K
k=1

∑N
i=1 y

k
i · ŷ

k
i

∑K
k=1

∑N
i=1 y

k
i
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Experimental settings

Following previous works [25, 26], in the preprocessing stage, all non-alphanumeric 
characters, stop words, low-frequency words occurring less than five times are removed, 
and all tokens are converted into lowercase. In case article texts partially exceed the 
length limitations of the transformer encoder, the head and tail parts of the overlong 
texts are reserved as the final input texts instead of the original ones. For initialization, 
the word vectors provided by the BioASQ community are utilized to initialize the word 
embeddings Ee, other parameters in the model are randomly initialized. The AdamW 
optimizer [41] is used to minimize the training loss and the settings of the hyper-param-
eter are listed in Table 3.

The model of MPANN is pre-trained with 2 million latest biomedical articles, which 
are extracted from MEDLINE with the goal of learning general biomedical knowledge. 
It is then fine-tuned on the training and development datasets of CovSI to learn the 
domain-specific knowledge of COVID-19. Once the parameters and hyper-parame-
ters are well-tuned, MPANN is used to perform the topic prediction for the CovSI test 
set. The entire training process of MPANN takes approximately 8 days and requires 4 
NVIDIA 2080 graphic cards.

Comparison with related systems

In the following section, a comprehensive comparison among four relevant state-of-the-
art systems [26, 28–30] and MPANN is performed. Since the compared systems are not 
originally designed for the topic of COVID-19, we transferred and re-trained these sys-
tems for the COVID-19 domain. Note that the default settings of these systems reported 
in previous research are followed during the comparison. Additionally, all models are 
trained in the same way as MPANN, which means these models are first pre-trained 
with an external large-scale data of 2 million MEDLINE articles, and then fine-tuned 
on the basis of the CovSI training and development sets. After the training phase, these 
models are exploited to perform the prediction on the CovSI test set. The overall perfor-
mance of the above-mentioned systems is summarized in Table 4 and the highest scores 
of F-measures are bolded.

Table 3 The settings of the hyper‑parameters

Parameter Value

Batch size 10

Word embedding size de 200

Sequence length L 512

Transformer hidden size dt 200

Candidate term size M 400

Term embedding size df 200

Journal embedding size dj 200

Dynamic topic probe size N 30

Dynamic probe embedding size dp 200

Linear layer size dv 200

Dropout rate 0.3

Learning rate 0.00001
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As shown in the table, the CNN-based neural attention model FullMeSH and the 
RNN-based neural attention model AttentionMeSH obtain comparable performance, 
which results in the MiF of 65.43% and 64.60%, respectively. This is likely due to the simi-
lar representation capabilities of both CNN and RNN, which are able to capture effective 
semantic information from contextual texts. However, compared to FullMeSH, Atten-
tionMeSH has higher recall but much lower precision, resulting in a relatively lower 
F-score. MeSHProbeNet-P consistently outperforms FullMeSH and AttentionMeSH in 
terms of all F-measures with the MiF as high as 67.79%, while its precision is slightly 
lower than FullMeSH, which suggests MeSHProbeNet-P pays more attention to the cov-
erage of MeSH terms. This is probably because MeSHProbeNet-P leverages the entire 
MeSH vocabulary to train and predict, which increases the chance of learning more 
comprehensive correlations between terms and contextual words. However, since MeSH 
terms carry a huge vocabulary, using that large set of MeSH terms to train is rather time-
consuming. BioTrans shows superior performance in all state-of-the-art systems. Due 
to the powerful representation ability of the pre-trained structure, BioTrans achieves an 
MiF performane as high as 72.68%. Since MPANN is able to capture the correlations 
between the MeSH terms and their contextual inputs, MPANN rivals the other systems 
and achieves the highest MiF and EBF with scores of 73.49% and 71.20%, respectively. 
However, compared with FullMeSH and MeSHProbeNet-P, MPANN acquires a rela-
tively lower MaF performance. This implies that MPANN may have the tendency to pay 
more attention to the imbalanced term distribution and predict the head terms aggres-
sively and the tail terms conservatively. It is worth mentioning that, compared with 
BioTrans which is also the pre-trained model for COVID-19, MPANN consistently out-
performs all F-scores improving by 0.73% in EBF, by 2.79% in MaF, and by 0.81% in MiF, 
respectively. This indicates that the multi-probe attention mechanism is able to provide 
more robust COVID-19 specific feature representations which can benefit the ultimate 
semantic indexing performance.

Feature ablation performance

To investigate the importance of the contributions of the proposed semantic probes, 
we perform the ablation studies of MPANN as follows. One of the core claims is that 
the representations of the probes are able to provide comprehensive biomedical back-
ground information, which is crucial for the topic of COVID-19 semantic indexing. 
To verify the assumptions, we compare the default version of MPANN (i.e. MPANN-
Default) with its variants without the probe attentions described in the Method 

Table 4 The comparison of different systems on the CovSI test set

Model EBP (%) EBR (%) EBF (%) MaP (%) MaR (%) MaF (%) MiP (%) MiR (%) MiF (%)

MPANN 87.41 63.52 71.20 97.03 50.44 55.02 88.62 62.78 73.49
BioTrans [30] 87.02 62.74 70.47 97.17 47.63 52.23 87.99 61.92 72.68

AttentionMeSH 
[29]

81.18 54.52 63.08 88.51 51.15 54.36 81.57 53.48 64.60

FullMeSH [28] 88.40 51.92 63.29 95.11 57.56 60.47 88.44 51.92 65.43

MeSHProbeNet‑
P [26]

82.81 54.36 65.64 95.64 57.66 61.29 83.33 57.14 67.79
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section, trying to reveal the different impacts of the semantic probes. It is worth rec-
ognizing that the large external pre-training step should be emphasized, which sig-
nificantly improves the overall system performance. In comparison, the naive version 
of MPANN (MPANN-Naive) is also performed which is merely trained based on 
the small scale of the CovSI corpus without any external training data. All the other 
hyper-parameters of the model are kept identical during the comparison. Table  5 
exhibits the details of the ablated experimental comparison, in which the highest 
scores are highlighted in boldface.

In general, as can be observed from the table, the default version of MPANN con-
sistently outperforms its ablations without attention modeling. Furthermore, it is 
observed that without the Context-Term Attention, the final performance of MiF 
drops drastically to the score of 67.64%. This suggests that modeling the correlations 
between the contextual information and the candidate terms is crucial for COVID-
19 semantic indexing. Likewise, the models without Journal-Term Attention, Journal-
Topic Attention, or Context-Topic Attention perform comparably with slight decline 
in the scores of MiF. This implies that all the probes of journals, candidate terms, 
dynamic topics, and contexts carry specific biomedical informative aspects, allow-
ing the models to effectively couple the correlations among them, which benefit the 
overall performance for COVID-19 semantic indexing. Since journal probes can carry 
specific topics related to biomedical background knowledge, modeling the correla-
tions between the journal probes and context probes is also important for MPANN, 
the absence of which leads to an overall decrease of 2.5 points in the score of MiF. 
For a fair comparison, we also compare the naive version MPANN-Naive which is 
only trained on the CovSI dataset without any external data. In Table 5, we find that 
MPANN-Naive performs the worst, indicating its limited learning capability. Com-
pared to other models, although MPANN-Naive acquires higher precision, its recalls 
exhibit much worse results. This is likely because of the extremely sparse term distri-
bution which makes it difficult to learn essential representations when only using a 
limited amount of the training data. In contrast, utilizing a large number of external 
data in model pre-training, MPANN-Default can guarantee abundant priori biomedi-
cal knowledge which lays the foundation for the learning capability. Once adapted to 
the COVID-19 domain, the pre-trained knowledge can help the MPANN model to 
more effectively learn the specific knowledge related to COVID-19.

To investigate the impacts of the hyper-parameters, we evaluate the effects with 
different settings. The hyper-parameters M and N are primarily taken into consid-
eration, which stands for the number of candidate term probes and dynamic topic 
probes, respectively.

Figure  4 depicts the effect of the hyper-parameter M with different settings on 
the CovSI test dataset. Note that when M is tuning, all the other hyper-parameters 
remain the same as described in the section of Experimental Settings. From the figure, 
it can be observed that the performance rises stably along with the increase of the 
hyperparameter M and reaches the best performance with the value of 400 at last. 
This indicates that by enlarging the number of candidate MeSH terms with a rela-
tively larger M, the model can increase the coverage of the true terms, resulting in a 
significant improvement in the measurement of recall. However, an excessive increase 
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of M requires more computing resources and introduces more unexpected noise lead-
ing to increased training difficulty. To this end, we set the maximum value to 400 for 
the hyper-parameter M in our experiments.

Figure 5 illustrates the effect of the hyper-parameter N related to the different settings 
of dynamic topic probes on the CovSI test dataset. Note that MPANN models with 5, 15 
20, 25, and 30 dynamic topic probes are included in the comparison. When the hyper-
parameter N is changing, all the other hyper-parameters stay the same as described in 
the section of Experimental Settings. In Fig. 5, it is observed that with the increase of N, 
there is a slight decline of MiF at first, and then the performance rises consistently as 
N increases further until it reaches around 30. This is probably because increasing the 
number of the dynamic topic probes can robustly reflect some general topic aspects, and 
MPANN can effectively grasp such kind of semantic feature representations. However, it 
seems that overmuch information on dynamic topics cannot provide more meaningful 
clues for COVID-19 semantic indexing, which is unable to further improve the overall 
performance.

Fig. 4 The performance of MiF with different settings of hyper‑parameter M 

Fig. 5 The performance of MiF with different settings of hyper‑parameter N 
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Robustness of MPANN: a study based on the BioASQ dataset

Since MPANN is developed and tested on the relatively small and domain-specific CovSI 
corpus, the reported success might not provide sufficient evidence for the robustness of 
the proposed multiprobe attention model. To corroborate the claim of the robustness of 
the multiprobe attention model, we conduct an independent study of MPANN on the 
BioASQ Task9a dataset [9]. It is worth noting that the BioASQ dataset is widely accepted 
for system evaluation in topics of semantic indexing due to the large-scale data size and 
the comprehensive topic coverage. In particular, BioASQ Task9a provides an extremely 
large-scale dataset consisting of 15,559,157 training articles and 90,724 test articles, 
respectively. Each article in the dataset carries around 12 semantic topics on average, 
and the test set is further divided into 15 separate batches for the online competition.

Compared with the CovSI corpus, as BioASQ Task9a provides a significant scale-up 
in the topic coverage with a much larger data size, the discrepancies are mainly under-
lined by the fact that more than 10 thousand types of MeSH semantic topics in BioASQ 
are never attested in the CovSI corpus, which inevitably aggravates the difficulties of the 
model adaptation. To ensure that the result can be comparable, we thus re-trained the 
model on the new dataset of BioASQ Task9a. Since the goal is to support the robustness 
of the proposed model, we simply adopt the widely used pre-trained model of BioBERT 
[40] for the initialization. It is worth noticing that, during the training phase, terms and 
journals will share the same word vocabulary with the pre-trained model. Table 6 com-
pares MPANN with the state-of-the-art systems that participated in the BioASQ Task9a 
[9]. Since a few teams made multiple submissions, the best-performed ones are listed for 
comparison. All the experimental results reported in the table are averaged on the 15 
different test batches. As shown in the table, the model of deepmesh_dmiip_fdu achieves 
the best performance in all F-measures, resulting in the highest EBF of 68.87%, MaF of 
58.69, and MiF of 69.32%, respectively. Moreover, it is also observed that most perfor-
mance scores of MiF are higher than 60%, while the MiF measures of bert_dna and iria-1 
are relatively lower. As the current study is to establish the robustness and generalizabil-
ity of MPANN, it is thus reasonable to expect a robust model trained for other tasks 
to achieve comparable performance. In Table 6, compared with the state-of-the-art sys-
tems, MPANN reaches competitive precision scores close to the top system and obtains 
modest recall scores slightly lower than the top submissions. Note that the proposed 

Table 6 The comparison of the state‑of‑the‑art systems on the BioASQ test set

System EBP(%) EBR(%) EBF(%) MaP(%) MaR(%) MaF(%) MiP(%) MiR(%) MiF(%)

deepmesh_dmiip_fdu 72.51 68.69 68.87 70.10 59.34 58.69 72.02 66.86 69.32
NLM System 3 71.28 67.87 67.74 69.22 54.67 54.53 71.01 65.94 68.37

attention_dmiip_fdu 68.40 65.65 65.40 65.53 55.84 55.06 67.95 63.87 65.84

MTI First Line Index 69.39 63.58 64.50 65.43 57.33 55.38 68.21 61.52 64.69

Default MTI 64.54 67.28 64.02 61.17 60.55 56.54 63.76 65.11 64.42

NLM CNN 68.03 62.11 62.86 63.02 45.81 46.10 67.30 60.75 63.85

pi_dna_3 65.73 62.45 62.14 55.50 50.37 48.45 65.01 60.75 62.80

bert_dna 61.31 55.15 56.02 48.86 38.52 37.05 60.57 53.90 57.03

iria‑1 41.70 55.25 46.36 38.92 39.16 35.14 42.11 53.89 47.28

MPANN 72.13 59.73 63.70 68.13 52.62 53.20 72.02 58.56 64.59
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MPANN model is designed for a new specific domain with built-in robustness that con-
sists of a multitude of heterogeneous issues but shares a number of the same points of 
attention related to one single topic, i.e., COVID-19. Therefore, the methodology is not 
optimized for other broader fields with a significant range of diverse points of attention, 
such as BioASQ. However, although the MPANN model does not perform as high as the 
best systems, it still reaches a comparable performance with a promising score of 64.59% 
in the MiF measure, indicating the effectiveness and generalizability. This performance 
is, in fact, consistent with its original design for identifying semantic topics from a spe-
cific emerging field. In addition, the detailed performance on all batches of the test data, 
shown in Table 7, reassures that MPANN is well balanced and not overfitted to favor any 
particular field.

Error analysis

To provide insights for future work of COVID-19 semantic indexing, we closely ana-
lyzed the prediction errors from the article perspective and grouped the main reasons as 
follows:

(i) Imprecise candidate term selection: This kind of prediction error happens in around 
36% of the wrongly predicted articles in the CovSI corpus. Although MeSH Mask-
ing is able to considerably narrow down the large MeSH vocabulary into a small 
subset for the downstream prediction, it inevitably misses some critical terms on 
account of the limitation of the KNN-derived recommendation. Actually, after 
the MeSH Masking phase, the coverage of candidate terms for each article is only 
around 92% on average, which indicates the remaining 8% of the ground truth 
answers of an article will never be observed by MPANN. For instance, in the arti-
cle PMID:33,213,707, the KNN-based approach provides the candidate terms of 
‘Pandemics’, ‘COVID-19’, and ‘SARS-Cov-2’, which could be correctly predicted by 
MPANN; however, the low-frequent term of ‘Denture, Overlay’ that is not relevant 
to COVID-19 cannot be recognized as it is missed by the stage of MeSH Masking.

(ii) MeSH Masking Noise: In spite of the fact that MeSH Masking tries the best to pro-
vide a small subset of reliable candidate terms, it still introduces ranking noises to 
the downstream pipelines, resulting in false labels with much higher confidence 
while true labels on the opposite. This kind of error dominates the most majority of 
the prediction errors and happens in almost 82% of the wrongly predicted articles. 
For instance, the typical term of ‘Clinical Competence’ cannot be predicted in the 
article of PMID:33,222,986 as the term is provided with relatively lower confidence 
by MeSH Masking.

(iii) Insufficient textual contents: Since our experiments only take the titles and 
abstracts of articles into consideration when exploring the COVID-19 semantic 
indexing problems, these limited textual inputs may miss some critical clues that 
occur in the body text. Taking the article of PMID:32,951,723 for example, its topic 
mainly focuses on the combined therapy of COVID-19, however, none of the med-
icine-related MeSH terms such as ‘Indoles’, ‘Lopinavir’, ‘Moxifloxacin’, ‘Methylpred-
nisolone’, and ‘Anti-Bacterial Agents’ occurs in the title or abstract. On the contrary, 
all of these concepts occur in the body text of the article. As there is no such evi-
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dence carried by its title and abstract, the MPANN model cannot correctly predict 
these medicine-related terms. This kind of error takes place in around 18% of the 
wrongly predicted articles in the corpus.

(iv) Complexity of language expression: In some cases, if multiple similar MeSH terms 
are simultaneously provided as candidates, it would be difficult for MPANN to dis-
tinguish when lacking explicit evidence in the input contexts. For instance, in the 
article PMID:33,222,986, our MPANN cannot precisely recognize the true terms of 
‘Orthopedic Procedures’ and ‘Orthopedic Surgeons’, while it identifies another term 
of ‘Orthopedic’, which is the hypernym term of both ‘Orthopedic Procedures’ and 
‘Orthopedic Surgeons’. This kind of error happens in around 47% of the wrongly 
predicted articles in the corpus.

(v) Inconsistent annotation: In our experiments, it seems that some supposedly false-
positive MeSH topic terms identified by MPANN may be actually correct and 
should be annotated in the corpus. For instance, in the article PMID:32,539,372, the 
terms ‘Betacoronavirus’, ‘Coronavirus 3C Proteases’, and ‘SARS-CoV-2’ are indeed 
annotated, while the typical term ‘COVID-19’ is not annotated but identified by 
MPANN. These kinds of errors, due to the inconsistent annotations, are around 
21% of the wrongly predicted articles in the corpus. It is well known that the MED-
LINE curation with MeSH headings inevitably contains some human errors. The 
fact that our system can identify the mislabeled terms underlines the robustness of 
the proposed approach. Meanwhile, these findings may also provide some feedback 
for further refinement of MeSH annotations in the future.

Conclusions and future work
This research provided a new benchmark dataset and a novel multi-probe attention 
approach for COVID-19 semantic indexing. To exploit the efficiency of our proposed 
model, we first construct the CovSI corpus focusing on the COVID-19 topic, we then 
leverage the proposed model to address the COVID-19 semantic indexing problem. In 
the proposed approach MPANN, we use a KNN-derived MeSH masking mechanism 
to generate a handful of candidate MeSH terms for each input article; we then encode 
and feed the candidate terms as well as other textual information as probes into the 
downstream attention-based neural network. After extracting the semantic feature rep-
resentations at both term level and document level, our MPANN model adopts a lin-
ear multi-view classifier to conduct the final MeSH term prediction. The experimental 
results suggest the effectiveness of our proposed approach.

Our research on deep learning exhibits promising results for the COVID-19 seman-
tic indexing research on biomedical literature. In future work, we plan to develop more 
advanced deep learning algorithms with richer representation capabilities and extend 
the corpus to other domains and languages for better generalization.
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