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ABSTRACT
Imbalances in covariates between treatment groups are frequent in
observational studies and can lead to biased comparisons. Various
adjustment methods can be employed to correct these biases in
the context of multi-level treatments (> 2). Analytical challenges,
such as positivity violations and incorrect model specification due
to unknown functional relationships between covariates and treat-
ment or outcome, may affect their ability to yield unbiased results.
Such challenges were expected in a comparison of fire-suppression
interventions for preventing fire growth. We identified the overlap
weights, augmented overlap weights, bias-corrected matching and
targeted maximum likelihood as methods with the best potential to
address those challenges. A simple variance estimator for the over-
lap weight estimators that can naturally be combined with machine
learning is proposed. In a simulation study, we investigated the per-
formance of these methods as well as those of simpler alternatives.
Adjustment methods that included an outcome modeling compo-
nent performed better than those that focused on the treatment
mechanism in our simulations. Additionally,machine learning imple-
mentation was observed to efficiently compensate for the unknown
model specification for the formermethods, but not the latter. Based
on these results, we compared the effectiveness of fire-suppression
interventions using the augmented overlap weight estimator.
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1. Introduction

Many empirical studies seek to evaluate the effect of a treatment or intervention. This
evaluation can be attempted using randomized or observational experiments. In the for-
mer, pre-randomization characteristics are expected to be similar across treatment groups.
As such, outcome differences can be causally attributed to the treatment. However, ran-
domized trials are often difficult to realize because they may be unethical, impractical,
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or untimely [12]. Thus, relying on observational experiments is often necessary. Unfor-
tunately, imbalances in covariates between treatment groups are frequent in observational
studies and can lead to biased treatment comparisons. This major challenge is known as
confounding, wherein differences in outcomes between treatment groups are at least partly
attributable to systematic differences in baseline covariates.

The motivation for the current study was the comparison of the effect of multiple
fire-suppression interventions on fire growth in Alberta, Canada. In a previous attempt
at tackling this question using observational data, a reversed association was observed
wherein more aggressive interventions were associated with greater fire growth [37]. We
believed twomain reasons could explain this unexpected association. First, important con-
founding by indication appeared plausible, since more aggressive interventions would be
preferred for wildfires that are expected to grow quickly. Adjusting for further potential
confounders may help reducing bias, but how best to adjust for these confounders was
unclear. We also hypothesized that the positivity assumptionmay be violated in these data.
Positivity refers to the fact that all units should have a positive probability of receiving each
possible treatment and is required for many adjustment methods to yield unbiased estima-
tors. In our context, it seemed possible, for example, that some fires may be too large when
initially discovered to consider less aggressive interventions, thus violating the positivity
assumption.

Various methods can be used to correct confounding bias. The performance of these
methods have been compared in multiple simulation studies in the case of a binary
treatment [4–6,15,20,21,26,28] and for performing pairwise comparisons between multi-
level treatments [8,22,25,35,42,43]. In summary, methods that rely on binary propensity
score for multi-level treatments comparisons, focusing on comparing treatment levels two
at a time, can yield biased and nontransitive comparisons and are not recommended
[25,42]. Stratification was susceptible to produce results with important residual bias
[4–6,26]. Standardization is generally the best performing method in ideal situations, in
terms of bias and mean-squared error (MSE) [4,15,20,21,26]. However, when the model
used for standardization is incorrectly specified, the estimator is biased [8,20,21,26].
Weighting methods were susceptible to be biased and have a large variance if the model
used for constructing the weights was misspecified [15,20,42] or under positivity vio-
lation [22,25,28,35]. Trimming, which removes from the analysis observations in areas
where there is a lack of positivity, has been observed to improve the performance of
multiple methods in presence of positivity violations [15,22]. The augmented inverse
probability weighting estimator has been observed to have mixed performances. This
estimator performed competitively to standardization in ideal situations and retained sim-
ilar performances under model misspecifications [26], but it performed poorly under
positivity violations [15,21]. The targeted maximum likelihood estimator (TMLE) was
observed to have good performances under ideal situations and under model misspec-
ifications, in addition to being more robust to positivity violations [20]. Similar results
were observed concerning bias-corrected matching [15,20,21]. The use of machine learn-
ing algorithms was observed to be beneficial for preventing the bias attributable to
model misspecifications for TMLE, BCM and standardization, but not necessarily for
weighting [20].

From a theoretical perspective, methods that combine treatment and outcome model-
ing are generally expected to be

√
n-consistent as long as each component is consistently
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estimated at a rate≥ n1/4 (see for example [17] and references therein). This allows using a
greater array of machine learning methods without sacrificing desirable asymptotic prop-
erties. This is unlike methods that rely on modeling only the treatment or the outcome
which typically require

√
n-consistency of their model to be

√
n-consistent.

Weighting estimators that are robust to positivity violations have also been developed
in recent years [21–23,43]. In particular, [23] consider a general class of weighting estima-
tors for binary treatments, that notably include as specific cases standard weighting and
weighting with trimmed weights. They theoretically derived, under certain conditions, the
lowest variance estimator in this class, which they called the overlap weights. An exten-
sion of these overlap weights to multi-level treatments has also been developed [22]. The
overlap weights were observed to outperform the usual weighting estimator, with or with-
out trimming, as well as matching estimators, both in terms of bias and MSE [22,28]. An
outcome regression augmented overlap weighting estimator can be constructed in order
to improve the robustness to model misspecification [22,28].

Overall, a few methods thus stand out according to their performance in terms of
bias, MSE, and their robustness to model misspecifications or positivity violations: bias-
corrected matching, TMLE and overlap weights. While bias-corrected matching and
TMLE have been compared in simulation studies with binary treatments, they have never
been compared together in scenarios with multi-level treatment or against the overlap
weights. Which of these methods yield the best estimator of pairwise average treatment
effects, including in scenarios with model misspecifications or positivity violations, is thus
unknown. To inform our analysis of the wildfire data, we investigated the performance
of TMLE, bias-corrected matching and overlap weights for performing pairwise compar-
isons betweenmulti-level treatments, notably under lack of positivity and unknownmodel
specification.

The remainder of this article is structured as follows. In the next section, the nota-
tion used throughout the article is first introduced. Then, the methods being compared
are formally presented, as well as the causal assumptions on which they rely. We also
propose some methodological developments concerning the overlap weight estimators,
including a convenient asymptotic variance estimator. In Section 3, we present the sim-
ulation study we have conducted to compare bias-corrected matching, TMLE, overlap
weights, and augmented overlap weights. Standardization, inverse probability weighting
and matching were also included as benchmark comparators. We further examine the
potential ofmachine learning implementations of thesemethods to deal with the unknown
model specification. Both a fully synthetic Monte Carlo simulation, and a plasmode sim-
ulation are presented. Plasmode simulations combine real and synthetic data to produce
more realistic simulation scenarios [10]. Section 4 presents the analysis of the wildfire data,
which is informed by the results of our simulation study. We conclude with a discussion in
Section 5.

2. Methodology

Let Y be the outcome of interest, T ∈ T = {1, 2, . . . , k} be the multi-level treatment, and
X = {X1, . . . ,Xp} ∈ X be a set of covariates, where T and X are the support of variables
T and X, respectively. We assume that a sample of independent observations {Xi,Ti,Yi},
with i = 1, . . . , n, is drawn from a given population. We also denote by Yi(t) the potential
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outcome of observation i under treatment level t, that is, the outcome that would have been
observed for observation i had the treatment taken level t, potentially contrary to the fact.
Using this notation, the population average pairwise treatment effect comparing treatment
levels t and t′ is τt,t′ = E[Y(t) − Y(t′)].

The fundamental problem of causal inference is that it is only possible to observe one
potential outcome for each observation, the one corresponding to the factual treatment
level. Since the other potential outcomes are missing, the causal effect τt,t′ cannot be esti-
mated from the observed data without making some assumptions. Henceforth, we make
the following usual assumptions (see, for example, [12, Chapter 3]): (1) Y(t)

∐
T|X for all

t ∈ T , (2) 0 < P(T = t|X) < 1 for all t ∈ T andX ∈ X and (3) Ti = t ⇒ Yi = Yi(t). The
first assumption is exchangeability and indicates that treatment allocation is independent
of the potential outcomes conditional onmeasured covariates. Informally, thismeans there
are no factors that would simultaneously explain T and Y beyond what may be explained
by X. Assumption (2) is the positivity assumption that entails that each observation had a
strictly positive probability of being assigned to any treatment level. The third is the con-
sistency assumption and indicates that the observed outcome for observation i is equal to
its potential outcome under its factual treatment level.

2.1. Standardization

A first possible estimator of τt,t′ consists of computing a standardized mean difference of
the outcome between treatment groups t and t′ (see, for example, [12, Chapter 13]):

τ̂ stant,t′ = 1
n

n∑
i=1

[
Ê(Y|T = t,Xi) − Ê(Y|T = t′,Xi)

]
,

where Ê(Y|T = t,Xi) and Ê(Y|T = t′,Xi) are the estimated expectations of the outcome
under treatment level t and t′, respectively, and covariatesXi. These estimated expectations
can be obtained using a parametric regression model of Y conditional on T and X, such as
a linear regression if Y is continuous or a logistic regression if Y is binary. More sophisti-
catedmethods, includingmachine-learning algorithms, could also be employed. Although
a variance estimator for τ̂ stant,t′ that accounts for the estimation of treatment model parame-
ters exists [44], it can be computationally intensive since it involves a double sum over the
observations’ index. Alternatively, inferences can be produced using the nonparametric
bootstrap, which also allows accounting for parameters estimation.

2.2. Inverse probability weighting

Inverse probability weighting estimators of τt,t′ are inspired by the method proposed by
Hovitz and Thompson [14]. Robins [32] introduced inverse probability weighting esti-
mators of the parameters of longitudinal marginal structural models, which include as a
special case the following estimator of τt,t′ :

τ̂ IPWt,t′ = 1
n

n∑
i=1

[
I(Ti = t)Yi − I(Ti = t′)Yi

P̂(T = ti|Xi)

]
,
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where I(·) denotes the usual indicator function and P̂(T = ti|Xi) is the estimated proba-
bility that the treatment takes level ti conditional on Xi. P̂(T = ti|Xi) can, for example, be
obtained from a multinomial logistic regression. A conservative asymptotic variance esti-
mator for τ̂ IPWt,t′ is conveniently obtained using a sandwich estimator, treating P̂(T = ti|Xi)

as known [26,33].

2.3. Matching and bias-correctedmatching

Scotina et al. [35] present a matching estimator as well as a bias-corrected matching
estimator based on the work of Abadie and Imbens [1,2]. This matching estimator first
imputes the missing potential outcomes of each observation by the observed outcomes
of observations from the other treatment group. More precisely, the potential outcome
of observation i under treatment t, Yi(t), for t �= ti, is imputed with the average of the
observed outcome of them observations from treatment group t whose covariates’ values
are closest toXi according to some distancemetric. The potential outcomeYi(ti) is deemed
observed (Yi(ti) = Yi). This matching procedure is performed with replacement, allowing
each observation to be used multiple times for imputing potential outcomes of different
observations. Comparisons between treatment groups are then performed directly on the
(observed/imputed) potential outcomes.

More formally, let A be some definite positive matrix and ||x||A = (x′Ax)1/2 define the
distance metric. LetMt

i denote the set of them observations ‘closest’ to unit i in treatment
group t �= ti, that is, such that

∑
j∈Mt

i
||Xj − Xi|| is minimal and

∑
j I(j ∈ Mt

i ) = m. Then

Ŷi(t) =

⎧⎪⎨⎪⎩
Yi, if t = ti,
1
m

∑
j∈Mt

i

Yj, if t �= ti,

and the matching estimator is

τ̂match
t,t′ = 1

n

n∑
i=1

[
Ŷi(t) − Ŷi(t′)

]
.

Similar matching estimators for multi-level treatments had previously been introduced by
[9] and [42].

The bias-corrected matching estimator proposed by [35] uses a regression method for
imputing the missing potential outcomes:

Ŷbc
i (t) =

⎧⎪⎨⎪⎩
Yi, if t = ti,
1
m

∑
j∈Mt

i

[
Yj + Ê(Y|T = t,Xi) − Ê(Y|T = t,Xj)

]
, if t �= ti.

The bias-corrected matching estimator is:

τ̂BCMt,t′ = 1
n

n∑
i=1

[
Ŷbc
i (t) − Ŷbc

i (t′)
]
.
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The consistency of the matching estimator τ̂match
t,t′ and the bias-corrected matching esti-

mator τ̂BCMt,t′ relies on further conditions, in addition to the causal assumptions presented
earlier (for more details, see [35]). Asymptotic variance estimators of τ̂match

t,t′ and of τ̂BCMt,t′
are provided in [35]. These variance estimators were derived assuming the matching is
performed on fixed X and bias-correction employs a non-parametric series estimator for
the outcome expectation. However, the variance estimators were observed to behave well
in other circumstances in simulation studies, notably when matching on the logit of the
estimated generalized propensity score vector P̂(T = t|X) [35].

2.4. Targetedmaximum likelihood

Targeted maximum likelihood estimation is a general methodology introduced by van der
Laan and Rubin [40] for constructing doubly-robust semiparametric efficient estimators.
Double-robustness entails that the estimator is consistent for τt,t′ if either the outcome
model or the treatment model component of the algorithm described below is consistent,
but not necessarily both. Moreover, the TMLE has minimal variance among the class of
semiparametric estimators when both models are correctly specified. Luque-Fernandez et
al. [27] provide an introductory tutorial on TMLE.

An algorithm for obtaining a TMLE, if Y is binary, is as follows [36].

• For j ∈ {t, t′}
(1) Denote Q0(j,Xi) = Ê(Y|T = j,Xi)

(2) Define weights wi(j) = I(Ti=j)
P̂(T=j|Xi)

(3) Run a logistic regression of Y with an intercept, logit[Q0(j,X)] as an offset term and
weights wi(j). Denote the estimated intercept term as ε̂

(4) Let Q1(j,Xi) = expit{logit[Q0(j,Xi)] + ε̂}

The TMLE estimator is then

τ̂TMLE
t,t′ = 1

n

n∑
i=1

[
Q1(t,Xi) − Q1(t′,Xi)

]
.

If Y is a continuous variable, it is recommended to rescale Y and Q0(j,X) such that values
lie between 0 and 1 before performing step 3 [20,39, Chapter 7]. Let a and b be the known
limits of Y, then the rescaled outcome and expectations are Y∗ = Y−a

b−a and Q0,∗(j,X) =
Q0(j,X)−a

b−a . The causal effect estimate τ̂TMLE
t,t′ is computed after back-transforming Q1(t,Xi)

and Q1(t′,Xi) into the original scale.
An asymptotic estimator for the variance of τ̂TMLE

t,t′ is based on the sample variance
of the efficient influence function (see, for example, [39, Chapter 5]). This variance
estimator is consistent when both of these models are estimated with consistent esti-
mators and asymptotically conservative when only the treatment model estimator is
consistent [39].
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2.5. Overlapweights

Whenusing the overlapweights, each observation is attributed aweightwi = h(Xi)/P̂(T =
ti|Xi), where h(Xi) = [

∑k
l=1 1/P̂(T = l|Xi)]−1. The overlap weight estimator is then

τ̂OWt,t′ =
∑n

i=1 I(Ti = t)Yiwi∑n
i=1 I(Ti = t)wi

−
∑n

i=1 I(Ti = t′)Yiwi∑n
i=1 I(Ti = t′)wi

.

This specific choice of h(Xi) yields an estimator with minimal variance, assuming
homoscedastic residual variances of the potential outcomes [22].

It is important to note that τ̂OWt,t′ is not generally a consistent estimator for the population
average pairwise treatment effect τt,t′ . In fact, the estimand of τ̂OWt,t′ is the so-called average
pairwise treatment effect in the overlap population:

τ ∗
t,t′ =

∫
X∈X

{
E[Y(t)|X] − E[Y(t′)|X]} f (X)h(X)μ(dX)∫

X∈X f (X)h(X)μ(dX)
,

where f (X) is the marginal density of X with respect to an appropriate measure μ. This
corresponds to a weighted average treatment effect, where h(X) is the weight function. The
estimand of the overlapweights focuses on the treatment effect in the part of the population
where the positivity assumption holds. Indeed, parts of the populations for which at least
one of the treatment is impossible have a weight of 0 in the estimand.

A variance estimator for τ̂OWt,t′ that accounts for the estimation of the weights is provided
by [22]. Because this variance estimator requires computing derivatives of the weights
according to parameters of the treatmentmodel, it combines poorly withmachine learning
methods, which may lack a simple parametric expression. We thus propose an alterna-
tive variance estimator similar to the variance estimator commonly employed for inverse
probability weighting estimators. This simpler conservative variance estimator for τ̂OWt,t′ is
obtained by considering the weights as known. It corresponds to the empirical variance of
the nonparametric influence function of τ ∗

t,t′ (given by [28]), scaled by 1/n:

V̂ar(τ̂OWt,t′ ) = 1
n2

n∑
i=1

[
I(Ti = t)(Yi − τ̂t)wi

1
n

∑n
i=1 h(Xi)

− I(Ti = t′)(Yi − τ̂t′)wi
1
n

∑n
i=1 h(Xi)

]2

,

where τ̂t =
∑n

i=1 I(Ti=t)Yiwi∑n
i=1 I(Ti=t)wi

is the treatment t weighted mean. This variance estimator is
motivated by the fact the behavior of a semiparametric estimator is asymptotically the same
as the one from its influence function [40, Chapter 5]. An important advantage of our
proposed variance estimator is that effect estimates and inferences based on this variance
estimator correspond to those produced by standard software when running a weighted
generalized estimating equation regression with the treatment as the sole predictor and
employing the robust variance estimator (for example, using proc genmod in SAS with
a repeated statement, or using geeglm in the geepack package in R [11]).
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As indicated by [22] it is possible to construct an outcome-regression augmented version
of the overlap weight estimator:

τ̂A−OW
t,t′ = τ̂OWt,t′ +

∑n
i=1 h(Xi)

[
Ê(Y|T = t,Xi) − Ê(Y|T = t′,Xi)

]
∑n

i=1 h(Xi)

−
∑n

i=1 I(Ti = t)Ê(Y|T = t,Xi)wi∑n
i=1 I(Ti = t)wi

+
∑n

i=1 I(Ti = t′)Ê(Y|T = t′,Xi)wi∑n
i=1 I(Ti = t′)wi

.

This estimator is semiparametric efficient for estimating τ ∗
t,t′ when both the treatment

model P̂(T = t|X) and the outcome model Ê(Y|T,Xi) are correctly specified [22].
Following [28], we can show that τ̂A−OW

t,t′ has a property analogue to double-robustness.

Theorem 2.1: The estimator τ̂A−OW
t,t′ is consistent for τ ∗

t,t′ when the treatment model is cor-
rectly specified, whether the outcome model is correctly specified or not. When the outcome
model is correctly specified, but the treatment model is misspecified, τ̂A−OW

t,t′ is consistent for

τ̃ ∗
t,t′ =

∫
X∈X

{
E[Y(t)|X] − E[Y(t′)|X]} f (X)h̃(X)μ(dX)∫

X∈X f (X)h̃(X)μ(dX)
,

where h̃(X) is the estimand of [
∑k

l=1 1/P̂(T = l|Xi)]−1 under the misspecified P̂(T = l|Xi).

The proof of Theorem 2.1 is provided in Web Appendix A.
Based on the efficient influence function derived by [28], we propose an asymp-

totic variance estimator for τ̂A−OW
t,t′ obtained by computing the empirical variance of the

nonparametric efficient influence function, scaled by a factor 1/n

V̂ar(τ̂A−OW
t,t′ ) = 1

n2

n∑
i=1

{
h(Xi)

1
n

∑n
i=1 h(Xi)

[
Ê(Y|T = t,Xi) − Ê(Y|T = t′,Xi)

+ I(Ti = t){Yi − Ê(Y|T = t,Xi)}
P̂(T = t|Xi)

− I(Ti = t′){Yi − Ê(Y|T = t′,Xi)}
P̂(T = t′|Xi)

]

− τ̂A−OW
t,t′

}2

.

This variance estimator is consistent if both the treatment and outcome models are esti-
mated with consistent estimators. Like the variance estimator for τ̂OWt,t′ we proposed, this
variance estimator can be conveniently computed when machine learning methods are
employed for fitting the treatment or outcome model. Indeed, the variance formulas are
relatively simple functions of observed variables and predicted values, thus not directly
depending on how the model was fitted.

3. A simulation study

We now describe the simulation study we have conducted to compare the empirical
performance of the methods presented in the previous section.
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3.1. Monte Carlo simulation

3.1.1. Simulation design and scenarios
For our data-generating process, we considered three covariates X1, X2, X3 arbitrarily gen-
erated as follow: X1 ∼ N (0, 1), X2 ∼ N (2X1, 1) and X3 ∼ Bernoulli(0.4). The treatment
variable T was simulated according to a multinomial logistic regression with three levels
(1, 2 and 3), where the first was the reference category. The probability of membership in
each group was given by:

π1 = [
1 + exp(β21X1 + β22X2 + β23X3 + β24X1X3 + β25X2

1)

+ exp(β31X1 + β32X2 + β33X3 + β34X1X3 + β35X2
1)

]−1 ,

π2 = exp(β21X1 + β22X2 + β23X3 + β24X1X3 + β25X2
1)π1,

π3 = exp(β31X1 + β32X2 + β33X3 + β34X1X3 + β35X2
1)π1.

The outcome Y was generated from a normal distribution Y ∼ N (μ3, 1), where μ3 =
γ0 + γ1X1 + γ2X2 + γ3X3 + γ4X2X3 + γ5X2

2 + λ1I(T = 2) + λ2I(T = 3).
We defined four simulation scenarios where the association between the covariates and

the treatment was either weak (T−) or strong (T+), and the association between the
covariates and the outcome was either weak (Y−) or strong (Y+). Parameters λ1 and
λ2 represent the true treatment effects of level 2 and 3 as compared to level 1 (τ21 and
τ31), respectively, and were set to λ1 = 1.0 and λ2 = 1.5. These Monte Carlo scenarios
were devised such that the estimand of the overlap weights is the same as the one from
the other methods. Such a choice facilitates the comparison between estimators. However,
in the plasmode simulation presented in Section 3.2, the estimand of the overlap weight
estimators does not correspond with that of the other methods.

The specific choice of the values for β and γ was made to attain the following desider-
ata: (1) in Scenario T − Y−, the confounding bias for both λ parameters is between 10%
and 30%, (2) the bias for Scenarios T − Y+ and T + Y− is between 40% and 60%, (3) the
bias for Scenario T + Y+ is above 100%, (4) there is a good overlap of the treatment prob-
abilities’ distribution between treatment groups in Scenarios T−, and (5) there is a poor
overlap in Scenarios T+ (near positivity violation).

In Scenarios T−, the β values were β21 = −0.2, β22 = 0.2, β23 = 0.2, β24 = 0.1, β25 =
0.1, β31 = 0.2, β32 = 0.1, β33 = −0.2, β34 = 0.1, β35 = 0.1. In Scenarios T+, they were
β21 = −0.8, β22 = 0.8, β23 = 0.8, β24 = 0.2, β25 = 0.2, β31 = 0.5, β32 = 0.5, β33 = −0.8,
β34 = 0.2, β35 = 0.2. In Scenarios Y−, the γ values were γ0 = 0, γ1 = 0.2, γ2 = 0.2, γ3 =
0.2, γ4 = 0.1 and γ5 = 0.1. In Scenarios Y+, they were γ0 = 0, γ1 = 0.5, γ2 = 0.5, γ3 =
0.5, γ4 = 0.2 and γ5 = 0.2.

For each scenario, we simulated 1000 independent data sets each of sample size 500,
1000 and 2000 under the above conditions.We then estimated τ21 and τ31 utilizing the stan-
dardization (stan), inverse probability weighting (IPW), matching (match), bias-corrected
matching (BCM), targeted maximum likelihood (TMLE), overlap weights (OW) and aug-
mented overlap weights (A−OW) estimators presented previously. For match and BCM,
thematching was performed on the logit of the estimated generalized propensity score (the
vector logit[P̂(T = t|X)]). First, the estimators were implemented using correctly specified
parametric models, that is, a linear regression of Y on T, X1, X2, X3, X2X3 and X2

2, and a



JOURNAL OF APPLIED STATISTICS 2579

multinomial logistic regression of T on X1, X2, X3, X1X3 and X2
1. This allows investigating

the performance of the estimators under ideal circumstances. Next, the estimators were
implemented using parametric models that include only main terms, excluding interac-
tion or quadratic terms. This corresponds to a common implementation since the correct
model is unknown in practice. Finally, the estimators were implemented using machine
learning approaches. For the outcome, we used a Super Learner. The Super Learner is an
ensemble method that yields an estimate corresponding to a weighted average of the pre-
diction of multiple procedures, where the weights are determined using cross-validation
[38]. The prediction procedures we used were a main terms only linear regression, a main,
interactions and quadratic terms linear regression, and a generalized additive model with
cubic splines. This was performed using the SuperLearner package in R [31]. Because
this package does not accommodate multinomial dependent variables, we used a poly-
chotomous regression and multiple classification with the R package polspline [18,19]
to model the exposure. This approach uses linear splines and their tensor products to pro-
duce predictions. The machine learning methods we chose were selected such that their
rate of convergence was

√
n.

We computed the following measures to assess and compare the performance of the
estimators: bias, standard deviation (Std), ratio of the mean estimated standard error to
the standard deviation of the estimates, square-root of the mean-squared error (RMSE)
and the proportion of the replications in which 95% confidence intervals included the true
value of the treatment effect (Coverage CI). For stan, inferences were produced using a
nonparametric bootstrap estimate of the variance with 200 samples. For IPW, TMLE,OW,
and A−OW, the influence function variance estimator was used. For match and BCM,
we used the variance estimator proposed by [35]. To assess bias levels, we calculated an
unadjusted estimate of the treatment effect.

3.1.2. Simulation results
Tables 1, 2, 3 and 4 compare the bias, standard deviation, RMSE and coverage of confi-
dence intervals across methods for n = 1000. Similar results were obtained for n = 500
and n = 2000. A detailed presentation of these results is available in the Supplemental
Online Material. Figure 1 depicts the ratio of the mean estimated standard error to the
standard deviation of the estimates of τ31. Similar results were observed for τ21 and are
available in the Supplemental Online Material. A figure depicting the overlap in the treat-
ment probabilities distribution according to treatment group and scenarios is also available
in the Supplemental Online Material.

Under a correct parametric specification, all methods managed to almost completely
eliminate the bias in Scenarios T − Y− and T − Y+. In Scenarios with positivity vio-
lations (T + Y− and T + Y+), IPW and match yielded results with substantial residual
bias, while the other methods still achieved close to unbiased estimation. In all scenarios,
stan produced the estimates with lowest standard deviation and RMSE, followed closely
by A−OW, and by TMLE in Scenarios T − Y− and T − Y+. In Scenarios T + Y− and
T + Y+, the standard deviation and RMSE of IPW and match were drastically larger
than those of the other methods. The coverage of confidence intervals of all methods was
close to 95% or slightly conservative, except for IPW and match in Scenarios T + Y−
and T + Y+ where confidence intervals included the true effect much less often than
expected.
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Figure 1. Ratio of the mean estimated standard error to the standard deviation of the estimates of τ31
for the correct parametric implementation according to sample size (dark gray = 500, gray = 1000, light
gray = 2000), the strength of the association between covariates and treatment (columns; weak=T− or
strong=T+) and between the covariates and outcome (weak=Y− or strong=Y+), and implementation
(rows; Cor = Correct parametric, Inc = Incorrect parametric, ML = machine learning).

When using an incorrect parametric specification, important bias reduction was still
achieved, but residual confounding bias remained for all adjustmentmethods. In Scenarios
T − Y− and T − Y+, BCM and match were the methods that reduced the bias the most
and were the only methods that yielded confidence intervals with appropriate coverage.
In Scenarios T + Y− and T + Y+, A−OW and BCM were the methods that produced
the most important bias reduction and the coverage of their confidence intervals were the
closest, yet inferior, to 95%.

When a machine learning implementation was used, stan, BCM, TMLE and A−OW
produced results very similar to those obtained under the correct parametric implementa-
tions, with regards to bias, standard deviation, RMSE and coverage of confidence intervals.
However, IPW, match and OW produced biased results with increased standard devia-
tions and RMSE. The coverage of their confidence intervals was also generally below the
expected level, except for match that retained appropriate coverage in Scenarios T − Y−
and T − Y+.

In all scenarios, we noticed that the bias of match and BCM tended to decrease with
increased sample size, even under an incorrect parametric implementation.

Figure 1 indicates that the variance estimators we proposed for OW and A−OW per-
formed well. As expected, the variance estimator for OW tends to overestimate the true
variance. The estimated standard error ofA−OW was very similar to itsMonte Carlo stan-
dard deviation. Figure 1 also reveals that the usual sandwich estimator of the variance of
IPW, which is expected to be conservative, sometimes drastically underestimated the true
variance in Scenarios T − Y+ and T + Y+. The variance estimators of stan, match and
BCM were conservative in Scenarios T + Y− and T + Y+ when using a correct para-
metric implementation. In all other cases, the estimated and empirical variances were
similar.
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Table 1. Estimate of the treatment effect in the Scenario with a weak association between covariates
and treatment, aweak associationbetween covariates andoutcome (T − Y−), and a sample size of 1000.

Bias Std RMSE Coverage CI

Implementation Approach τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31

Cor.param. Crude 0.240 0.347 0.106 0.112 0.262 0.365 0.422 0.129
stan 0.001 0.002 0.081 0.082 0.081 0.082 0.948 0.960
IPW 0.003 0.006 0.102 0.103 0.102 0.103 0.983 0.985
match 0.018 0.019 0.099 0.099 0.101 0.100 0.956 0.961
BCM 0.003 0.003 0.098 0.098 0.098 0.098 0.958 0.962
TMLE 0.002 0.003 0.084 0.085 0.084 0.085 0.953 0.960
OW −0.000 0.002 0.091 0.092 0.091 0.092 0.985 0.978
A-OW 0.001 0.002 0.083 0.084 0.083 0.084 0.940 0.943

Inc.param. stan 0.046 0.057 0.096 0.097 0.107 0.112 0.922 0.905
IPW 0.092 0.087 0.104 0.104 0.140 0.136 0.882 0.898
match 0.032 0.034 0.097 0.099 0.102 0.105 0.953 0.955
BCM 0.024 0.022 0.096 0.098 0.099 0.100 0.959 0.958
TMLE 0.076 0.077 0.100 0.102 0.126 0.128 0.890 0.902
OW 0.083 0.078 0.100 0.100 0.130 0.127 0.893 0.908
A-OW 0.068 0.069 0.097 0.098 0.118 0.120 0.870 0.885

M.Learning stan 0.001 0.005 0.084 0.085 0.084 0.085 0.926 0.941
IPW 0.101 0.079 0.106 0.105 0.146 0.132 0.857 0.905
match 0.035 0.020 0.109 0.110 0.115 0.111 0.940 0.954
BCM −0.003 0.001 0.101 0.102 0.101 0.102 0.958 0.965
TMLE 0.004 0.007 0.085 0.086 0.085 0.086 0.957 0.955
OW 0.091 0.070 0.102 0.102 0.137 0.124 0.868 0.907
A-OW 0.002 0.006 0.084 0.085 0.085 0.086 0.933 0.941

Note: Cor.param=correct parametric models, Inc.param=incorrect parametric models, M.Learning=machine learning,
Crude=Unadjusted, stan=standardization, IPW=inverse probability weighting, match=matching, BCM=bias-corrected
matching, TMLE=targeted maximum likelihood, OW=overlap weights, A-OW=augmented overlap weights.

3.2. Plasmode simulation

3.2.1. Plasmode datasets
We used the data on forest fires in Alberta, Canada, as a basis for our plasmode simula-
tion. These data are produced and published online by the Government of Alberta [41].
The purpose of the analysis was to compare various interventions for fighting wildfires in
Alberta on their probability of preventing the fire to grow after its initial assessment. We
considered only fires caused by lightning from 1996 to 2014. Observations for which size
at ‘being held’ was smaller than the size at initial attack were also removed. ‘Being held’ is
defined as in [37] as a state when no further increase in size is expected.

Potential confounders considered in the plasmode simulation are the ecological region
in which the fire occurred (Clear Hills Upland, Mid-Boreal Uplands, Other), the num-
ber of fires active at the time of initial assessment of each fire, fuel type (Boreal Spruce,
Boreal Mixedwood – Green, other), month of the year the fire was first assessed (‘May or
June’, July, ‘August, September or October’), how the fire was discovered (air patrol, look-
out, unplanned), response time in hours between the moment the fire was reported to first
assessment by forestry personnel, and the natural logarithm (ln) of the size of the fire at the
time of the initial attack. Response time was truncated at the 95th percentile of the distri-
bution to limit the influence of extreme observations, which caused convergence problems
of models in some replications of the simulation. Additional potential confounders were
available but were not considered in the plasmode simulation. As will be explained shortly,
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Table 2. Estimate of the treatment effect in the Scenario with a strong association between covariates
and treatment, aweak associationbetween covariates andoutcome (T + Y−), and a sample size of 1000.

Bias Std RMSE Coverage IC

Implementation Approach τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31

Cor.param. Crude 0.467 0.790 0.094 0.117 0.477 0.799 0.001 0.000
stan 0.005 0.001 0.083 0.094 0.083 0.094 0.955 0.967
IPW 0.039 0.032 0.301 0.308 0.303 0.310 0.870 0.898
match 0.102 0.092 0.121 0.140 0.158 0.168 0.862 0.889
BCM 0.022 0.004 0.120 0.137 0.122 0.137 0.958 0.960
TMLE 0.006 0.002 0.101 0.118 0.102 0.118 0.952 0.960
OW 0.009 0.004 0.104 0.116 0.105 0.116 0.967 0.975
A-OW 0.006 0.003 0.096 0.107 0.096 0.107 0.948 0.959

Inc.param. stan −0.121 −0.039 0.098 0.113 0.155 0.120 0.785 0.928
IPW 0.209 0.181 0.174 0.195 0.272 0.266 0.621 0.755
match 0.132 0.118 0.121 0.136 0.179 0.180 0.799 0.869
BCM 0.091 0.045 0.119 0.136 0.149 0.143 0.887 0.940
TMLE 0.159 0.112 0.131 0.155 0.206 0.191 0.767 0.892
OW 0.117 0.099 0.109 0.118 0.160 0.154 0.812 0.865
A-OW 0.065 0.062 0.101 0.116 0.120 0.131 0.898 0.920

M.Learning stan 0.005 0.014 0.090 0.105 0.090 0.106 0.938 0.940
IPW 0.159 0.138 0.185 0.200 0.244 0.244 0.720 0.801
match 0.124 0.111 0.122 0.138 0.174 0.177 0.819 0.875
BCM 0.010 0.008 0.118 0.135 0.119 0.136 0.953 0.956
TMLE 0.016 0.006 0.106 0.123 0.108 0.124 0.939 0.945
OW 0.080 0.067 0.110 0.121 0.136 0.138 0.893 0.912
A-OW∗ 0.003 −0.001 0.098 0.108 0.098 0.108 0.937 0.952

Note: Cor.param=correct parametric models, Inc.param=incorrect parametric models, M.Learning=machine learning,
Crude=Unadjusted, stan=standardization, IPW=inverse probability weighting, match=matching, BCM=bias-corrected
matching, TMLE=targeted maximum likelihood, OW=overlap weights, A-OW=augmented overlap weights. **: in 1 repli-
cation, the confidence intervals could not be computed.

the plasmode simulation was run on a reduced sample of the total data available. As such,
including all potential confounders in the simulations caused convergence issues.

Some levels of categorical variables having few instances were dropped, and observa-
tions in those categories were removed. The final database contained 8591 observations,
the 7 covariates presented above, and the treatment variable indicating themethod of inter-
vention used by the firefighters to suppress the wildfire and the outcome variable. The
categories for the treatment were heli-attack crew with helicopter but no rappel capability
(HAC1H; 53.8%), heli-attack crew with helicopter and rappel capability (HAC1R; 15.8%),
fire-attack crew with or without a helicopter and no rappel capability (HAC1F; 6.3%), Air
tanker (15.3%) and Ground-based action (8.8%). The binary response variable was 1 or 0
depending on whether the fire did or did not increase in size between initial attack and
‘being held’ (n =1982 and 6645, respectively).

For generating plasmode data, we first fitted a random forest regression of the out-
come variable conditional on treatment and all seven covariates using the package
randomForest in R with the default settings [24]. Similarly, a random forest regres-
sion of the treatment according to the covariates was fitted. These models were then used
to generate simulated treatment and outcome variables. This approach naturally allows
for treatment-covariate interactions in generating the outcome and thus allows the esti-
mand of the overlap weight estimators to differ from that of the other estimators. The true
causal effects were estimated using a Monte Carlo simulation. Briefly, for each observa-
tion in the complete population, we generated counterfactual outcomes that would have
been observed under each possible treatment according to the true outcome model. The
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Table 3. Estimate of the treatment effect in the Scenario with a weak association between covariates
and treatment, a strong association between covariates and outcome (T − Y+), and a sample size of
1000.

Bias Std RMSE Coverage IC

Implementation Approach τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31

Cor.param. Crude 0.564 0.819 0.173 0.192 0.590 0.841 0.125 0.009
stan 0.001 0.002 0.081 0.082 0.081 0.082 0.984 0.986
IPW 0.005 0.008 0.149 0.151 0.149 0.151 0.997 0.995
match 0.037 0.039 0.110 0.110 0.116 0.117 0.983 0.979
BCM 0.004 0.002 0.106 0.107 0.106 0.107 0.985 0.990
TMLE 0.002 0.003 0.084 0.085 0.084 0.085 0.953 0.960
OW −0.001 0.002 0.111 0.115 0.111 0.115 0.999 0.998
A-OW 0.001 0.002 0.083 0.084 0.083 0.084 0.940 0.943

Inc.param. stan 0.046 0.057 0.096 0.097 0.107 0.112 0.922 0.905
IPW 0.092 0.087 0.104 0.104 0.140 0.136 0.882 0.898
match 0.032 0.034 0.097 0.099 0.102 0.105 0.953 0.955
BCM 0.024 0.022 0.096 0.098 0.099 0.100 0.959 0.958
TMLE 0.076 0.077 0.100 0.102 0.126 0.128 0.890 0.902
OW 0.083 0.078 0.100 0.100 0.130 0.127 0.893 0.908
A-OW 0.068 0.069 0.097 0.098 0.118 0.120 0.870 0.885

M.Learning stan 0.001 0.005 0.084 0.085 0.084 0.085 0.926 0.941
IPW 0.101 0.079 0.106 0.105 0.146 0.132 0.857 0.905
match 0.034 0.019 0.108 0.108 0.113 0.110 0.940 0.954
BCM −0.003 0.001 0.099 0.101 0.099 0.101 0.960 0.965
TMLE 0.004 0.007 0.085 0.086 0.085 0.086 0.957 0.955
OW 0.091 0.070 0.102 0.102 0.137 0.124 0.868 0.907
A-OW 0.002 0.006 0.084 0.085 0.085 0.086 0.933 0.941

Note: Cor.param=correct parametric models, Inc.param=incorrect parametric models, M.Learning=machine learning,
Crude=Unadjusted, stan=standardization, IPW=inverse probability weighting, match=matching, BCM=bias-corrected
matching, TMLE=targeted maximum likelihood, OW=overlap weights, A-OW=augmented overlap weights.

difference in risk of fire progression were then computed for each treatment level, as com-
pared to HAC1H, which was used as the reference level. For the overlap weights, risk
differences weighted according to h(X) as defined in Section 2.5 were computed. The true
effects comparing Air tanker, Ground-based action, HAC1F and HAC1R to HAC1H in
the entire population were, respectively, 0.099, −0.011, 0.012 and −0.003. In the overlap
population, the true risk differences were 0.101,−0.024, 0.003 and−0.002. To simplify the
presentation, both sets of parameters will be denoted as τ21, τ31, τ41 and τ51 in the results
below.

Aplasmode simulated datasetwas obtained as follows. First, we drewwith replacement a
random sample of size 2000 from the original data. Then, for each observation, a new simu-
lated treatment and a new simulated outcomewere generated, with P(T = t|X) and P(Y =
1|T,X) determined by the fitted random forestmodels. Based on this process, we simulated
1000 independent data sets and compared adjustments methods using the same perfor-
mance metrics as in the Monte Carlo simulation (see Section 3.1.1). For each method, we
considered either a parametric models implementation that included only main terms, or
a machine learning implementation. For the treatment, these implementations were the
same as described in Section 3.1.1. The implementations for the outcome were also similar
to those described in Section 3.1.1, but replacing linear regressions by logistic regres-
sions. Since the outcome and treatment data were generated nonparametrically, the correct
models are unknown.
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Table 4. Estimate of the treatment effect in the Scenario with a strong association between covariates
and treatment, a strong association between covariates and outcome (T + Y+), and a sample size of
1000.

Bias Std RMSE Coverage IC

Implementation Approach τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31 τ̂21 τ̂31

Cor.param. Crude 1.180 1.937 0.146 0.198 1.189 1.947 0.000 0.000
stan 0.005 0.001 0.083 0.094 0.083 0.094 0.987 0.988
IPW 0.079 0.075 0.612 0.614 0.617 0.618 0.841 0.866
match 0.213 0.214 0.143 0.161 0.256 0.267 0.747 0.796
BCM 0.039 0.007 0.131 0.147 0.136 0.147 0.976 0.983
TMLE 0.006 0.002 0.102 0.118 0.102 0.118 0.951 0.959
OW 0.012 0.006 0.131 0.142 0.131 0.143 0.990 0.990
A-OW 0.006 0.003 0.096 0.107 0.096 0.107 0.948 0.959

Inc.param. stan −0.121 −0.039 0.098 0.113 0.155 0.120 0.785 0.928
IPW 0.209 0.181 0.174 0.195 0.272 0.266 0.621 0.755
match 0.132 0.118 0.121 0.136 0.179 0.180 0.799 0.869
BCM 0.091 0.045 0.119 0.136 0.149 0.143 0.887 0.940
TMLE 0.159 0.112 0.131 0.155 0.206 0.191 0.767 0.892
OW 0.117 0.099 0.109 0.118 0.160 0.154 0.812 0.865
A-OW 0.065 0.062 0.101 0.116 0.120 0.131 0.898 0.920

M.Learning stan 0.005 0.014 0.090 0.105 0.090 0.106 0.938 0.940
IPW 0.159 0.138 0.185 0.200 0.244 0.244 0.720 0.801
match 0.124 0.111 0.122 0.138 0.174 0.177 0.819 0.875
BCM 0.010 0.008 0.118 0.135 0.119 0.136 0.953 0.956
TMLE 0.016 0.006 0.106 0.123 0.108 0.124 0.939 0.945
OW 0.080 0.067 0.110 0.121 0.136 0.138 0.893 0.912
A-OW∗ 0.003 −0.001 0.098 0.108 0.098 0.108 0.937 0.952

Note: Cor.param=correct parametric models, Inc.param=incorrect parametric models, M.Learning=machine learning,
Crude=Unadjusted, stan=standardization, IPW=inverse probability weighting, match=matching, BCM=bias-corrected
matching, TMLE=targetedmaximum likelihood, OW=overlapweights, A-OW=augmented overlap weights. *: in 1 replica-
tion, the confidence intervals could not be computed.

3.2.2. Simulation results
A figure displaying the distribution of the treatment probabilities according to treatment
groups is available in the Supplemental Online Material. While a good level of overlap
between treatment groups was present, multiple observations had treatment probabilities
close to 0, thus suggesting possible practical positivity violations.

The results presented in Table 5 show that a large amount of bias is present when no
adjustment is performed, especially for τ21. When using a parametric implementation,
most methods achieved a bias reduction for estimating all parameters, except stan and
match that increased the bias for one parameter. Additionally, a substantial bias remained
for estimating some parameters for stan, match, and A−OW. The RMSE of stan, TMLE,
and OW were smaller than those of the crude estimates for all parameters, whereas IPW,
match, BCM, and A−OW had an increased RMSE for at least one parameter. The lowest
RMSE for all parameters was produced by stan. Most methods yielded 95% confidence
intervals with coverage rate close to the expected level for τ21, τ41 and τ51, but not for τ31.
Only IPW and OW had close to adequate coverage for τ31.match and BCM yielded inad-
equate confidence intervals for all parameters, because of an underestimation of the true
variance (see Figure 3 in the Supplemental OnlineMaterial).When using amachine learn-
ing implementation, the performance of most adjustment methods was overall marginally
improved. Indeed, the bias and RMSE were generally smaller, and coverage closer to 95%.
For IPW, however, the results were somewhat worse.
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Table 5. Estimate of treatment effect in plasmode simulation using 2000 observations. True effects are
τ21 = −0.099, τ31 = 0.011, τ41 = −0.012 and τ51 = 0.003 for all methods except OW and A−OW and
τ21 = −0.101, τ31 = 0.024, τ41 = −0.003 and τ51 = 0.002 for the these two methods. HAC1H is the
reference category . τ21, τ31, τ41 and τ51 refer to treatment effect associated to Air tanker, Ground-based
action, HAC1F and HAC1R, respectively.

Bias RMSE Coverage IC

Implementation Approach τ̂21 τ̂31 τ̂41 τ̂51 τ̂21 τ̂31 τ̂41 τ̂51 τ̂21 τ̂31 τ̂41 τ̂51

Parametric Crude −0.164 −0.027 −0.021 −0.035 0.168 0.045 0.050 0.045 0.002 0.897 0.941 0.786
stan 0.004 0.028 0.009 −0.005 0.029 0.043 0.041 0.026 0.921 0.800 0.939 0.942
IPW −0.005 0.011 0.003 −0.002 0.040 0.048 0.050 0.029 0.957 0.902 0.947 0.963
match 0.040 −0.004 0.023 0.004 0.050 0.043 0.052 0.042 0.279 0.428 0.335 0.398
BCM 0.004 0.003 0.002 −0.013 0.045 0.052 0.053 0.055 0.406 0.353 0.324 0.326
TMLE −0.006 0.012 0.001 −0.005 0.037 0.044 0.044 0.028 0.935 0.859 0.926 0.951
OW 0.001 0.005 0.009 0.004 0.041 0.045 0.049 0.033 0.955 0.902 0.936 0.966
A-OW −0.006 0.021 0.007 −0.005 0.040 0.048 0.046 0.032 0.942 0.859 0.943 0.942

Machine
learning stan 0.007 0.027 0.008 −0.006 0.030 0.043 0.041 0.026 0.923 0.847 0.941 0.944

IPW −0.027 0.009 −0.001 −0.012 0.048 0.040 0.046 0.031 0.908 0.924 0.956 0.954
match 0.028 −0.008 0.019 0.000 0.041 0.037 0.048 0.039 0.401 0.485 0.360 0.459
BCM 0.001 0.007 0.006 −0.007 0.042 0.044 0.048 0.050 0.436 0.393 0.349 0.367
TMLE −0.003 0.018 0.007 −0.004 0.035 0.043 0.042 0.027 0.932 0.837 0.925 0.942
OW −0.028 0.000 −0.007 −0.011 0.047 0.040 0.048 0.032 0.899 0.916 0.952 0.959
A-OW −0.005 0.025 0.009 −0.004 0.035 0.047 0.045 0.028 0.935 0.824 0.930 0.948

Note: Crude=Unadjusted, stan=standardization, IPW=inverse probability weighting, match=matching, BCM=bias-
corrected matching, TMLE=targeted maximum likelihood, OW=overlap weights, A-OW=augmented overlap
weights.

Figure 3 in the Supplemental OnlineMaterial represents the ratio of themean estimated
standard error to the standard deviation of the estimates. The variances estimated using our
proposed estimators forOW andA−OW were similar to theMonteCarlo variances. In fact,
all variance estimators except those of match and BCM performed well in the plasmode
simulation.

4. Application

4.1. Context

Wildfires have great economic, environmental and societal impacts. A key tool of fireman-
agement is fire suppression by initial attack teams who seek to limit the growth, and hence
the final size, of the fire [7]. These interventions by initial attack differ in terms of the size
and training of the fire-fighting crews, and the mechanical resources provided to them.
However, few studies have attempted estimating the causal effect of initial attack onwildfire
growth.

Recently, [37] compared initial attack interventions using public data on wildfire in
Alberta, Canada. More aggressive interventions were associated with greater fire growth,
opposite to the expected direction of the causal effect. These results suggest that important
confounding by indication may be present in fire management agency records.

4.2. Data

The data we considered are similar to those used for performing the plasmode simulation
and those employed by [37]. More precisely, we considered all fires on provincial land or
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in other public lands caused by lighting between 2003 and 2014 recorded in the historical
wildfire database of Alberta’s Agriculture and Forestry ministry [41].

The final data consisted of 5439 observations. The fire-attack interventions being com-
pared are the same as those in the plasmode simulation: heli-attack crew with helicopter
but no rappel capability (HAC1H), heli-attack crew with helicopter and rappel capability
(HAC1R), fire-attack crew with or without a helicopter and no rappel capability (HAC1F),
Air tanker, and Ground-based action. The outcome of interest was whether the fire grew
in size between initial assessment and ‘being held ’.

Based on experts’ knowledge and the scientific literature, the following 11 potential con-
founders were considered: (1) Initial Spread Index, (2) Fire Weather Index, (5) ecological
region inwhich the fire occurred (ClearHills Upland,Mid-Boreal Uplands, Other), (6) fuel
type at initial assessment (Boreal Spruce, Boreal Mixedwood – Green, Other), (7) period
of day (AM or PM), (8) month of the year the fire was first assessed (‘May or June’, July,
‘August, September or October’), (9) response time in hours between the moment the fire
was reported to first assessment by fire fighters, (10) the number of fires active at the time
of initial assessment of each fire, and (11) the natural logarithm (ln) of the size of the fire at
the initial attack. The Initial Spread Index and the Fire Weather Index are used to predict
the rate of progression of fires and fire danger, respectively, by Alberta’s Wildfire Manage-
ment Branch. These indexes are notably based on daily weather variables. To account for
the fact that initial attack decisions would be based not only on current and recent weather,
but also on future forecast, we used the values of these variables for the day of fire assess-
ment, the two days prior to assessment and the two days following assessment (for a total
of five variables for each index). More information on these variables is available in [37]
and references therein.

4.3. Analysis

Not all interventions would be reasonable choices to suppress some fires given their char-
acteristics at the moment of assessment. As such, it seems more relevant to target the
average effect of interventions only for those fires for which multiple options are rea-
sonable. Based on this and on the results from our simulation study, we decided to
use the augmented overlap-weights estimator with a machine learning implementation.
The treatment probabilities were estimated using a polychotomous regression and the
outcome expectations were estimated with the Super Learner using a main term gener-
alized linear model, a generalized additive model with spline terms, and random forests
as prediction procedures. Note that we no longer limit the machine learning methods
we consider to those having a convergence rate of

√
n, since the augmented overlap

weight estimator we use combines outcome and treatment modeling, thus allowing the
use of more flexible machine learning methods. The generalized linear model with inter-
action and quadratic terms was not considered as a prediction procedure because of
the small sample size in some levels of categorical variables. All potential confounders
were included as independent variables in both models. Year was considered as a cat-
egorical variable (12 levels). Inferences were produced using the variance estimator we
introduced in Section 2.5. P-values were adjusted for multiple comparisons with Holm’s
method [13].
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Table 6. Association between initial intervention used to suppress the fire and probability of fire growth
between initial assessment and being held.

Contrast Risk difference 95% confidence interval Adjusted p-value

Air tanker vs HAC1H 0.107 (0.083, 0.131) < 0.001
Ground-based action vs HAC1H −0.031 (−0.056,−0.005) 0.121
HAC1F vs HAC1H −0.008 (−0.031, 0.015) 1.000
HAC1R vs HAC1H −0.005 (−0.032, 0.022) 1.000
Ground-based action vs Air Tanker −0.138 (−0.170,−0.105) < 0.001
HAC1F vs Air Tanker −0.115 (−0.145,−0.085) < 0.001
HAC1R vs Air Tanker −0.112 (−0.145,−0.079) < 0.001
HAC1F vs Ground-based action 0.023 (−0.009, 0.055) 0.749
HAC1R vs Ground-based action 0.026 (−0.009, 0.061) 0.749
HAC1R vs HAC1F 0.003 (−0.030, 0.036) 1.000

Notes: All estimates are adjustedusing the augmentedoverlapweights estimator for Initial Spread Index, FireWeather Index,
year, how the fire was discovered, ecological region, fuel type, period of day, month of the year, response time, number
of fires active, and ln of the size of the fire at the time of the initial attack. Abbreviations: HAC1H = heli-attack crew with
helicopter but no rappel capability, HAC1R = heli-attack crew with helicopter and rappel capability, HAC1F = fire-attack
crewwith or without a helicopter and no rappel capability. P-values are adjusted formultiple comparisons using the Holm
method.

4.4. Results

Characteristics of the considered fires according to the initial intervention that was chosen
for suppressing the fire are presented in Web Appendix C. Important imbalances between
treatment groups were observed for calendar year, how the fire was discovered, ecological
region, fuel type, response time, number of active fires and initial size of the fire, and some
imbalance was observed for the fire weather index on the day of initial assessment. To the
best of our knowledge, no method has been developed to assess post-adjustment balance
for the augmented overlap weight estimator.

Adjusted associations between initial interventions for suppressing fires and the prob-
ability of fire growth are reported in Table 6. Air tanker, which is the most aggres-
sive intervention, is associated with the largest probability of fire growth. All interven-
tions are associated with probabilities of fire growth similar to or greater than that of
ground-based action, which we consider to be the least aggressive intervention. The var-
ious heli-attack crew interventions are all associated with similar probabilities of fire
growth.

5. Conclusion and discussion

The initial motivation for this work was to compare the effect of five initial attack inter-
ventions on wildfire growth. Multiple analytical challenges were expected in attempting
to estimate this effect, including important confounding by indication, possible non-
positivity andunknownmodel specifications.We reviewed studies evaluating the empirical
performance of adjustment methods and identified those that appeared best suited to
address these challenges: the overlap weights, the bias-correctedmatching and the targeted
maximum likelihood estimation.

Regarding the overlap weight estimator, we demonstrated that when it is augmented
with an outcome regression, it benefits from a property analogue to double-robustness in
the multi-level treatment case, following the proof of [28] for the binary case. Additionally,
we have proposed a simple asymptotic variance estimator for the overlap weights and the
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augmented overlapweights based on the semiparametric theory. These variance estimators
offer multiple benefits. First, they are expressed as the sample variance of a relatively sim-
ple quantity that do not require advanced coding or mathematical skills to compute. This
is particularly true for the overlap weights, since estimation and inferences correspond to
those produced by common generalized estimating equations routines with a robust vari-
ance estimator. A further advantage of our proposed variance estimator is that it is agnostic
to the model used for computing the point estimates. Hence, it can be computed as easily
whether the point estimates are obtained with parametric regression models or machine
learning algorithms.

We have also conducted a simulation study comparing the overlap weights, the aug-
mented overlap weights, the bias-corrected matching and the TMLE estimator, as well as
standardization, regular inverse probability weighting and matching as benchmark com-
parators. Most of these methods had never been compared to one another in a multi-level
treatment setting. Our proposed variance estimator for the overlap weight estimators per-
formed well, even with small sample sizes. We also observed that methods that combine
outcome and treatment modeling (bias-corrected matching, TMLE and augmented over-
lap weights) performed better than those solely based on the treatment model (inverse
probability weighting, matching and overlap weights) in terms of bias reduction, standard
deviation of estimates and RMSE. Under positivity violations, inverse probability weight-
ing and matching were biased and had increased variability, while all other methods were
relatively unaffected. We also observed that the variance estimator for the matching and
bias-corrected matching estimators of [35] performed poorly in the plasmode simulation.
We hypothesize that this is because of the binary nature of the outcome.

Unsurprisingly, when an incorrect parametric implementation was used, all adjustment
methods were biased. However, the bias for matching and bias-corrected matching tended
to get smaller as sample size increased, whereas the bias remained constant for the other
methods. A plausible explanation for this phenomenon is that these matchingmethods are
less model dependent, since they involve imputing the missing counterfactual outcomes
by the observed outcomes from subjects in the other treatment groups. As sample size
increases, the pool of control subjects get larger, thus allowing observations to be matched
with others that are more similar to them. We did not observe that methods that combine
outcome and exposure modeling performed better than the others under models misspec-
ification. While it is expected that double-robustness theoretically helps protecting against
the bias attributable to model misspecifications, this property requires that at least one of
the two models involved is correct for unbiased estimation. When both models are incor-
rect to some extent, as should arguably be expected in practice, double-robust methods
do not necessarily produce estimates with less bias than others [16,20]. However, a theo-
retical advantage of combining outcome and treatment modeling is the possibility to use
machine learning methods that have a relatively slow convergence rate without sacrificing
the convergence rate of the treatment effect estimator [17].

The results of our simulation study finally indicate that machine learning methods can
be helpful for preventing misspecification bias for some, but not all, adjustment methods.
Indeed, for all methods that include an outcome modeling component (standardiza-
tion, bias-corrected matching, TMLE and augmented overlap weight), the results under
a machine learning implementation were very similar to those obtained under the ideal
case of a correct parametric specification for all considered performance metrics. As such,
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the routine use of machine learning algorithms for performing confounder adjustment
may have benefits to help preventing bias without paying a price in terms of power. On
the other hand, methods that focus only on modeling the treatment (inverse probability
weighting,matching and overlapweight) had considerable bias when employing amachine
learning implementation. A possible explanation for these results is that machine learning
algorithms may tend to more often predict treatment probabilities close to 0 or 1 because
they are better able to fit the observed data, thus exacerbating practical positivity violations.

Standardization was the method that overall performed best, closely followed by the
augmented overlap weight in most scenarios and sometimes also by TMLE. In practice, we
warn that the choice of an approach should not only be guided by its performance, but also
by the question of interest. For example, if the goal is to inform about a decision that would
apply at the whole population level, the average effect in the entire population would be the
one that is of most interest, whereas if the question is to help the decision in cases where
several treatment options are possible, themethods that estimate an effect in the subgroups
where there is overlap would likely be more appropriate.

Based on the context of the wildfire growth problem and the results of the simulation
study, we decided to estimate the effect of initial attack interventions using the augmented
overlap weight estimator, implemented with machine learning algorithms. The adjusted
associations we observed were counter-intuitive: the more aggressive the intervention was,
the larger was the probability that fires grew. These associations are very unlikely to repre-
sent the true causal effect. Based on our simulation study’s results, we do not believe these
results can be explained by residual confounding due to measured confounders or to non-
positivity. We thus hypothesize that residual confounding due to important non-measured
confounders is present, despite the fact we have made important efforts to include mul-
tiple potential confounders in our analysis. Having accounted for the factors previously
shown to affect the probabilities of fire growth after initial attack in this system [3], we are
unable to advance a more precise explanation. Another possible explanation for our coun-
terintuitive results may be the presence of large effect modification, that is, the treatment
effect may vary widely according to the initial characteristics of the fire. It may thus be
the case that the less aggressive interventions are indeed more effective than more aggres-
sive interventions inmost situations, but less effective in some specific situations. Dynamic
treatment regime methods may thus be interesting to explore in future studies to garner a
better understanding of the effect of fire suppression methods[29,30,34].

Ultimately, the findings from this study originate from simulation studies and are thus
limited to the contexts that were investigated. However, the plasmode simulation based
on real data helped understanding the performance of these approaches in a realistic set-
ting. Bias elimination relies on the fact that all confounders are measured, which arguably
never occurs in practice. As such, at least some amount of residual confounding due to
unmeasured confounders is inevitably present in real data analyses. This is one plausi-
ble explanation for the counter-intuitive associations we have observed in the wildfire
analysis. Comparing the effect of fire-fighting interventions using observational data is
fraught with multiple challenges. Our work contribute to facing these challenges by help-
ing ruling out residual confounding due to known confounders and positivity violations as
possible explanations to the unexpected associations that are observed.We hope our study
will stimulate others to attempt facing the remaining challenges to be able to better inform
fire managers regarding the best course of action when wildfires occur.
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