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Constructing neural network models from brain
data reveals representational transformations
linked to adaptive behavior
Takuya Ito 1,2,8✉, Guangyu Robert Yang3,4,5, Patryk Laurent6, Douglas H. Schultz7 & Michael W. Cole1

The human ability to adaptively implement a wide variety of tasks is thought to emerge from

the dynamic transformation of cognitive information. We hypothesized that these transfor-

mations are implemented via conjunctive activations in “conjunction hubs”—brain regions

that selectively integrate sensory, cognitive, and motor activations. We used recent advances

in using functional connectivity to map the flow of activity between brain regions to construct

a task-performing neural network model from fMRI data during a cognitive control task. We

verified the importance of conjunction hubs in cognitive computations by simulating neural

activity flow over this empirically-estimated functional connectivity model. These empirically-

specified simulations produced above-chance task performance (motor responses) by inte-

grating sensory and task rule activations in conjunction hubs. These findings reveal the role of

conjunction hubs in supporting flexible cognitive computations, while demonstrating the

feasibility of using empirically-estimated neural network models to gain insight into cognitive

computations in the human brain.
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The human brain exhibits remarkable cognitive flexibility.
This cognitive flexibility enables humans to perform a wide
variety of cognitive tasks, ranging from simple visual dis-

crimination and motor control tasks, to highly complex context-
dependent tasks. Key to this cognitive flexibility is the ability to
use cognitive control, which involves goal-directed implementa-
tion of task rules to specify cognitive and motor responses to
stimuli1–3. Previous studies have investigated how task-relevant
sensory, motor, and rule features are represented in the brain,
finding that sensory stimulus features are represented in sensory
cortices4,5, motor action features are represented in motor
cortices6, while task rule features are represented in prefrontal
and other association cortices3,7–10. However, these studies
focused on where cognitive representations are located in the
brain, rather than how the brain uses and transforms those
representations11. For example, during context-dependent tasks,
exactly how the brain converts incoming sensory stimulus activity
into motor activity remains unclear12. In contrast, artificial neural
network models (ANNs) can provide computationally rigorous
accounts of how context and stimuli input vectors interact to
perform complex tasks13,14. Inspired by the formalization of
ANNs, we show how task rule and sensory stimulus activations
are transformed into motor response activations in the human
brain via intrinsic functional connectivity (FC) weights. We
achieve this by constructing an empirically-estimated neural
network (ENN) model from fMRI data to provide insight into the
neural transformations in the brain during a cognitive control
task.

The Flexible Hub theory provides a network account of how
large-scale cognitive control networks implement flexible cogni-
tion by updating task rule representations15,16. While the Flexible
Hub theory primarily focuses on the importance of flexible rule
updating for complex task performance, it does not specify how
rules interact with incoming sensory stimulus activity. However,
the Flexible Hub theory was built upon the Guided Activation
Theory of prefrontal cortex–a seminal theory of the neural cor-
relates underlying cognitive control–which posits that successful
performance of a cognitive control task requires the selective
mixing of task context with sensory stimulus activity3. The
selective mixing of task context and sensory stimulus activations
would produce conjunctive activations that implement task rules
on sensory stimuli. Conjunctive activations refer to task-related
activations that represent the conjunction (binding) of multiple
different task conditions, such as task rules and sensory
stimuli9,12. For example, an activation representing the con-
junction of rule X and stimulus Y could be active only when
stimulus Y is presented with rule X, not when stimulus Y is
presented without rule X. These conjunctive activations are
thought to form through inter-area guided activations in brain
areas hidden somewhere in association cortex, which we term
“conjunction hubs” (Fig. 1a). The outputs of conjunction hubs
then generate motor activations to produce task-appropriate
behavior. Thus, by testing the hypothesis put forth in the Guided
Activation Theory of interacting rule- and stimulus-guided neural
activations (i.e., conjunctions)3,17, we built upon the Flexible Hub
theory to provide insight into flexible task control.

We recently developed a method—activity flow mapping—that
provides a framework for testing the Guided Activation Theory
with empirical brain data18. Activity flow mapping involves three
steps. First, a network model is derived from empirically-estimated
connectivity weights. Second, empirical task activations (e.g.,
activity patterns from sensory regions) are used as inputs to
simulate the activity flow (i.e., propagating activity) within the brain
network model. Finally, the predictions generated by simulated
activity flow are tested against independent empirical brain acti-
vations for model validation. Here we used activity flow mapping to

test whether empirical task activations and FC could model trans-
formations from sensory stimulus activations to motor response
activations during a context-dependent cognitive paradigm.

We sought a principled approach to identify brain areas that
form the conjunctive activations hypothesized to produce flexible
behavior. Recent studies have successfully used trained ANNs to
identify cognitive representations during tasks13,14,19. Impor-
tantly, the representations of ANNs have often converged with
representations found in neural data20–22, suggestive of the utility
of ANNs in investigating task representations in the brain.
Inspired by these previous studies, we first constructed a simple
ANN to investigate how conjunctive representations formed from
task context and stimulus input activations during a 64-context
cognitive paradigm. Using a simple ANN trained to perform the
same task allowed us to identify putative conjunctive repre-
sentations within the ANN that integrated rule and stimulus
activations. This provided a blueprint to search for similar
representations in our human brain data. After identifying the
representation of task context and stimulus conjunctions in the
ANN, we identified brain regions—conjunction hubs—with
similar conjunctive representations in fMRI data. The identifi-
cation of brain regions selective for task rules, sensory stimuli,
motor responses, and conjunctions, made it possible to construct
an ENN (which is derived from brain data and distinct from the
ANN) and empirically test the Guided Activation Theory with
activity flow mapping over data-derived functional connections.
We found that behavioral activations (in motor cortices) could be
predicted through the formation of conjunctive activations
through activity flow guided by task rule and sensory stimulus
activations.

To summarize, we provide an empirical demonstration of
connectionist-style computations in fMRI data during a 64-context
cognitive paradigm. This was achieved by constructing a task-
performing ENN directly from fMRI data, empirically testing the
plausibility of connectionist-like computations conceptualized by the
Guided Activation Theory. Importantly, the original conceptualiza-
tion of the Guided Activation Theory did not specify an exact
implementation in neural data. Thus, in this study we identify spe-
cific components of an ENN–a brain-based connectionist model (e.g.,
brain regions and connectivity weights)–that were critical for
implementing context-dependent representational transformations,
while also revealing corresponding failure modes (e.g., alternative
connectionist models that failed to transform representations). This
involved identifying the brain areas selective to different task com-
ponents, namely task rules, sensory stimuli, motor responses, and
conjunctions. These areas formed the spatial areas/layers of the ENN,
which are conceptually similar to layers in an ANN. Next, in contrast
to ANNs, which typically use supervised learning to estimate con-
nectivity weights between layers, we show that activations in ENNs
can be transformed via activity flow over FC weights estimated from
resting-state fMRI (Fig. 1d). This resulted in a task-performing ENN
model that transforms stimulus and task-rule fMRI activations into
response activations in motor cortex during a flexible cognitive
control task. Critically, the transformations implemented by the ENN
were carried out without classic optimization approaches such as
gradient learning, demonstrating that the intrinsic architecture of the
resting brain is suitable for implementing representational transfor-
mations. Together, these findings illustrate the computational rele-
vance of functional network organization and the importance of
conjunctive representations in supporting flexible cognitive compu-
tations in the human brain.

Results
Identifying brain areas containing task-relevant activations.
The Flexible Hub Theory posits that rapid updates to rule
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representations facilitate flexible behavior15,16, while the Guided
Activation Theory3 states that sensory stimulus and task rule
activations integrate in association cortex to form conjunctive
activations (Fig. 1a, c). Thus, due to its comprehensive assessment
of rule-guided sensorimotor behavior across 64 task contexts, we
used the Concrete Permuted Rule Operations (C-PRO) task
paradigm5 to test both theories (Fig. 2a). Briefly, the C-PRO
paradigm is a highly context-dependent cognitive control task,
with 12 distinct rules that span three rule domains (four rules per
domain; logical gating, sensory gating, motor selection). These
rules were permuted within rule domains to generate 64 unique
task contexts, and up to 16384 unique trial possibilities (with
various stimulus pairings; see Methods). We chose this cognitive
paradigm largely due to its systematic use of counterbalancing of
task elements (stimuli, contexts, and responses) across trials,
which allowed us to rigorously separate the motor response
activations from the sensory and context cue activations (due to
careful counterbalancing and averaging; Supplementary Fig. 9).

To test both the Flexible Hub and the Guided Activation
theories, we needed to identify the set of regions responsive to
different task components (sensory stimuli, task context, motor
responses, and conjunctions). We first identified the set of cortical
areas that contained decodable sensory stimulus activations
(Fig. 3a). Because our stimuli were multimodal (audiovisual),
this involved the identification of surface vertices that contained
the relevant visual (color and orientation) and auditory (pitch and
continuity) dimensions. We performed a four-way classification23

(using a minimum-distance/nearest-neighbor classifier24) to
decode stimulus pairs for each of the four stimulus dimensions
(e.g., red-red vs. red-blue vs. blue–red vs. blue–blue). Decoding
analyses were performed within each brain parcel using the
Glasser et al. atlas25, using vertices within each parcel as decoding
features. For all decoding analyses, statistical thresholding was
performed using a one-sided binomial test (greater than
chance= 25%), and corrected for multiple comparisons using
an FDR-corrected p < 0.05 threshold. We collectively defined the
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Fig. 1 Leveraging the Guided Activation Theory to inspire ENN models of cognitive computation during task-based fMRI. a A modified version of the
Guided Activation Theory of prefrontal cortex, highlighting a potential key role for conjunction hubs. The Guided Activation Theory posits that sensory
cortices (left), which contain sensory stimulus-related activations, and prefrontal areas (top), which contain task context/rule activations, integrate in
association cortex to produce conjunctive activations through patterns of guided activations. Conjunctive activations are then guided to motor areas to
generate motor response activations for task behavior. b The Guided Activation Theory can be reconceptualized in a connectionist framework. This
provides a formalization of how flexible sensorimotor transformations may be implemented computationally. The formalization involves the task context
and sensory stimuli representing the input layer, the association units representing a hidden layer, and the behavioral (motor) responses as the output
layer. c Testing the Guided Activation Theory using task fMRI data collected in humans during context-dependent tasks. Using quantitative methods, we
empirically test how different task activations (e.g., sensory stimuli and task context) form conjunctive activations to produce motor response activations
using activity flow mapping18. d The Guided Activation Theory can be empirically tested by projecting task activation patterns between brain areas by
estimating inter-area FC weight mappings obtained from resting-state fMRI data. Based on the activity flow principle18, we estimated inter-vertex mappings
using regression (see Methods) on resting-state fMRI data. This approach identifies a projection that maps across distinct spatial units (i.e., vertices) in
empirical data, similar to how inter-layer weights propagate activity across layers in an ANN.
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units in the ENN (i.e., vertices) that contained sensory stimulus
activity to be the set of all vertices within the parcels that
contained decodable stimulus activity (Fig. 3b; Supplementary
Tables 1–4).

Next, we performed a 12-way decoding analysis–isolated to the
fMRI activation during the task encoding period–across all 12
task rules to identify the set of vertices that contained task rule
activity. Our previous study illustrated that rule representations
are widely distributed across cortex8, such that we tested for rule
representations in every parcel in the Glasser et al. atlas (360 total

parcels25). In addition, another study in non-human primates
found that sensory areas also contain high-level task rule
information, likely due to top-down feedback from higher-order
areas26. Consistent with these findings, we again found that task
rule representations were widely distributed across cortex (Fig. 4b;
FDR-corrected p < 0.05 threshold; Supplementary Table 6). The
set of vertices that survived statistical thresholding were included
as “task rule” input units in the ENN (Fig. 1c). Since rule
representations were widely distributed across cortex, we next
quantified the contribution of each rule activation in predicting

Fig. 2 The Concrete Permuted Rule Operations (C-PRO) task paradigm. Adapted with permission8. For a given trial, subjects were presented with a task
rule set (context), in which they were presented with three rules sampled from three different rule domains (i.e., logical gating, sensory gating, and motor
selection domains). After a delay period, subjects applied the task rule set to two consecutively presented sensory stimuli (simultaneous audiovisual
stimuli) and responded accordingly with button presses (index and middle fingers on either hand). We employed a miniblock design, in which for a given
task rule set, three stimulus periods were presented separated by an inter-trial interval (1570ms). See Methods for additional details.
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Fig. 3 Identifying sensory stimulus input units (vertices) of the ENN using an fMRI decoding analysis. a We identified the sensory stimulus
representations in empirical data using fMRI pattern decoding of stimulus activations. This corresponded to the sensory input component of the Guided
Activation Theory. To decode visual features (i.e., color and orientation stimulus features) we decoded the vertices within each parcel in the visual network
using a recent functional network atlas65. To decode auditory features (i.e., pitch and continuity) we decoded the vertices within each parcel in the auditory
network (see Methods). b The ENN sensory units, which were derived from a mask of the vertices that could successfully decode stimulus features (panels
c–f). c Decoding of color features using task activation estimates (from a task GLM) during the stimulus presentation period of the C-PRO task. Chance
was 25%; cortical maps were thresholded using an FDR-corrected threshold of p < 0.05. d Four-way decoding of orientation features. e Four-way decoding
of auditory pitch features. f Four-way decoding of auditory continuity features.
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conjunctive activations. We found that while both sensorimotor
and association networks had similarly high levels of activations
during the task rule encoding period (Supplementary Fig. 2a, b),
many of these activations were dampened by their FC to
conjunctive areas. Activations that contributed most to con-
junctive activations were primarily from the dorsal attention
network (Supplementary Fig. 2c, d). These results suggest that
despite widespread task rule activations, some regions (e.g., dorsal
attention network) played a disproportionate role in task rule
implementation and the selection of conjunctions.

The C-PRO task paradigm required button presses (using
index and middle fingers on either hand) to indicate task
responses. We were able to take advantage of well-established
knowledge of the localization of these finger representations in
primary motor cortex27, rather than conducting a large search for
representation of the relevant information (e.g., as we did for task
rules). This had the advantage of putting the ENN to a more
stringent test; requiring the ENN to select representations of
motor responses in the format known to directly cause the
processes of interest (i.e., increased neural activity in M1 finger
representations causing motor behavior). Thus, to isolate finger
representations in empirical fMRI data, we performed a
univariate contrast of the vertex-wise response-evoked activation
estimates during index and middle finger response windows (see
Methods). We performed univariate analyses rather than multi-
variate decoding analyses for motor response identification since
there were only two conditions–index and middle finger
responses–to distinguish and because (unlike the other functional
localizations) we knew the direction of amplitude change
(increased activity) throughout the localized motor representa-
tions. For each hand, we performed a two-sided paired t-test
(paired across subjects) for middle versus index finger responses
in M1/S1 parcels. Contrast maps were corrected for multiple
comparisons (comparisons across vertices) using an FDR-
corrected threshold of p < 0.05 (Fig. 4c). Vertices that survived
statistical thresholding were then selected for use as output units
in the ENN (Fig. 1c).

Identifying conjunction hubs. We next sought to identify con-
junctive representations that could plausibly implement the

transformation of input to output activations across the 64 task
contexts (Fig. 5a). However, we were uncertain as to what sorts of
activation patterns (i.e., representations) we would expect in
putative conjunction hubs. Thus, we began by building an ANN
that formalizes the Guided Activation Theory (Fig. 1b). We
trained the ANN model on an analogous version of the C-PRO
task until the model achieved 99.5% accuracy (see Methods). We
were specifically interested in characterizing the representations
in the hidden layers, since these activations necessarily integrated
task rule and sensory stimulus activations (i.e., conjunctions). To
identify the task rule and sensory stimulus conjunctive repre-
sentations, we performed a representational similarity analysis
(RSA) on the hidden layers of the ANN24. The representational
similarity matrix (RSM) of the hidden layers consisted of 28 task
activation features: 12 task rules (which spanned the 3 rule
domains), and 16 stimulus pairings (which spanned each sensory
dimension). We then compared the RSM of the ANN’s hidden
units (Fig. 5b) to RSMs of each brain region in the empirical fMRI
data (Fig. 5c). This provided a map of brain regions with similar
representations to those of the ANN’s hidden units, which con-
tain the conjunction of task rule and sensory stimulus activations.

To evaluate the similarity of the ANN’s hidden representa-
tional geometry with each brain parcel, we computed the
similarity (using Spearman’s correlation) of the ANN’s RSM
with the brain parcel’s RSM (Fig. 5c). This resulted in a cortical
map, which showed the similarity between each brain region and
the ANN’s hidden representations (Fig. 5d). For our primary
analysis, we selected the top 10 parcels with highest similarity to
the ANN’s hidden units to represent the set of spatial units that
contain putative conjunctive activations in the ENN (Fig. 5e). The
conjunction hubs were strongly represented by the cingulo-
opercular network, a network previously reported to be involved
in task set maintenance and a variety of other cognitive control
functions (Supplementary Fig. 3; Supplementary Table 5)28.
However, other association networks also had strong associations
with the ANN’s hidden layer representations (Supplementary
Fig. 3b). We also performed ENN simulations using the top 20,
30, and 40 regions with highest similarity to the ANN hidden
units (see text below). To ensure that the RSM identified from the
ANN was critical to perform the task, we further identified a
control ANN’s RSM, where we shuffled all parameters within
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a Decode encoding period:
12-way task rule decoding

Decoding accuracy
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Univariate contrast

Sensory
inputs
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Fig. 4 Identifying ENN units (i.e., fMRI vertices) containing relevant task rule (context) and motor response (behavior) representations. a We
identified the task rule input and motor output representations in empirical data using MVPA and univariate task activation contrasts. b A 12-way decoding
of each of the task rules (across the 3 rule domains) using task activations (estimated from a task GLM) during the encoding period of the C-PRO task. We
applied this 12-way decoding to every parcel, given that task rule activations have been previously shown to be widely distributed across cortex8. Chance
decoding was 8.33%; statistical maps were thresholded using an FDR-corrected p < 0.05 threshold. c To identify the motor/output activations, we
performed a univariate contrast, contrasting the middle versus index finger response activations for each hand separately. Finger response activations were
estimated during the response period, and univariate contrasts were performed on a vertex-wise basis using all vertices within the somatomotor network65.
Contrast maps were statistically thresholded using an FDR-corrected p < 0.05 threshold. The resulting finger activations matched the placement of finger
representations in the well-established somatomotor homunculus in the human brain.
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each layer after training the model (see Methods). We found that
in addition to the model no longer performing the task correctly,
the model contained little representational structure (no repre-
sentational dissimilarities across conditions) (Supplementary
Fig. 4). The control ANN’s hidden layer also had significantly
weaker similarity to the empirical RSMs at each parcel
(Supplementary Fig. 4d).

Task-performing neural network simulations via empirical
connectivity. The previous sections provided the groundwork for
constructing an ENN model from empirical data. After estimating
the FC weights between the surface vertices between ENN layers
using resting-state fMRI (see Methods), we next sought to eval-
uate whether we could use this ENN to produce representational
transformations sufficient for performing the C-PRO paradigm.
This would demonstrate that the empirical input activations (task
rule and sensory stimulus activations) and the estimated con-
nectivity patterns between ENN layers are sufficient to approx-
imate the cognitive computations involved in task performance.

The primary goal was to generate a motor response activation
pattern (i.e., behavior) that we could then compare to correct task
performance. The only inputs to the model were a combination of
activation patterns for a specific task context (rule combination)
and sensory stimulus pair sampled from empirical data (Fig. 6a),
which we term “pseudo-trials”. (“Pseudo-trials” refer to simulated
trials using estimated activations rather than the actual experi-
mental trials subjects performed.) The outputs of the model were
the predicted motor response activation pattern in motor cortex
that should correspond to the correct button press (Fig. 6c). High
correspondence between the predicted and actual motor

activation patterns would constitute an empirical identification
of representational transformation in the brain, where task rule
and sensory stimulus activity is transformed into task-appropriate
response activation patterns in motor cortex.

Simulating activity flow in the ENN involved first extracting
the task rule activation patterns (inputs) for a randomly generated
task context (see Methods and Supplementary Fig. 1). Indepen-
dently, we sampled sensory stimulus activation patterns for each
stimulus dimension (color, orientation, pitch, continuity) (Fig. 3).
Then, using activity flow mapping with resting-state FC weights,
we projected the activation patterns from the input vertices onto
the conjunction hub vertices (Fig. 6b). Supplementary Fig. 2
provides a visualization of the contributing vertices (via activity
flow mapping) from the task rule layer onto the conjunction
hubs, finding that despite widespread task rule activations across
most of cortex, the dorsal attention network plays a dispropor-
tionate role in generating conjunctive activations (Supplementary
Fig. 2d). The predicted conjunction hub activation pattern was
then passed through a simple rectified linear function, which
removed any negative values (i.e., any values lower than resting-
state baseline; see Methods). Thresholded values were then
projected onto the output layer vertices in motor cortex (Fig. 6c),
yielding a predicted response activation pattern. The sequence of
computations performed to generate a predicted motor activation
pattern (Fig. 6a–c) is encapsulated by the equation in Fig. 6e.
Thus, predicted motor activation patterns can be generated by
randomly sampling different task context and sensory stimuli
activations for each subject.

While the above procedure yielded a predicted activation pattern
in the motor output layer, these predictions may not actually yield
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Guided Activation Theory states that there exist a specific set of association (or hidden) areas that integrate sensory stimulus and task context activations
to select appropriate motor response activations. In an ANN where task rules and sensory stimulus activations serve as inputs, the ANN’s hidden layers
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Activation Theory. b We therefore used the representational similarity matrix (RSM) of the ANN’s hidden layers as a blueprint to identify analogous
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Correspondence was assessed by taking the correlation of the upper triangle of the ANN and empirical RSMs. d The representational similarity of ANN
hidden units and each brain parcel. e We showed the top 10 regions with highest similarity to the ANN hidden units. f The full ENN architecture for the
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meaningful activation patterns. Thus, we evaluated whether the
model-generated motor activation patterns accurately predicted the
actual motor response activation patterns extracted (via GLM)
during subjects’ response period. Activity flow simulations using
only input task activations from the task encoding period and
stimulus presentation period (Fig. 6a) generated predicted motor
responses for each subject (Supplementary Fig. 1). Using a four-fold
cross-validation scheme, we trained a decoder on the four possible
predicted motor responses and decoded the four possible actual
motor responses (Fig. 6c, d). Training a decoder on the predicted
activations and decoding the actual activations (rather than vice
versa) made this analysis more in line with a prediction
perspective–we could test if, in the absence of any motor task
activation, the ENN could predict actual motor response activation
patterns that correspond to correct behavior. We averaged motor
response patterns across pseudo-trials to yield four predicted motor
response activations per subject. This averaging eliminated the
possibility of any remaining rule and sensory information being
present in the model-generated motor response patterns given that
pseudo-trials were perfectly counterbalanced across contexts, stimuli,
and response.

We note that this decoding analysis is highly non-trivial, given
that the predicted motor responses (which are generated from task
rule and stimulus activations) are tested against the true motor
responses of held-out subjects. By simulating neural network
computations from stimulus and task context activations to predict
motor response, we accurately decoded the correct finger response
on each hand separately: decoding accuracy of right hand
responses= 62.65%, nonparametric p= 0.03; decoding accuracy of
left hand responses= 77.58%, nonparametric p < 0.001. These
results demonstrate that task rule and sensory stimulus activations
can be transformed into motor output activations by simulating

multi-step neural network computations using activity flow
mapping on empirical fMRI data. In the following sections, we
illustrate that multiple control and lesion models severely impair
model performance, suggesting that the constructed model
contained (1) no biases towards predicting motor responses, and
(2) provided the sufficient features to implement context-dependent
sensorimotor transformations.

In addition, a good test of the non-triviality of the predicted
motor responses would be to ensure that motor responses cannot
be linearly decoded from the input activations (task rule and
stimulus activations). Here, we establish that linear decoding of
motor responses using input activations fails under the current
decoding scheme, given that predicted activations are averaged
across pseudo-trials for each motor response (see Methods).
While specific task context and stimulus combinations produce a
motor response at the trial level, averaging across completely
counterbalanced inputs for each response leads to activations that
are identical. For example, both the left index and left middle
finger motor responses were averaged across red–red, red–blue,
blue–red, and blue–blue stimulus events, yielding identical
activity patterns across those two motor responses for all regions
representing visual rather than motor information. (The same
logic can be applied for all task rules). This makes it impossible
for a linear decoder to learn mappings between inputs and
responses when averaging inputs, but possible for a linear decoder
to learn mappings on the outputs. This is because the outputs
were generated via a nonlinear function (i.e., the ENN) applied at
the trial level and then averaged across trials for the decoder. We
verified this empirically, finding that the accuracy was at chance,
since the decoder could not classify identical inputs.

We observed an overall difference in the ability to decode left
versus right hand sensorimotor transformations. However, this

Predicted conjunctive
representations

Sensory stimulus
representation

Task rule representations

Visual units

Auditory units

=++

Logic rule: NEITHER 
Sensory rule: RED
Motor rule: LEFT INDEX

Input
Task rule representations

Sensory stimuli representations

Output
Predicted activation 

in motor cortex

Evaluate 
response period

 activity in motor cortex

DECODE

Y = f ( Xrule Wrule–>hidden + Xstimulus Wstimulus–>hidden ) Whidden–>output  
Y  : predicted motor activation pattern
W  : Estimated connectivity weights from A ~ B
f  : Rectified linear function (threshold negative values)
X  : Input activation patterns (either rule activations or sensory stimulus activations)

a

b c d

e

62.65%
p=0.03

82.87%
p<0.001

A
ct

iv
ity

  d
ur

in
g 

EN
C

O
D

IN
G

 P
ER

IO
D

A
ct

iv
ity

  d
ur

in
g 

ST
IM

U
LU

S 
PE

R
IO

D

Fig. 6 Simulating context-dependent sensorimotor transformations with empirically-estimated task activations and inter-unit FC estimates. We
constructed the ENN by identifying the vertices that contained task rule, sensory stimulus, and motor response activations and by estimating the resting-
state FC weights between them. a The input layer, consisting of vertices with decodable task rule and sensory stimulus activations. b Through activity flow
mapping, input activations were mapped onto surface vertices in conjunction hubs. The activity flow-mapped vertices were passed through a nonlinearity,
which removed any negative values. This threshold was chosen given the difficulty in interpreting predicted negative BOLD values. c The predicted
conjunctive activations were then activity flow-mapped onto the motor output vertices, generating a predicted motor activation pattern. d These predicted
motor activations were then tested against the actual motor response activations of other subjects using a four-fold cross-validation scheme. A decoder
was trained on the predicted motor response activations and tested on the actual motor response activations of the held-out cohort (see Methods and
Supplementary Fig. 1). e An equation summarizing the ENN model’s computations.
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discrepancy was also observed when decoding actual motor
response activations (rather than predicted activations) during
the response period, suggesting this was an intrinsic property of
the fMRI data we used (rather than the ENN) and/or due to
differences in the number of identified vertices associated with
response on either hand (Fig. 7h, i).

The importance of the conjunctive representations. We next
evaluated whether specific components of the ENN model were
necessary to produce accurate stimulus-response transformations.
We first sought to evaluate the role of the conjunction hubs
(hidden layer) in ENN performance. This involved re-running the
ENN with the conjunction hubs removed (Fig. 7c), which
required resting-state FC weights to be re-estimated between the
input and motor output regions directly. We found that the
removal of conjunction hubs severely impaired task performance
to chance accuracy (RH accuracy= 48.98%, p= 0.54; LH accu-
racy= 50.14%, p= 0.45; Fig. 7h, i). This illustrated the impor-
tance of conjunction hub computations in producing the
conjunctive activations required to perform context-dependent
stimulus-response mappings15.

We next replaced conjunction hubs with randomly sampled
parcels in empirical data. This assessed the importance of using
the ANN’s hidden layer RSM to identify conjunction hubs in
fMRI data (Fig. 7d). We sampled random parcels 1000 times,
recomputing the vertex-wise FC each time. The distribution of
randomly selected conjunction hubs did not yield task perfor-
mance accuracies that were statistically different than chance for
both hands (RH mean accuracy= 50.89%, p= 0.45; LH mean
accuracy 50.85%, p= 0.47; Fig. 7h, i). However, the overall
distribution had high variance, indicating that there may be other
sets of conjunction hubs that would yield above-chance (if not
better) task performance. However, compared to the conjunction
hubs we identified by matching empirical brain representations
with ANN representations, we found that the ANN-matched
conjunction hubs performed better than 83.3% of all randomly
selected conjunction hubs for RH responses, and greater than
96.4% of all randomly selected conjunction hubs for LH responses.

In addition, we evaluated whether the precise number of hidden
regions was critical to task performance. We ran the full ENN
model, but instead of using only the top 10 regions with highest
similarity to the ANN’s hidden layer’s representations, we
constructed ENN variants containing the top 20, 30, and 40 hidden
regions. We found that we were able to reproduce correct task
performance using 20 hidden regions (RH accuracy= 63.90%,
p < 0.001; LH accuracy= 76.95%, p < 0.001). Using 30 hidden
regions yielded reduced yet above-chance accuracies for RH
responses, but not for LH responses (RH accuracy= 59.83%,
p= 0.024; LH accuracy= 43.54%, p= 0.917). Inclusion of an
additional 10 hidden regions (totaling 40 hidden regions) did not
yield above-chance predictions of motor responses for either hand.
Inclusion of additional intermediate conjunctive regions likely
introduced additional noisy (or irrelevant) activations that in turn
degraded the final predicted motor output activations from which
we decoded. These results suggest that conjunction hubs were better
identified the greater the similarity of a region’s representational
geometry was to that of the ANN’s hidden layer.

The importance of nonlinearities when combining rule and
stimulus activations. We next tested the impact of removing the
rectified linear (ReLU) nonlinear functions in the conjunction
hubs. This is equivalent to removing nonlinearities in an ANN,
which is well-known to eliminate the ability of ANNs to imple-
ment conditional logic (e.g., the XOR logic gate)17,29,30. Condi-
tional logic was essential to all of the C-PRO task sets, since the

motor response must be chosen conditional on both the stimulus
information and task rule information. Consistent with the
expected computational role of the ReLU nonlinearity, we found
that the removal of the ReLU function substantially impaired
model performance (RH accuracy= 50.72%, p= 0.44; LH=
45.73%, p= 0.75; Fig. 7h, i). This is due to the fact that context-
dependent sensorimotor transformations require nonlinear
mappings between stimuli and responses, as predicted by the
biased competition theory and validated by prior computational
studies17,30,31. To more rigorously assess the impact of the ReLU
on the activity flow-predicted conjunctive region representations,
we compared the conjunctive representations of the full ENN
model (ReLU included), ReLU removed ENN model, and the
actual fMRI activations of the conjunction regions to the repre-
sentations found in the ANN’s hidden layer. (Comparison of
representations was measured as the cosine similarity of the
representational similarity matrices.) As expected, we found that
compared to the activity flow-predicted representations without
the ReLU (cosine= 0.44), the full ENN with the ReLU had higher
similarity to the ANN’s hidden layer (cosine= 0.60) (Supple-
mentary Fig. 5). This suggested that the ReLU supports accurate
context-dependent sensorimotor transformations by producing
internal conjunctive representations that are consistent with the
conjunctive representations found in the ANN.

Removing task context impairs task performance activity. We
next sought to evaluate the importance of including task rule
activations in model performance. To remove context activity, we
lesioned all connections from the ENN’s rule input layer to the
hidden layer. This was achieved by setting all resting-state FC
connections from the context input layer to 0 (Fig. 7f). As
hypothesized, model performance was at chance without task
context activations (RH accuracy= 50.00%, p= 0.46; LH=
50.00%, p= 0.46; Fig. 7h, i). This demonstrated that the model
implemented a representational transformation from task context
and sensory stimulus activations to the correct motor response
activations.

The influence of specific functional network topography. We
next evaluated whether the empirically-estimated connectivity
topography was critical to successful task performance. This
involved shuffling the connectivity weights within the context and
stimulus input layers 1000 times (Fig. 7g). While we hypothesized
that the specific resting-state FC topography would be critical to
task performance, we found that shuffling connectivity patterns
yielded a very high variance distribution of task performance
(Fig. 7h). As expected, the mean across all connectivity shuffles
were approximately at chance for both hands (RH mean accu-
racy= 51.22%, p= 0.44; LH mean accuracy= 50.77%, p= 0.47).
However, we found that there were some connectivity config-
urations that would significantly improve task performance, and
other connectivity configurations that would yield significant
below chance task performance. Notably, the FC topography that
was estimated from resting-state fMRI (the full S-R model,
without shuffling; Fig. 7b) performed greater than 86.4% of all
connectivity reconfigurations in RH responses, and greater than
97.0% of all connectivity reconfigurations for LH responses. This
indicates that, among all possible connectivity patterns, the
weights derived from resting-state fMRI stood out as especially
effective at producing correct task performance.

Discussion
Determining how the human brain transforms incoming stimuli
into accurate task behavior would fill a critical gap in under-
standing how the brain implements cognitive processes11,32,33. To
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context input activations to predicting motor response patterns in motor cortex. c The ENN model after entirely removing the conjunction hubs. d The ENN
model, where we randomly sampled regions in the hidden layer (conjunction hubs) 1000 times and estimated task performance. e The ENN model after
removing the nonlinearity (ReLU) function in the hidden layer. f The ENN model after lesioning connections from the task context input activations. g The
ENN model, where we shuffled the connectivity patterns from the stimulus and context layers 1000 times. h Benchmarking the performances of all model
architectures. Accuracy distributions (n= 1000) were obtained by running multiple iterations of the same cross-validation scheme (leave-4-out cross-
validation scheme and randomly sampling within the training set; see Methods for clarification). Statistical testing was performed using a one-sided
permutation test for each model separately (n= 1000 shuffled labels). For each iteration, we calculated a p value, and then averaged all p values. Boxplot
maxima/minima reflect the 95% confidence interval, the box bounds define the 1st and 3rd quartiles of the distribution, and the center line indicates the
median. Grey distributions indicate the null distribution generated from permutation tests (permuting labels 1000 times). (***= p < 0.001; **= p < 0.01;
*= p < 0.01). i Summary statistics of model performances. Reported accuracy is the mean across the distribution; red indicates statistically significant
decoding. Source data are provided as a Source Data file.
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address this gap, we built a task-performing ENN from empirical
data to identify the brain network mechanisms associated with
representational transformations during a complex cognitive
control task. This ENN was based on the conceptual frameworks
provided by the Guided Activation and Flexible Hub theories, yet
a lack of specificity regarding the functional equivalents of
hypothesized components (e.g., the context and hidden layers)
required us to perform additional theoretical and empirical work
to find those equivalents. First, we identified brain vertices that
were selective for task rules, sensory stimuli, motor responses, and
conjunctions to be included as candidate areas to test the theories.
Second, we mapped resting-state FC weights between these areas
using multiple linear regression. Finally, using activity flow
mapping, we found that incoming sensory and task rule activa-
tions were transformed via conjunction hubs to produce above-
chance behavioral predictions of outgoing motor response acti-
vations. Thus, we not only identified where in the brain different
task-related activations are, but also how these task activations are
transformed into behaviorally relevant motor activations through
network computations supported by the brain’s intrinsic network
organization.

Collectively, these findings suggest that flexible cognitive con-
trol is implemented by guided activations, as originally suggested
by the Guided Activation Theory3. However, to more fully test
this theory than prior work we had to substantially expand it,
such as identifying the functional equivalents of hypothesized
components in the human brain. Some of these components were
not located where originally hypothesized. For instance, rather
than context representations being confined to lateral prefrontal
cortex, we found such representations distributed throughout the
brain, with especially strong representation in the dorsal attention
network (only a portion of which is in lateral prefrontal cortex).
Similarly, the theory predicted the hidden layer (conjunction
hubs) to be in non-prefrontal association cortex, yet we found
some conjunction hubs in lateral prefrontal cortex and associated
cognitive control networks (CCNs). Thus, we have empirically
confirmed the broader Guided Activation Theory while expand-
ing and refining it.

The present results build on the Flexible Hub theory and other
findings emphasizing the role of CCNs in highly flexible
cognition1,28,34,35. Previous work on the Flexible Hub theory
focused on characterizing rapid updates to task rule representa-
tions, finding that CCNs represent rules compositionally in both
activity7,10,35 and FC15,16 patterns. The present results build on
those earlier findings, demonstrating that CCNs and other net-
works flexibly compose rule representations, since the ENN rule
activation inputs contained three rules whose fMRI activity pat-
terns were added compositionally to create the full task context.
Critically, however, we found that these compositional codes were
not enough to implement flexible task performance. Rather,
conjunctive representations that conjoin rule and stimulus
representations9,12 were required to interact nonlinearly with
these compositional representations. Interestingly, Kikumoto and
Mayr recently demonstrated that conjunctive representations are
critical to controlling motor responses, finding that the strength
of conjunctive representations was associated with the success of
motor responses36. Our results are consistent with those findings,
showing that without conjunctive representations producing
conditional interactions (i.e., through conjunction hub lesioning),
the task performance of the ENN was substantially impaired.
However, our results also differ from that study, since the con-
junctive representations we identified were not simply multi-
plicative interactions between context and stimuli activations.
Instead, our conjunctive representations are consistent with the
biased competition theory of attention, where additive compu-
tations were passed through a nonlinearity31. It will be important

for future work to distinguish the content of these two types of
stimulus and rule conjunctions, and whether the representational
content of conjunctions simultaneously contain both stimulus
and rule content, or if instead rule and stimulus conjunctions
collapse into contingency states for action selection as previously
reported in computational models37. Nevertheless, these findings
provide evidence to fill an important gap within the Flexible Hub
framework, suggesting that the flexibility of rule updates are
useful insofar as they can be integrated to form conjunctions with
stimulus activity.

The ENN characterized the representational transformations
required for task input activations to generate accurate output
activations (in motor cortex) directly from data. Model para-
meters, such as unit identification and inter-unit connectivity
estimation, were estimated without optimizing for task perfor-
mance. This contrasts with mainstream machine learning tech-
niques that iteratively train ANNs that directly optimize for
behavior13,19,20,38,39. Our approach enabled the construction of
functioning ENNs with above-chance task performance without
optimizing for behavior; instead, we were able to derive para-
meters from empirical neural data alone. Theoretically, the results
presented here are consistent with the goals of the Dynamic
Causal Modeling (DCM) framework, which aim to identify the
latent variables underlying input-output state transformations
during tasks40,41. However, in contrast to DCM, the present study
(1) uses intrinsic rest FC to (2) build predictive models of task-
evoked activity patterns coding for motor responses, which are
then (3) tested against empirical activity patterns and task-
appropriate behavior to assess model validity. These results sug-
gest that the human brain’s intrinsic network architecture, as
estimated with human fMRI data, is informative regarding the
design of task-performing functioning models of cognitive
computation.

We showed that the specific FC topography could predict inter-
area transformations of fMRI activations. In contrast, shuffling
these specific inter-area FC topographies yielded ENNs with
highly variable task performances, suggesting the computational
utility of the empirically-estimated FC patterns. Previous work has
illustrated that the functional network architecture of the brain
emerges from a structural backbone42–47. Building on this work,
we recently proposed that the functional network architecture of
the brain can be used to build network coding models––models of
brain function that describe the encoding and decoding of task-
relevant brain activity constrained by connectivity48. Related
proposals have also been put forward in the electron microscopy
connectomics literature, suggesting that structural wiring dia-
grams of the brain can inform functional models of biological
systems (e.g., the drosophila’s visual system or the human brain’s
intrinsic memory capacity)46,49,50. In addition, work in mean-field
network models have revealed a direct link between connectivity
and computations, finding that low-dimensional connectivity
patterns (which also exist in fMRI data51) are useful for per-
forming tasks52. Consistent with these proposals, our findings
establish the feasibility of leveraging intrinsic FC to model
representational transformations from sensory stimuli to motor
responses during context-dependent tasks.

Despite the present study providing strong evidence that the
estimated functional network model can perform tasks, several
theoretical and methodological limitations remain. First, though
we perform numerous control analyses by either lesioning or
altering the ENN architecture (Fig. 7), the space of alternative
possible models that can potentially achieve similar (if not better)
task performances is large. For example, here we included only a
single hidden layer (one layer of ‘conjunction hubs’). However, it
is possible—if not probable—that such transformations actually
involve a large sequence of transformations, similar to how the
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ventral visual stream transforms visual input into object codes,
from V1 to inferior temporal cortex20,21. Furthermore, recent
work has suggested that conjunctive representations emerge at
very fast timescales relative to the BOLD signal9,12. However, the
present study only focused on predicting conjunctive repre-
sentations (using task context and stimulus activations as inputs
to the ENN) in putative conjunction hubs (which did not require
explicit estimation of conjunctions, but instead the representa-
tional relations between task context and stimulus activations). It
is therefore likely that the identification of conjunctive repre-
sentations is dependent on both specific task demands and the
targeted level of analysis (e.g., neuronal circuits versus large-scale
functional networks). Here we opted for the simplest possible
network model that involved conjunction hubs at the level of
large-scale functional networks. Starting from this simple model
allowed us to reduce potential extraneous assumptions and model
complexity (such as modeling the extraction of stimulus features
from early visual areas and instead identifying late-stage sensory
features, or cortical-subcortical interactions for action
selection53,54), which likely would have been necessary in more
complex and detailed models. However, the current findings
provide a strong foundation for future studies to unpack the
mechanisms of finer-grained computations important for adap-
tive behavior.

Another assumption in the ENN was that activations were
guided by additive connectivity weights. Additive connectivity
weights assume inter-area predicted activations are the sum of
source activations weighted by connections. One potential alter-
native (among others) would have been multiplicative guided
activations; weighted activations that are multiplied (rather than
summed) from incoming areas, which has been previously pro-
posed as a potential alternative to designing ANNs55. However,
several recent studies have suggested that inter-area activations
are predicted via additive connectivity weights in both human
fMRI8,18, the primate visual system22, and the drosophila’s visual
system46, suggesting that using additive connectivity weights is an
appropriate model for how the brain implements computations.
Nevertheless, it will be important for future work to directly
adjudicate between potential alternatives (like multiplicative
connectivity weights) in neural implementations of cognitive
processes.

Finally, another limitation is that we constructed the ENN
model without recurrent interactions, which are known to play a
large role in neural computation56,57. However, we still success-
fully captured some temporal dynamics, since activations from
different task features (rule encoding and stimuli) were estimated
from distinct temporal windows. We also note that though we
estimate task encoding activity from the encoding period only, we
modeled the result of persistent (potentially recurrent) activity in
rule-representing regions by holding encoding activity in those
regions constant across the delay period to the stimulus period.
Nevertheless, though temporal dynamics (with recurrent feed-
back) likely play a role in shaping cognitive computations, we
illustrate here that simple dynamics (i.e., rules+ sensory
inputs→ conjunction hubs→motor outputs) involving the
interplay of static activation patterns are sufficient to model
representational transformations. We also tested the modeled
cognitive transformations at the group level, limiting our ability
to link individual task performance with individualized ENNs.
However, our findings still significantly advance current under-
standing of how the brain transforms task context and stimulus
activations into motor activations for behavior through compu-
tations implemented by intrinsic FC organization. Nevertheless, it
will be important for future studies to construct individualized
task-performing brain models that can simulate temporal and
recurrent dynamics constrained by empirical data, as this can

provide a more detailed computational account of the repre-
sentational transformations that contribute to individual beha-
vioral variability.

In conclusion, we constructed an ENN model from brain
connectivity data that was capable of performing a complex
cognitive control task. The model’s overall architecture was
consistent with the prominent Guided Activation Theory, effec-
tively validating the general form of that theory while sub-
stantially expanding it by revealing where and how its abstract
functional components are implemented in the human brain.
More broadly, this study illustrates an alternative perspective to
the standard approach of using learning algorithms to train
neural networks to perform tasks. Instead, brain data can be
converted into generative neural network models that perform
tasks, revealing how the brain generates that task performance.
We expect that these findings will drive new investigations into
the neural implementation of cognitive computations, providing
dual insight into how the brain implements cognitive processes
and how such knowledge can inform the design of ANN
architectures.

Methods
Participants. Data were collected from 106 human participants across two dif-
ferent sessions (a behavioral and an imaging session). Participants were recruited
from the Rutgers University-Newark community and neighboring communities.
Technical error during MRI acquisition resulted in removing six participants from
the study. Four additional participants were removed from the study because they
did not complete the behavior-only session. fMRI analysis was performed on the
remaining 96 participants (54 females). All participants gave informed consent
according to the protocol approved by the Rutgers University Institutional Review
Board. The average age of the participants that were included for analysis was
22.06, with a standard deviation of 3.84. Participants were compensated at a rate of
$15/hour for behavioral sessions, and $30/hour for imaging sessions. We excluded
participants that were not right-handed and were non-native English speakers.
Additional details regarding this participant cohort have been previously
reported58.

C-PRO task paradigm. We used the Concrete Permuted Operations (C-PRO)
paradigm (Fig. 2a) during fMRI acquisition, and used a computationally analogous
task when training our ANN model. The details of this task are described below,
and are adapted from a previous study8.

The C-PRO paradigm is a modified version of the original PRO paradigm
introduced in Cole et al. (2010)59. Briefly, the C-PRO cognitive paradigm permutes
specific task rules from three different rule domains (logical decision, sensory
semantic, and motor response) to generate dozens of novel and unique task
contexts. This creates a context-rich dataset in the task configuration domain akin
in some ways to movies and other condition-rich datasets used to investigate visual
and auditory domains5. The primary modification of the C-PRO paradigm from
the PRO paradigm was to use concrete, sensory (simultaneously presented visual
and auditory) stimuli, as opposed to the abstract, linguistic stimuli in the original
paradigm. Visual stimuli included either horizontally or vertically oriented bars
with either blue or red coloring. Simultaneously presented auditory stimuli
included continuous (constant) or non-continuous (non-constant, i.e., “beeping”)
tones presented at high (3000 Hz) or low (300 Hz) frequencies. Figure 2a
demonstrates two example task-rule sets for “Task 1” and “Task 64”. The paradigm
was presented using E-Prime software version 2.0.10.35360.

Each rule domain (logic, sensory, and motor) consisted of four specific rules,
while each task context was a combination of one rule from each rule domain. A
total of 64 unique task contexts (4 logic rules × 4 sensory rules × 4 motor rules)
were possible, and each unique task set was presented twice for a total of 128 task
miniblocks. Identical task sets were not presented in consecutive blocks. Each task
miniblock included three trials, each consisting of two sequentially presented
instances of simultaneous audiovisual stimuli. A task block began with a 3925 ms
encoding screen (5 TRs), followed by a jittered delay ranging from 1570ms to
6280 ms (2–8 TRs; randomly selected). Following the jittered delay, three trials
were presented for 2355 ms (3 TRs), each with an inter-trial interval of 1570 ms (2
TRs). A second jittered delay followed the third trial, lasting 7850 ms to 12,560 ms
(10–16 TRs; randomly selected). A task block lasted a total of 28,260 ms (36 TRs).
Subjects were trained on four of the 64 task contexts for 30 min prior to the fMRI
session. The four practiced rule sets were selected such that all 12 rules were equally
practiced. There were 16 such groups of four task sets possible, and the task sets
chosen to be practiced were counterbalanced across subjects. Subjects’ mean
performance across all trials performed in the scanner was 84% (median= 86%)
with a standard deviation of 9% (min= 51%; max= 96%). All subjects performed
statistically above chance (25%).
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fMRI acquisition and preprocessing. The following fMRI acquisition details is
taken from a previous study that used the identical protocol (and a subset of the
data)8.

Data were collected at the Rutgers University Brain Imaging Center (RUBIC).
Whole-brain multiband echo-planar imaging (EPI) acquisitions were collected with a
32-channel head coil on a 3 T Siemens Trio MRI scanner with TR= 785ms,
TE= 34.8 ms, flip angle= 55°, Bandwidth 1924/Hz/Px, in-plane FoV read= 208mm,
72 slices, 2.0mm isotropic voxels, with a multiband acceleration factor of 8. Whole-
brain high-resolution T1-weighted and T2-weighted anatomical scans were also
collected with 0.8mm isotropic voxels. Spin echo field maps were collected in both the
anterior to posterior direction and the posterior to anterior direction in accordance
with the Human Connectome Project preprocessing pipeline61. A resting-state scan
was collected for 14min (1070 TRs), prior to the task scans. Eight task scans were
subsequently collected, each spanning 7min and 36 seconds (581 TRs). Each of the
eight task runs (in addition to all other MRI data) were collected consecutively with
short breaks in between (subjects did not leave the scanner).

fMRI preprocessing. The following details are adapted from a previous study that
used the same preprocessing scheme on a different dataset62.

Resting-state and task-state fMRI data were minimally preprocessed using the
publicly available Human Connectome Project minimal preprocessing pipeline
version 3.5.0. This pipeline included anatomical reconstruction and segmentation,
EPI reconstruction, segmentation, spatial normalization to standard template,
intensity normalization, and motion correction63. After minimal preprocessing,
additional custom preprocessing was conducted on CIFTI 64k grayordinate
standard space for vertex-wise analyses using a surface based atlas25. This included
removal of the first five frames of each run, de-meaning and de-trending the time
series, and performing nuisance regression on the minimally preprocessed data63.
We removed motion parameters and physiological noise during nuisance
regression. This included six motion parameters, their derivatives, and the
quadratics of those parameters (24 motion regressors in total). We applied
aCompCor on the physiological time series extracted from the white matter and
ventricle voxels (5 components each extracted volumetrically)64. We additionally
included the derivatives of each component time series, and the quadratics of the
original and derivative time series (40 physiological noise regressors in total). This
combination of motion and physiological noise regressors totaled 64 nuisance
parameters, and is a variant of previously benchmarked nuisance regression
models63.

fMRI task activation estimation. We performed a standard task GLM analysis on
fMRI task data to estimate task-evoked activations from different conditions. Task
GLMs were fit for each subject separately, but using the fully concatenated task
dataset (concatenated across 8 runs). We obtained regressors for each task rule
(during the encoding period), each stimulus pair combination (during stimulus
presentation), and each motor response (during button presses). For task rules, we
obtained 12 regressors that were fit during the encoding period, which lasted
3925 ms (5 TRs). For logic rules, we obtained regressors for “both”, “not both”,
“either”, and “neither” rules. For sensory rules, we obtained regressors for “red”,
“vertical”, “high”, and “constant” rules. For motor rules, we obtained regressors for
“left middle”, “left index”, “right middle”, and “right index” rules. Note that a given
encoding period contained overlapping regressors from each of the logic, sensory,
and motor rule domains. However, the regressors were not collinear since specific
rule instances were counterbalanced across all encoding blocks.

To obtain activations for sensory stimuli, we fit regressors for each stimulus
pair. For example, for the color dimensions of a stimulus, we fit separate regressors
for the presentation of red-red, red-blue, blue–red, and blue–blue stimulus pairs.
This was done (rather than fitting regressors for just red or blue) due to the
inability to temporally separate individual stimuli with fMRI’s low sampling rate.
Thus, there were 16 stimulus regressors (four conditions for each stimulus
dimension: color, orientation, pitch, continuity). Stimulus pairs were presented
after a delay period, and lasted 2355 ms (3 TRs). Note that a given stimulus
presentation period contained overlapping regressors from four different
conditions, one from each stimulus dimension. However, the stimulus regressors
were not collinear since stimulus pairings were counterbalanced across all stimulus
presentation periods (e.g., red-red stimuli were not exclusively presented with
vertical–vertical stimuli).

Finally, to obtain activations for motor responses (finger button presses), we fit
a regressor for each motor response. There were four regressors for motor
responses, one for each finger (i.e., left middle, left index, right middle, right index
fingers). Responses overlapped with the stimulus period, so we fit regressors for
each button press during the 2355 ms (3 TR) window during stimulus
presentations. Note, however, that while response regressors overlapped with
stimulus regressors, estimated response activations were independent from
stimulus activations. There were two reasons for this: (1) Motor response and
stimulus regressors were equally independent from each other due to
counterbalancing across conditions (e.g., the same stimulus elicited all other motor
responses equally; see Supplementary Fig. 9); (2) Motor response and stimulus
activations were estimated in the same task GLM model (multiple linear regression,
across the counterbalanced conditions), such that activations associated with each
condition contained unique variance. (This is because multiple linear regression

conditions on all other regressors.) A strong validation of this approach was that
the finger activations could be reliably extracted according to the appropriate
topographic organization in somatomotor cortex (Fig. 4c).

For a schematic of how task GLMs were performed, see Supplementary Fig. 8.
For the task design matrix of an example subject, see Supplementary Fig. 9.

fMRI decoding: identifying sensory stimulus activations. Decoding analyses
were performed to identify the brain areas that contained relevant task context and
sensory stimulus activations. To identify the brain areas that contained relevant
sensory stimulus representation, we performed four, four-way decoding analyses
on each stimulus dimension: color (vision), orientation (vision), pitch (audition),
constant (audition). For color stimulus representations, we decoded activation
patterns where the stimulus pairs were red-red, red-blue, blue–red, and blue–blue.
For orientation stimulus representations, we decoded activation patterns where the
stimulus pairs were vertical–vertical, vertical–horizontal, horizontal–vertical,
horizontal–horizontal. For pitch stimulus representations, we decoded activation
patterns where the stimulus pairs were high–high, high–low, low–high, and
low–low. Finally, for constant (beeping) stimulus representations, we decoded
activation patterns where the stimulus pairs were constant–constant,
constant–beeping, beeping–constant, beeping–beeping.

Decoding analyses were performed using the vertices within each parcel as
decoding features. We limited decoding to visual network parcels for decoding
visual stimulus features, and auditory network parcels for decoding auditory
stimulus features. Visual parcels were defined as the VIS1 and VIS2 networks in Ji
et al. (2019)65, and auditory networks as the AUD network. We performed a
group-level decoding analysis with a 12-fold cross-validation scheme. We used a
minimum-distance/nearest-neighbor classifier (based on Pearson’s correlation
score), where a test set sample would be classified as the condition whose centroid
is closest to in the activation pattern space24. P values were calculated using a
binomial test. Statistical significance was assessed using a false discovery rate (FDR)
corrected threshold of p < 0.05 across all 360 regions. To ensure robustness of all
fMRI decoding analyses, we additionally performed logistic classifications (linear
decoding) to compare with minimum-distance-based classifiers. (See also refs. 66,67

for comparing distance versus linear-based similarity measures.) In general, there
were no differences between the two decoding schemes, although in one instance
(task-rule decoding), minimum-distance classifiers significantly outperformed
logistic classification (Supplementary Fig. 7).

fMRI decoding: Identifying task rule activations. To identify the brain areas that
contained task rule activations, we performed a 12-way decoding analysis on the
activation patterns for each of the 12 task rules. We used the same decoding and
cross-validation scheme as above (for identifying sensory stimulus representa-
tions). However, we ran the decoding analyses on all 360 parcels, given previous
evidence that task rule activity is widely distributed across cortex8. P values were
calculated using a binomial test. Statistical significance was assessed using an FDR-
corrected threshold of p < 0.05 across all 360 regions.

fMRI activation analysis: Identifying motor response activations. To identify
the brain areas/vertices that contained motor response activity, we performed
univariate analyses to identify the finger press activations in motor cortex. In
contrast to identifying other task components via decoding analyses (e.g., rules and
stimuli), we were able to use simpler univariate methods (i.e., t-tests) to identify
motor response vertices. This was because the identification of index versus middle
finger response vertices did not require a multi-way decoding analysis (unlike
stimulus and rule conditions, which had 4 and 12 conditions, respectively). Instead,
motor response identification only required identifying vertex-wise receptive field
activations corresponding to each finger (suitable for a two-way univariate test).
This provided a more constrained and biologically interpretable receptive field for
each response activation, rather than including the entire primary cortex.

We performed two univariate activation contrasts, identifying index and middle
finger activations on each hand. For each hand, we performed a two-sided group
paired (by subject) t-test contrasting index versus middle finger activations. We
constrained our analyses to include only vertices in the somatomotor network.
Statistical significance was assessed using an FDR-corrected p < 0.05 threshold,
resulting in a set of vertices that were selective to button press representations in
motor cortex (see Fig. 4c).

We subsequently performed a cross-validated decoding analysis on vertices
within the motor cortex to establish a baseline noise ceiling of motor response
decodability (see Fig. 7a, h). We decoded finger presses on each hand separately. To
identify specific vertices for selective response conditions, we performed feature
selection on each cross-validation loop separately to avoid circularity. Feature
selection criteria (within each cross-validation loop) were vertices that survived a
p < 0.05 threshold (using a paired t-test). We performed a four-fold cross-
validation scheme using a minimum-distance classifier, bootstrapping training
samples for each fold. Moreover, because the decoding analysis was limited to a
single ROI (as opposed to across many parcels/ROIs), we were able to compute
confidence intervals (by performing multiple cross-validation folds) and run
nonparametric permutation tests since it was computationally tractable. We ran
each cross-validation scheme 1000 times to generate confidence intervals. Null
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distributions were computed by randomly permuting labels 1000 times. P values
were computed by comparing the null distribution against each of the bootstrapped
accuracy values, then averaging across p values.

Identifying conjunctive representations: ANN construction. We trained a
simple feedforward ANN (with layers organized according to the Guided Activa-
tion Theory) on a computationally analogous form of the C-PRO task. This
enabled us to investigate how task rule and stimulus activations conjoin into
conjunctive activations in an ANN’s hidden layer.

To model the task context input layer, we designated an input unit for each task
rule across all rule domains. Thus, we had 12 units in the task context layer. A
specific task context (or rule set) would selectively activate three of the 12 units; one
logic rule, one sensory rule, and one motor rule. Input activations were either 0 or
1, indicating an active or inactive state.

To model the stimulus input layer, we designated an input unit for a stimulus
pair for each sensory dimension. To isolate visual color stimulus pairings, we
designated input units for a red-red pairing, red-blue pairing, blue–red pairing, and
blue–blue pairing. (Note that each unit represented a stimulus pair because the
ANN had no temporal dynamics to present consecutive stimuli). To isolate visual
orientation stimulus pairings, we designated inputs for a vertical–vertical,
vertical–horizontal, horizontal–vertical, and horizontal–horizontal stimulus
pairing. To isolate auditory pitch stimulus pairings, we designated input units for
high–high, high–low, low–high, and low–low frequency combinations. Finally, to
isolate auditory continuity stimulus pairings (i.e., whether an auditory tone was
constant or beeping), we designated input units for constant–constant,
constant–beeping, beeping–constant, and beeping–beeping. Altogether, across the
four sensory domains, we obtained 16 different sensory stimulus pair input units.
For a given trial, four units would be activated to simulate a sensory stimulus
combination (one unit per sensory domain). For example, a single trial might
observe red–red (color), vertical–horizontal (orientation), low–high (pitch),
constant–beeping (continuity) stimulus combination. Thus, to simulate an entire
trial including both context and sensory stimuli, 7/28 possible input units would be
activated.

We constructed our ANN with two hidden layers containing 1280 units each.
This choice was due to recent counterintuitive evidence suggesting that the learning
dynamics of extremely high-dimensional ANNs (i.e., those with many network
parameters to tune) naturally protect against overfitting, supporting generalized
solutions68. Moreover, we found that across many initializations, the
representational geometry identified in the ANN’s hidden layer was highly
replicable. Finally, our output layer contained four units, one for each motor
response (corresponding to left middle, left index, right middle, right index finger
presses).

The ANN transformed a 28-element input vector (representing a specific trial
instance) into a four-element response vector, and obeyed the equation

Y ¼ f sðXhidden2Wout þ bÞ ð1Þ
where Y corresponds to the four-element response vector, f s is a sigmoid function,
Wout corresponds to the connectivity weight matrix between the hidden and output
layer, b is a bias term, and Xhidden2 is the activity vector of the 2nd hidden layer.
Xhidden2 was obtained by the equation

Xhidden2 ¼ f rððXhidden1 þ IÞWhidden þ bÞ ð2Þ

Xhidden1 ¼ f rððXinputÞWinput þ bÞ ð3Þ
Where f r is a rectified linear function (ReLU), Whidden is the connectivity matrix
between the hidden layers, Xhidden1 corresponds to the 1st hidden layer activations
that contain trial information, Xinput is the input layer, Winput is the connectivity
matrix between the input and 1st hidden layer, and I is a noise vector sampled
from a normal distribution with 0-mean and 1

n-variance, where n refers to the
number of hidden units.

Identifying conjunctive representations: ANN training. The ANN was trained
by minimizing the mean squared error between the network’s outputs and the
correct target output. The mean squared error was computed using a mini-batch
approach, where each mini-batch consisted of 192 distinct trials. (Each of the 64
unique task contexts were presented three times (with randomly sampled stimuli)
in each mini-batch. Training was optimized using Adam, a variant of stochastic
gradient descent69. We used the default parameters in PyTorch (version 1.0.1),
with a learning rate of 0.0001. Training was stopped when the last 1000 mini-
batches achieved over 99.5% average accuracy on the task. This performance was
achieved after roughly 10,000 mini-batches (or 1,920,000 trials). Weights and
biases were initialized with a uniform distribution Uð�

ffiffiffi

k
p

;
ffiffiffi

k
p

Þ, where k ¼ 1
targets,

where ‘targets’ represents the number of units in the next layer. We note that the
representational geometry we observed in the hidden layer was robust to different
initializations and hyperparameter choices, indicating strong test-retest reliability
of learned hidden layer representations (Supplementary Fig. 6). For example, the
ANN’s hidden layer RSM was also consistent across different ANN instantiations
with different hidden layer sizes (Supplementary Fig. 6). We also ran an additional
null model in which we randomly shuffled trial labels during training, arbitrarily

remapping rule- and stimulus-response mappings. We found that with the ANN
architecture and parameters, the ANN could not learn the task with shuffled labels
since the hierarchical reasoning structure of the C-PRO task was destroyed with
shuffling. This suggested that the unshuffled ANN we used did not learn the
C-PRO task with a memorization strategy.

We note that the ANN is entirely distinct from the ENN, and that only the
ANN used gradient descent for training. The sole purpose of the ANN was to
identify conjunctive representations in the ANN’s hidden layer, which was in turn
used to identify conjunctive representations in empirical data (through matching
the representational similarity matrices of the ANN and empirical data described
below).

Identifying conjunctive representations: ANN representational analysis. We
extracted the representational geometry of the ANN’s 2nd hidden layer using
representational similarity analysis (RSA)70. This was done to understand how task
rule and stimulus activations were transformed in the hidden layer. To extract the
representational geometry of the hidden layer, we systematically activated a single
unit in the input layer (which corresponded to either a task rule or sensory sti-
mulus pair), and estimated the corresponding hidden layer activations (using
trained connectivity weights). This resulted in a total of 28 (12 task rules and
16 sensory stimuli combinations) activation patterns. The representational simi-
larity matrix (RSM) was obtained by computing the Pearson correlation between
the hidden layer activation patterns for all 28 conditions.

Identification of the control ANN’s hidden layer RSM (Supplementary Fig. 4b)
was obtained by randomly shuffling all weights and biases (within each layer) after
training. This preserved the distribution of the weights and biases of the trained
ANN, while impairing the ANN’s ability to properly perform the task. Shuffling
was performed 10,000 times, and the null RSM was obtained by averaging the
RSMs across permutations.

Identifying conjunctive representations: fMRI analysis. We compared the
representational geometry of the ANN’s hidden layer to the representational
geometry of each brain parcel. This was possible because we extracted the exact
same set of activation patterns (e.g., activations for task rules and sensory stimuli)
in empirical data as our ANN model, enabling a direct comparison of repre-
sentations. The representational geometry was estimated as the RSM of all task
rules and sensory stimuli conditions.

We first estimated the empirical RSMs for every brain parcel separately in the
Glasser et al. (2016) atlas. This was done by comparing the activation patterns of
each of the 28 task conditions using the vertices within each parcel (12 task rule
activations, 16 sensory stimulus activations). We then applied a Fisher’s z-
transform on both the empirical and ANN’s RSMs, and then estimated the
Spearman’s rank correlation between the Fisher’s z-transformed ANN and
empirical RSMs (using the upper triangle values only). This procedure was
performed on the RSM of every brain parcel, providing a similarity score between
each brain parcel’s and the ANN’s representational geometry. For our main
analysis, we selected the top 10 parcels with highest similarity to the ANN’s hidden
layer. However, we also performed additional analyses using the top 20, 30, and 40
parcels.

FC weight estimation. We estimated resting-state FC to identify weights between
layers in our empirical model. This was similar to our previously published
approach that identified FC weights between pairs of brain regions8. This involved
identifying FC weight mappings between the task rule input layer to the hidden
layer, sensory stimulus input layer to the hidden layer, and the hidden layer to the
motor output layer. For each FC mapping, we estimated the vertex-to-vertex FC
weights using principal components linear regression. Consistent with our prior
studies8,18, we used principal components regression because most layers had more
vertices (i.e., predictors) than samples in our resting-state data (resting-state fMRI
data contained 1065 TRs). Principal components regression first identifies a set of
principal components from all of the vertex time series of the source layer (via
principal component analysis), then fits those latent components to each target
layer vertex time series using multiple linear regression. For all FC estimations, we
used principal components regression with 500 components, as we have in prior
work8,18. Specifically, FC weights were estimated by fitting principal components to
the regression equation

Y ¼ β0 þ∑500
i Xiβi þ ϵ ð4Þ

where Y corresponds to the t × n matrix with t time points and n vertices (i.e., the
target vertices to be predicted), β0 corresponds to a constant term, βi corresponds
to the 1 × nmatrix reflecting the mapping from the component time series onto the
n target vertices, Xi corresponds to the t × 1 component time series for component
i, and ϵ corresponds to the error in the regression model. Note that X corresponds
to the t × 500 component matrix obtained from a principal component analysis on
the resting-state data from the source layer. Also note that these loadings onto
these 500 components were saved for later, when task activation patterns from a
source layer were projected onto a target layer. The loadings project the original
vertex-wise task activation patterns in the source layer onto a lower-dimensional
space enabling faster computations. A similar approach was used in a previous

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28323-7 ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:673 | https://doi.org/10.1038/s41467-022-28323-7 | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


study71. FC weights were computed for each individual separately, but then
averaged across subjects to obtain group FC weights.

Note that in some cases, it was possible for overlap between the source and
target vertices. (For example, some conjunction hub vertices may have coincided
with the same vertices in the context layer.) In these cases, these overlapping
vertices were excluded in the set of predictors (i.e., removed from the source layer)
in the regression model.

Simulating sensorimotor transformations with multi-step activity flow map-
ping. We generated predictions of motor response activations (in motor cortex) by
assessing the correct motor response given a specific task context and sensory
stimulus activation pattern (for additional details see Supplementary Fig. 1). For
each subject, we simulated 960 pseudo-trials. (“Pseudo-trials” refer to simulated
trials using estimated activations rather than the actual experimental trials subjects
performed.) This consisted of the 64 unique task contexts each paired with 15
randomly sampled stimulus combinations for a total of 960 pseudo-trials. For a
pseudo-trial, the task context input activation pattern was obtained by extracting
the activation vector for the logic, sensory, and motor rule, and computing the
mean rule vector (i.e., additive compositionality). The sensory stimulus input
activation pattern was obtained by extracting the relevant sensory stimulus acti-
vation pattern. (Note that for a given pseudo-trials, we only extracted the activation
pattern for the sensory feature of interest. For example, if the rule was “Red”, only
color activation patterns would be extracted, and all other stimulus activations
would be set to 0). Thus, the context and sensory stimulus activation patterns could
be defined as

Xcontext ¼ ðRlogic þ Rsensory þ RmotorÞ=3 ð5Þ

Xstimulus ¼ Xsensory ð6Þ
where Xcontext corresponds to the input activation pattern for task context, Rlogic

corresponds to extracted logic rule activation pattern (e.g., “Both”, “Not Both”,
“Either”, or “Neither”) obtained from the task GLM, Rsensory corresponds to the
extracted sensory rule activation pattern from the task GLM, Rmotor corresponds to
the extracted motor rule activation pattern from the task GLM, and Xstimulus cor-
responds to the extracted sensory stimulus activation pattern that is indicated by
the task context.

Xcontext and Xstimulus reflect the input activation patterns that were used to
generate/predict motor response conditions. Importantly, these input activation
patterns contained no information about the motor response, as illustrated by
alternative null models (Fig. 7).

We used the FC weight maps to project Xcontext and Xstimulus onto the hidden/
conjunction layer vertices. The projections (or predicted activation patterns on the
hidden layer) were then thresholded to remove any negative BOLD predictions
(i.e., values below the between-task-block resting baseline). This thresholding was
used because it is equivalent to a rectified linear unit (ReLU), a commonly used
nonlinear function in artificial neural networks39. Thus, the hidden layer was
defined by

Xhidden ¼ f rðXcontextWcontext2hidden þ XstimulusWstimulus2hiddenÞ ð7Þ
where Xhidden corresponds to the predicted hidden layer activation pattern, f r is a
ReLU function (i.e., f rðxÞ ¼ maxðx; 0Þ), Wcontext2hidden corresponds to the resting-
state FC weights between the context and hidden layer, and Wstimulus2hidden
corresponds to the resting-state FC weights between the stimulus and hidden layer.
Note that all FC weights (Wx) were computed using a principal component
regression with 500 components. This requires that the vertex-wise activation space
(e.g., Xcontext) be projected onto component space such that we define

Wx ¼ UŴpc ð8Þ
where U corresponds a m × 500 matrix which maps the source layer’s m vertices
into component space, and Ŵpc is a 500 × n matrix that maps the components

onto the target layer’s n vertices. (Note that Ŵpc corresponds to the regression

coefficients from Eq. (4), and that both U and Ŵpc are estimated from resting-state
data.) Thus, Wx is an m x n transformation from a source layer’s spatial pattern to
a target layer’s spatial pattern that is achieved through principal component
regression on resting-state fMRI data.

Finally, we generated a predicted motor output response by computing

Xoutput ¼ XhiddenWhidden2output ð9Þ
where Xoutput corresponds to the predicted motor response (in motor cortex), and
Whidden2output corresponds to the resting-state FC weights between the hidden and
output layer. The full model computation can thus be formalized as

Xoutput ¼ f rðXcontextWcontext2hidden þ XstimulusWstimulus2hiddenÞWhidden2output ð10Þ
Xoutput only yields a predicted activation pattern for the motor cortex for a given

context and stimulus input activation pattern. To evaluate whether Xoutput could
successfully predict the correct motor response for a given pseudo-trials, we
constructed an ideal ‘task solver’ that would indicate the correct motor response on
a given pseudo-trial (Supplementary Fig. 1). This solver would then be used to

identify the correct motor response activation pattern such that we could compare
the predicted motor cortex activation with the actual motor cortex activation
pattern.

We simulated 960 pseudo-trials per subject, randomly sampling context and
stimulus input activation patterns. Because we sampled across the 64 task contexts
equally (15 pseudo-trials per context), the correct motor responses were equally
counterbalanced across 960 pseudo-trials. Thus, of the 960 simulated pseudo-trials
for each subject, 240 pseudo-trials yielded a left middle, left index, right middle,
and right index response each. For each of the 240 predicted motor response
patterns we subsequently averaged across pseudo-trials such that we obtained four
predicted motor response patterns for each subject. This choice was made for
computational tractability (and boosting of signal-to-noise ratio), enabling us to
downsample the large number of simulated pseudo-trials into predicted
prototypical response activations for individual subjects. This reduced the number
of samples the classifier had to train on 240-fold. Statistical evaluation of the 4
predicted (averaged) motor responses per subject was performed at the group level
using a cross-validation scheme described below. See Supplementary Fig. 1b for a
description of subject- versus group-level contributions to the ENN model.

Statistical and permutation testing of predicted motor response activations.
The simulated empirical model generated predicted activations of motor activations in
motor cortex. However, the predictions would only be interesting if they resembled
actual motor response activations directly estimated from the response period via task
GLM. In other words, without a ground truth reference to the actual motor response
activation patterns, the predicted activation patterns would hold little meaning. The
simulated empirical model generated four predicted activation patterns corresponding
to predicted motor responses for each subject. We also had four actual activation
patterns corresponding to motor responses that were extracted from the motor
response period using a standard task GLM for each subject. To test whether the
predicted activation patterns conformed to the actual motor response activation pat-
terns, we trained a decoder on the predicted motor response activations and tested on
the actual motor response activations of held-out subjects. We used a four-fold cross-
validation decoding scheme (with a minimum-distance/Pearson correlation classifier),
where training was performed on predicted motor activation patterns of 72 subjects,
while testing was performed on the actual motor activation patterns of 24 held-out
subjects. Training samples were randomly sampled with replacement. Training a
decoder on the predicted activations and decoding the actual activations made this
analysis consistent with a prediction perspective–we could test if, in the absence of any
motor task activation, the ENN could predict actual motor response activation patterns
that correspond to behavior.

Statistical significance was assessed using permutation tests. We permuted the
labels of the predicted motor responses while testing on the actual motor responses.
Null distributions are visualized in gray (Fig. 7h). For each model, we repeated the
four-fold cross-validation analysis 1000 times with correct labels to evaluate the
robustness of the decoding accuracies. Statistical significance was assessed by
generating a nonparametric p value estimated from the null distribution for each
iteration’s accuracy. Reported p values were the average across all p values for each
model. Statistical significance was defined by a p < 0.05 threshold.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided as a Source Data file. In addition, all raw data related to this study
are publicly available on OpenNeuro (https://openneuro.org/datasets/ds003701). Source
data are provided with this paper.

Code availability
All code related to this study is publicly available on Zenodo (https://doi.org/10.5281/
zenodo.5791244) and GitHub (https://github.com/ito-takuya/sr_enn). We also used
publicly available software packages, including PyTorch (version 1.0.1), Scikit-learn
(version 0.20.3), NumPy (version 1.17.0), Scipy (version 1.5.0).
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