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Abstract 

Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding 
sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardio-
myopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in 
the Ca2+-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. 
Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn muta-
tions have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity, while 
DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myo-
filament Ca2+ sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and 
cellular pathogenic mechanisms of the three types of inherited cardiomyopathy.  
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1  Introduction 

Cardiomyopathies are difficult and complicated diseases 
of heart muscle associated with heart failure and/or sudden 
cardiac death, which are classified by the World Health Or-
ganization (WHO) in 1995 into four main forms; hypertro-
phic cardiomyopathy (HCM), dilated cardiomyopathy 
(DCM), restrictive cardiomyopathy (RCM), and arrhyth-
mogenic right ventricular cardiomyopathy (ARVC).[1] HCM 
is characterized by ventricular muscle hypertrophy, which 
especially involves the increased thickness of interventricu-
lar septum, leading to a marked decrease in left ventricular 
(LV) chamber volume. HCM has impaired LV diastolic 
function probably because of hypertrophy itself, interstitial 
fibrosis and/or myocyte disarray, while it usually has nor-
                                                        
Correspondence to: Qun-Wei Lu, Key Laboratory of Molecular Biophys-
ics of Ministry of Education, College of Life Science and Technology, 
Center for Human Genome Research, Huazhong University of Science and 
Technology, Wuhan 430074, China; Sachio Morimoto, Department of 
Clinical Pharmacology, Graduate School of Medical Sciences, Kyushu 
University, Fukuoka 812-8582, Japan. E-mails: luqw@mail.hust.edu.cn (Lu 
QW), morimoto@med.kyushu-u.ac.jp (Morimoto S) 
Received: July 13, 2012 Revised: November 13, 2012 
Accepted: January 30, 2013  Published online: March 17, 2013 

mal, or slightly attenuated LV systolic function.[2,3] The 
prevalence of HCM is about 1/500, in which more than 70% 
are familial cases. DCM is characterized by abnormal 
enlargement of LV or both ventricular chambers with im-
paired systolic function, affecting about 36.5 in 100,000 
people, of whom about 25%−30% are familial cases. Its 
prognosis is poor due to high frequency of arrhythmias and 
sudden death, and there are no effective therapeutic drugs at 
end stage and heart transplantation is the most effective 
treatment for survival.[4] RCM, which is sometimes familial, 
is a rare form of cardiomyopathy, characterized by impaired 
ventricular filling with normal or decreased diastolic vol-
ume of either, or both ventricles and normal, or near normal, 
systolic function and wall thickness.[5,6] ARVC is character-
ized by progressive fibrofatty replacement of right ventricu-
lar myocardium, with palpitations, syncope, and sudden 
death. Its prevalence is between 1/1000 and 1/5000, with 
10% of deaths occurring before age 19 and 50% before age 
35.[1,7] 

Since Geisterfer-Lowrance, et al.[8] reported the first 
HCM-causing mutation of β-myosin heavy chain (β-MyHC) 
gene in 1990, a large number of mutations in sarcomeric 
protein genes that encode β-MyHC, cardiac troponin T 
(cTnT), cardiac troponin I (cTnI), cardiac troponin C  
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(cTnC), α-tropomyosin (α-Tm), cardiac myosin binding 
protein C (MyBP-C), ventricular myosin light chains 1 and 
2 (LC1, LC2), actin and titin/connection, etc.,[2,8-16] as well 
as cytoskeletal and nuclear membrane protein genes that 
encode dystrophin, desmin, tafazzin, δ-sarcoglycan, lamin 
A/C, etc.,[17-20] have been identified as a cause of HCM, 
DCM and RCM. In contrast, no sarcomeric protein genes 
have been shown to be responsible for ARVC. Molecular 
genetic testing has so far indicated that ARVC is associated 
with more than eight genes which encode the transforming 
growth factor β-3 gene (TGFB3), ryanodine receptor 2, 
desmoplakin, transmembrane protein 43, junction plakoglo-
bin (also known as gamma catenin), etc.[21,22] Many studies 
have been made on the structural and/or functional conse-
quences of mutations, but the molecular mechanisms by 
which mutations found in the above genes lead to the 
pathogenesis of various forms of cardiomyopathy are not 
entirely clear. 

Sarcomere, a structural unit of the contractile apparatus 
myofibril in cardiac muscle, has thick and thin filaments, 
which are composed of myosin and actin/tropomyosin/tro-
ponin complex, respectively. The molecular mechanism of 
Ca2+ regulation of muscle contraction has extensively been 
investigated since Dr. Ebashi discovered troponin in striated 
muscle contraction system.[23,24] It is now common knowl-
edge that troponin consists of three subunits with distinct 
function and structure, in which TnT anchors Tn complex to 
Tm, TnI inhibits the actin-myosin contractile interaction, 
and TnC removes the inhibitory action of TnI upon binding 
Ca2+. Until now, there have been over 100 mutations found 
in three cTn subunits causing HCM, DCM or RCM. This 
article focuses on the molecular mechanisms underlying the 
pathogenesis of cardiomyopathies caused by these muta-
tions.  

2  Troponin complex 

Cardiac muscle contraction is generated by the interac-
tion between myosin head and thin filament, upon activated 
actomyosin Mg2+-ATPase.[25,26] Thin filament is composed 
of actin, Tm and Tn. Actin molecules polymerize into a 
double helical filament, which forms the backbone of the 
thin filament. Tm is an α-helical coiled-coil fibrous protein 
interacting with adjacent Tm molecules in a head to tail 
manner and is located along polymerized actin together with 
Tn complex at a actin: Tm: Tn ratio of 7: 1: 1.[27,28] Tn con-
sists of three subunits: TnT, which anchors Tn complex to 
Tm, also interacts directly with actin; TnI, which is involved 
in the inhibition of actomyosin Mg2+-ATPase and inhibits 
actin-myosin interactions at diastolic levels of intracellular 

Ca2+; TnC, which is a Ca2+-binding subunit that removes 
TnI inhibition upon Ca2+ binding. Tn plays a key role in the 
transition from diastole to systole of cardiac muscle. When 
the cytoplasmic Ca2+ concentration of cardiac myocytes is 
low around 2 × 10-7 mol/L, the contractile interaction of 
actin with myosin head is inhibited by Tn-Tm. When cyto-
plasmic Ca2+ concentration is raised by electrochemical 
coupling involving a membrane controlled release of Ca2+ 
into sarcoplasm and Ca2+ mobilization known as cal-
cium-induced calcium release, Ca2+ binds to TnC and trig-
gers a series of conformational changes of protein-protein 
interactions in the thin filament, which relieves the inhibi-
tion by Tn-Tm and thus promotes the contractile interaction 
between actin and myosin.[29-32] 

2.1  cTnT mutations in HCM, DCM and RCM 

TnT has two functionally and structurally distinct do-
mains named T1 and T2.[33,34] T1 (N-terminal region of 
TnT) anchors Tn complex to the thin filament through its 
strongly binding to Tm. On the other hand, T2 (C-terminal 
region of TnT) interacts with other Tn subunits (TnI and 
TnC) and Tm/actin.[35-39] The molecular weight of TnT is 
31−36 ku, with 250−300 amino acid residues. cTnT is a 
peptide of 288 amino acid residues with approximate 35 ku 
of molecular weight. In human heart, there are four cTnT 
isoforms (cTnT1-cTnT4) produced by alternative splicing 
of cTnT transcripts at exon 4 and exon 5.[40,41] It is sug-
gested that the alternative splicing of cTnT may contribute 
to altered myofilament response to Ca2+ in cardiac muscle 
contraction.[40] cTnT is a substrate for protein kinase C 
(PKC) containing up to four potential phosphorylation sites. 
Sumandea, et al.[42] reported that phosphorylation at Thr-206 
significantly reduces maximum force generation, Ca2+-sen-
sitivity and cross-bridge cycling rate, suggesting that PKC- 
mediated phosphorylation of cTnT may play a role in the 
regulation of cardiac contraction. Studies on inherited car-
diomyopathies caused by cTnT mutations have revealed an 
important function of this protein in the Ca2+ regulation of 
muscle contraction. 

  Since Thierfelder, et al.[14] found two missense muta-
tions (Ile79Asn and Arg92Gln) and a splice donor site (in-
tron 16G1→A) mutation in cTnT in inherited HCM patients 
in 1994 and until only recently, a new mutation P80S was 
reported in a Japanese family,[43] 36 HCM-linked mutations, 
13 DCM-linked mutations and 4 RCM-linked mutations 
have been reported in cTnT (Figure 1).  

Mutations in cTnT account for approximately 15%-30% 
of all HCM case. They cause only mild cardiac hypertrophy 
in an autosomal dominant manner. However, they usually 
lead to poor prognosis and high incidence of sudden cardiac   
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Figure 1.  Distribution of mutations in human cardiac troponin T associated with HCM, DCM and RCM. DCM: dilated cardio-
myopathy; HCM: hypertrophic cardiomyopathy; RCM: restrictive cardiomyopathy; Tm: tropomyosin; TnC: troponin C; TnI: troponin I. 

death; e.g., I79N, R92W, R92Q and ΔE160, etc., induce a 
malignant clinical phenotype with the average life of pa-
tients being no more than middle age.[13,14,44,45] The func-
tional consequences of these mutations have been studied 
by many groups.[44, 46-53] We studied the functional effects of 
these HCM mutations using rabbit left ventricular skinned 
fibers and myofibrils with a cTnT-exchange technique.[54,55] 
We found most of these HCM-linked cTnT mutations, such 
as I79N, R92Q, R92L, R92W, R94L, A104V, R130C, 
ΔE160, E163R, E163K and E244D, etc., increased the Ca2+ 
sensitivity of force generation in skinned fibers and shifted 
the force-pCa relationship leftwards, but did not signifi-
cantly affect the maximum force generating capability or 
ATPase activity and Ca2+-cooperativity. On the other hand, 
R278C, R278P, TnTΔ28(+7) and TnTΔ14 decreased Ca2+-coo-
perativity in force generation in skinned fibers in addition to 
a Ca2+-sensitizing effect.[56-61] Almost all HCM-causing 
mutations occur in the Tm-anchoring region (residues 
79-170 and 272-288) in cTnT,[62] strongly suggesting that 
these mutations impair the interaction of cTnT and Tm 
leading to an increase in the Ca2+-sensitivity by decreasing 
the inhibitory action of cTnI on the thin filament. Recently, 
Manning, et al.[63] suggested that the cTnT HCM-related 
mutations in, or flanking, the N-tail T1 domain (residues 
79-170) directly interacting with overlapping Tm, may alter 
the flexibility of T1, which is inversely proportional to 
Ca2+-cooperativity. 

In 2000, a deletion mutation ΔK210 of cTnT was re-
ported as the first DCM-causing mutation of sarcomeric 
proteins.[64] Since then, this mutation has extensively been 
studied both in vitro and in vivo. With the cTnT-exchange 
technique, we have shown that this mutation confers a lower 
Ca2+-sensitivity on the force generation of skinned cardiac 
muscle fibers and ATPase activity of cardiac myofibrils 
compared with wild-type, while having no effects on the  

maximum force, or ATPase activity, and Ca2+-coopera-
tivity.[65] Other groups also reported similar results.[66-68] 
Almost all DCM-causing mutations reported in cTnT to 
date, e.g., R131W, R141W, R205, ΔK210, R205L, and 
D270N, etc., have demonstrated a Ca2+-desensitizing effect 
on skinned fiber force generation and myofibrillar or acto-
myosin ATPase activity.[65,68-70] These results strongly sug-
gest that Ca2+ desensitization of cardiac muscle contraction 
is a primary mechanism for the pathogenesis of DCM 
caused by cTnT mutation, in contrast to HCM where Ca2+ 
sensitization is a primary mechanism for the pathogenesis. 
However, it is still not completely clarified how one amino 
acid mutation can increase or decrease the Ca2+-sensitivity 
of force generation of cardiac muscle in the respective form 
of inherited cardiomyopathy. We demonstrated that the 
DCM-causing mutation of cTnT R141W increased the af-
finity of cTnT for Tm, by using a quartz-crystal microbal-
ance.[69] This result strongly suggests that R141W mutation 
in the strong Tm-binding region in cTnT strengthens the 
integrity of cTnI in the thin filament by stabilizing the in-
teraction between cTnT and Tm, which might allow cTnI to 
inhibit the thin filament more effectively, leading to Ca2+ 
desensitization. 

RCM-causing mutations, unlike HCM- and DCM-caus-
ing mutations, are rare and recently found in cTnT (I79N, 
ΔE96, and E136K).[71,72] Pinto, et al.,[73] reported that ΔE96 
showed a large increase in the Ca2+-sensitivity and impaired 
abilities to inhibit ATPase and to relax skinned fibers, which 
could contribute to the severe diastolic dysfunction in RCM. 
More recently, Pinto, et al.,[74] found a novel double deletion 
in cTnT of two highly conserved amino acids (N100 and 
E101) in a RCM pediatric patient, which also conferred a 
large increase in the Ca2+-sensitivity. In addition, this double 
deletion mutation decreased the Ca2+-cooperativity of force 
development, suggesting alterations in intra-filament pro-
tein-protein interactions.  
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2.2  cTnI mutations in HCM, DCM and RCM 

cTnI binds to a specific region of each Tm molecule with 
a 38 nm periodicity along the Tm/actin filament.[75,76] cTnI 
is the inhibitory subunit of cTn complex, which is responsi-
ble for inhibition of actomyosin ATPase activity. In the ab-
sence of Ca2+, cTnI inhibits contraction through interacting 
with actin; the inhibitory effect of cTnI is relieved during 
muscle contraction through interacting with cTnC upon 
Ca2+ binding to cTnC. Hence, cTnI is a key regulatory pro-
tein in cardiac muscle contraction and relaxation cycle. cTnI 
consists of several functional domains, a cardiac specific 
N-terminal extension region (residues 1-32), an IT-arm re-
gion, the inhibitory region (residues 128-147), the switch 
region (residues 147-163), and the C-terminal mobile do-
main.[77,78] Phosphorylation of cTnI by several different 
kinases plays important roles in the regulation of cardiac 
muscle contraction under physiological or pathological con-
ditions. Protein kinase A (PKA)-mediated phosphorylation 
of cTnI at Ser-23/Ser-24 reduces myofilament Ca2+-sensi-
tivity, increases the rate of Ca2+ dissociation from cTnC, 
increases crossbridge cycling rate, and enhances unloaded 
shortening velocity.[79-83] PKC may phosphorylate cTnI at 
Ser-23/Ser-24, Ser-43/Ser-45 and Thr-144; phosphorylation 
at Ser-43/Ser-45 decreases maximum Ca2+-activated force 
generation in skinned fibers and maximal sliding velocity in 
motility assays.[84,85] We have recently found that cTnI is 
phosphorylated by PKC at Ser-23/Ser-24 and Thr-144,  

which leads to the depressed cooperative activation of the 
thin filament.[86] Phosphorylation of cTnI at different sites 
by different protein kinases may have distinct effects in vivo, 
although they are poorly understood.[87-90] The effects of 
cTnI phosphorylation could be affected by some mutations 
that cause inherited cardiomyopathies.  

Thirty, four, and nine mutations of cTnI have so far been 
found in HCM, DCM, and RCM, respectively,[70,74,91] most 
of which are located in the C-terminal region (Figure 2). In 
1997, Kimura, et al.[15] reported six mutations in cTnI 
(R145G, R145Q, R162W, ΔK183, G203S, and K206Q) 
associated with HCM in an autosomal dominant manner. 
Studies on the functional consequences of these mutations at 
the level of skinned cardiac muscle force generation and 
myofibrillar ATPase activity revealed that they have a 
Ca2+-sensitizing effect on cardiac muscle contraction as in 
the HCM-linked mutations in cTnT.[92] Studies of the Ca2+ 
affinity of reconstituted cardiac thin filament with a fluo-
rescence (IAANS) labeling technique revealed that R145G, 
which is located in the inhibitory region of cTnI, increases 
the basal level of ATPase activity and increases the Ca2+ 
binding affinity of the regulatory site of cTnC in the thin 
filament.[93] Mutations of R145G, R145Q, R162W, and 
G203S show increased minimum force in skinned cardiac 
muscle fibers with no significant changes in the maximum 
force. A deletion mutation ΔK183 increases the Ca2+-sensi-
tivity with no effects on either maximum or minimum force 
generation of skinned cardiac muscle. 

 

Figure 2.  Distribution of mutations in human cardiac troponin I associated with HCM, DCM and RCM. DCM: dilated cardio-
myopathy; HCM: hypertrophic cardiomyopathy; RCM: restrictive cardiomyopathy; Tm: tropomyosin; TnC: troponin C; TnI: troponin I. 
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Until 2009, only one mutation A2V was reported to 

cause DCM in an autosomal recessive mannar, which im-
pairs the interaction of cTnI with cTnT.[94] In 2009, Carballo, 
et al.[91] reported that the mutations of K36Q and N185K of 
cTnI cause DCM in an autosomal dominant manner. K36Q 
has been shown to mediate the movement of the N-terminal 
region in cTnI upon phosphorylation of S22/23 by cAMP- 
dependent protein kinase.[95] Functional studies of K36Q 
and N185K have revealed that these DCM mutations of 
cTnI decrease the maximum activity and Ca2+-sensitivity of 
actin-myosin S1 ATPase and significantly reduce the Ca2+ 
binding affinity of the regulatory site of cTnC in the thin 
filament. More recently, Murakami, et al.[96] reported a new 
missense mutation P16T in DCM patients. 

In 2003, Mogensen, et al.[97] published the first report of 
cTnI mutations in RCM patients (L144Q, R145W, A171T, 
K178E, D190G, and R192H). We examined the functional 
and structural consequences of these six mutations by using 
in vitro assays of skinned cardiac muscle fibers and NMR 
and revealed that they cause dramatic Ca2+-sensitization of 
force generation in cardiac muscle with a subtle structural 
perturbation within cTnI molecule.[98] Ca2+-sensitizing ef-
fects of these RCM mutations are much greater than those 
of HCM mutations in cTnI. However, D190G mutation with 
the smallest Ca2+-sensitizing effect was reported to cause 
both RCM and HCM in a single large family, suggesting 
that RCM and HCM are caused by the same mechanism 
through Ca2+-sensitization with greater sensitization leading 
to RCM. In addition, all six mutations elevate the resting 
force of skinned cardiac muscle fibers at low Ca2+ concen-
trations, and four mutations, L144Q, R145W, A171T, and 
R192H decrease the maximum level of force generation at 
high Ca2+ concentrations.  

2.3  cTnC mutations in HCM, DCM and RCM 

Troponin C is a member of the EF-hand family of Ca2+ 
binding proteins and consists of two globular lobes at N- 
and C-terminus, which are connected with an α-helix.[99] 
Each globular lobe contains a pair of Ca2+-binding sites, 
hence there are four Ca2+-binding sites named I through IV 
from the N-terminal of vertebrate skeletal TnC (sTnC). In 
contrast to sTnC, site I of cTnC dose not bind Ca2+ under 
physiological conditions. Analysis of equilibrium Ca2+ bind-
ing of cTnC demonstrates that the dissociation constant (Kd) 
of site II is approximate 1.2 × 106 M-1, and plays an impor-
tant Ca2+-regulatory role in cardiac muscle contraction. On 
the other hand, the dissociation constant (Kd) of sites III and 
IV are approximate 7.4 x 107 M-1. Sites III and IV also bind 
Mg2+ with Kd at 0.9 × 103 M-1,[34] play a structural role to 
keep the C lobe tightly bound to cTnI and to stabilize the 

interaction between cTnC and cTnT.[100] 
Compared with cTnT and cTnI, much fewer mutations 

have so far been found in cTnC, with only six mutations 
both in HCM and DCM. Functional analyses suggested that 
the HCM-linked mutations A8V, C84Y and D145E increase 
the Ca2+-sensitivity of force generation in skinned cardiac 
muscle fibers.[101] A8V and D145E also increase the force 
recovery. In contrast to these mutations, E134D shows no 
changes in Ca2+-sensitivity and force recovery. Fluorescence 
studies using IAANS-labeled cTnC suggested that L29Q 
increases the Ca2+ binding affinity of site II of cTnC.[102] 
Most recently, a new mutation A31S in cTnC was identified 
to cause HCM.[103] Functional studies indicated that this 
mutation increased the Ca2+-sensitivity with no effect on the 
maximal force generation, and increased the Ca2+ affinity of 
cTnC isolated or incorporated into troponin complex and 
thin filament. 

The first DCM-linked mutation found in cTnC is 
G159D.[104] In contrast to the DCM-linked mutations found 
in cTnT and cTnI, G159D mutation in cTnC does not sig-
nificantly decrease the Ca2+-sensitivity of force generation 
of skinned fibers, but it induces a decrease in ATPase activ-
ity of reconstituted myofilaments as well as filament sliding 
velocity.[68] Interestingly, Biesiadecki, et al.[89] provide evi-
dence that G159D may alter myocardial functional respons-
es to β-adrenergic stimulation by blunting the Ca2+-desensi-
tizing effect of cTnI phosphorylation at Ser-23/Ser-24. Af-
terward, two novel missense mutations localized in the 
regulatory Ca2+-binding site II of cTnC, E59D and D75Y, 
were identified in a DCM patient.[105] These mutations 
showed a decrease in the myofilament Ca2+-sensitivity and 
Ca2+ binding affinity in the force-pCa relationship meas-
urements and fluorescence spectroscopy, respectively. 
D75Y disrupts molecular motions critical for Ca2+ binding 
and cardiomyocyte contractility, whereas functional defect 
caused by E59D is benign. Most recently, Pinto, et al.[106] 
reported Y5H, M103I, and I148V mutations in cTnC in 
DCM patients. Functional studies showed that Y5H and 
M103I decrease the Ca2+-sensitivity of force generation and 
that the effects of PKA phosphorylation of cTnI on the 
myofilament Ca2+-sensitivity is abolished by M103I but 
diminished by Y5H and I148V. 

3  Animal models of cardiomyopathies caused 
by troponin mutations 

In order to determine the significance of the in vitro 
findings concerning inherited cardiomyopathies, especially 
to validate whether the shift in cardiac myofilament Ca2+- 
sensitivity is the most important and a common cause of 
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cardiomyopathies associated with Tn mutations in vivo, it is 
necessary and important to produce animal models. We 
have succeeded to create a knock-in mouse model in which 
a deletion of three base pairs coding for K210 in cTnT 
found in DCM patients was introduced into mouse endoge-
nous cTnT gene using gene-targeting technology.[107] This 
mouse model showed a particularly high incidence of sud-
den death in their growth periods from one to three months 
old, and enlarged hearts and heart failure, closely recapitu-
lating the phenotypes of human DCM patients.[64,108] Surface 
ECG showed that mutant mice commonly had an electro-
physiological abnormality in the heart with long QT, which 
might be involved in their frequent sudden death. Telemet-
ric ECG recordings showed that mice died by abruptly de-
veloping repetitive Torsade de Pointes several hours before 
death, which ultimately degenerated into ventricular fibrilla-
tion. Consistent with the results of in vitro studies, skinned 
cardiac muscle fibers prepared from mutant mice showed 
significantly lower Ca2+-sensitivity in force generation. Ca2+ 
transient analysis using fura-2 in cardiomyocytes showed a 
significant increase in the peak amplitude in mutant mice, 
suggesting that Ca2+ transient is augmented to compensate 
for decreased myofilament Ca2+-sensitivity. An increased 
intracellular cAMP level might be responsible for the aug-
mented Ca2+ transient in mutant mice.  

  Hernandez, et al.[109] created HCM-causing F110I- and 
R278C-cTnT transgenic mice. Skinned fibers prepared from 
F110I-cTnT transgenic mice showed an increased Ca2+-sen-
sitivity of force and ATPase activity, and a much increased 
energy cost. In contrast, no changes in force or the ATPase- 
pCa dependencies were observed in transgenic R278C- 
cTnT skinned fibers. The increased Ca2+-sensitivity and 
higher energy cost in F110I-cTnT hearts may be responsible 
for the severe phenotype compared with R278C-cTnT. This 
result supports the hypothesis that a greater shift in 
Ca2+-sensitivity of force development results in more severe 
clinical phenotype and prognosis.[110,111] 

A knock-in mouse model of HCM caused by cTnI muta-
tion of R21C also showed an increased Ca2+-sensitivity of 
force development, consistent with the findings in mouse 
models of HCM caused by cTnT mutations.[88] Heterozy-
gous and homozygous mutant mice both developed a re-
markable degree of cardiac hypertrophy and fibrosis. R21C 
is the only mutation identified within the unique N-terminus 
of cTnI and is located in the region close to β-adrenergic- 
activated PKA-mediated phosphorylation sites.[112] Het-
erozygous mice reduced and homozygous mice abolished 
the well-known decrease in the Ca2+ sensitivity of force 
generation by the phosphorylation of cTnI at Ser23/Ser24 
with PKA, suggesting that the impaired regulation of myo-

filament Ca2+ sensitivity by PKA phosphorylation in cTnI 
may also play a role in pathogenesis of HCM caused by this 
mutation. 

Although studies using knock-in and transgenic mouse 
models have provided much important and useful informa-
tion, we have to note that mouse models are different from 
human in Ca2+ handling during contraction/relaxation and in 
alterations in Ca2+ flux during heart failure. Sanbe, et al.,[113] 
made a HCM-causing R146G-cTnI transgenic rabbit model 
that reflects the human system more accurately. This rabbit 
model also showed an increased Ca2+-sensitivity of skinned 
fibers prepared from ventricular papillary muscle, as well as 
cardiomyocyte disarray, fibrosis, and altered connexin43 
organization, which recapitulate the human HCM pheno-
type. Human patients should have different contractile dy-
namics in cardiac muscle compared with mouse models, 
because mouse heart mainly expresses the α-myosin heavy 
chain (MHC) isoform, whereas human heart mainly ex-
presses the β-MHC isoform with much lower ATPase activ-
ity. Ford, et al.,[114] recently created a mouse model ex-
pressing HCM-related mutation R92L cTnT and β-MHC by 
crossing the transgenic mouse strain expressing R92L cTnT 
with the transgenic mouse strain predominantly expressing 
the β-MHC isoform. They found that the length-dependence 
of contractile activation and myofilament Ca2+-sensitivity 
was blunted in these mice, suggesting that the MHC isoform 
has an important effect on the outcome of cTnT mutations. 

4  Conclusion 

Many functional consequences of cTn mutations in in-
herited cariomyopathies have been revealed, such as 
changes in regulatory protein-protein interaction, alterations 
of crossbridge cycling rate or unloaded shortening velocity, 
and alterations of ATPase activity or phosphorylation level 
of key regulatory proteins like cTnI.[115,116] However, it 
should be noted that almost all mutations in cTn shift the 
Ca2+-sensitivity of cardiac muscle contraction. Recently, Liu, 
et al.,[117] demonstrated by fluorescence studies that cardio-
myopathy-related cardiac Tn mutations alter the Ca2+ asso-
ciation and dissociation rates of cTnC in the thin filament, 
also implying that the alteration of steady state 
Ca2+-sensitivity of the thin filament by the mutations in cTn 
may be a primary cause for cardiomyopathies. Changes in 
Ca2+-sensitivity and subsequent alteration of Ca2+ homeo-
stasis could be a common, and the most important underly-
ing mechanisms that trigger the arrhythmias leading to car-
diac sudden death or the development of congestive heart 
failure.[53,90,117,118] To fully understand the pathogenic  
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mechanism of inherited cardiomyopathies and their thera-
pies, it is important to generate animal models that closely 
recapitulate human pathological features. We attempted to 
treat the DCM-causing knock-in ΔK210-cTnT mice with a 
Ca2+ sensitizer pimobendan, which was expected to be 
beneficial for the mice with decreased cardiac myofilament 
Ca2+-sensitivity. Pimobendan significantly improve the life 
span and cardiac function of this DCM mice model.[107] This 
result strongly supports the hypothesis that Ca2+ desensitiza-
tion of cardiac muscle contraction is a primary mechanism 
for the pathogenesis of DCM caused by this cTnT mutation, 
which has been led by our in vitro studies, and suggests that 
Ca2+ sensitizers might be beneficial for the treatment of 
DCM patients associated with the sarcomeric regulatory 
protein mutations that cause myofilament Ca2+ desensitiza-
tion, including ΔK210 cTnT mutation. On the other hand, 
Ca2+ desensitizers might be beneficial for the treatment of 
HCM, in which increased Ca2+-sensitivity could be a pri-
mary pathogenic mechanism. Further studies using animal 
models closely recapitulating human disease phenotypes are 
important to develop therapeutic drugs for inherited car-
diomyopathy patients. 
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