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T lymphocytes (T cells) are divided into two functionally different subgroups the CD4+ T
helper cells (Th) and the CD8+ cytotoxic T lymphocytes (CTL). Adequate CD4 and CD8 T
cell activation to proliferation, clonal expansion and effector function is crucial for efficient
clearance of infection by pathogens. Failure to do so may lead to T cell exhaustion. Upon
activation by antigen presenting cells, T cells undergo metabolic reprograming that
support effector functions. In this review we will discuss how metabolic reprograming
dictates functionality during viral infections using severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) and human immunodeficiency virus (HIV) as examples.
Moreover, we will briefly discuss T cell metabolic programs during bacterial infections
exemplified by Mycobacterium tuberculosis (MT) infection.

Keywords: T cells, metabolism, immunometabolism, infection, HIV, COVID-19, tuberculosis
T LYMPHOCYTES AND THEIR SUBSETS ARE PIVOTAL
CELLS OF THE IMMUNE SYSTEM

All multicellular organisms are in an “arms race” against infectious pathogens, which include
pathogenic bacteria, viruses, fungi and parasites (1). The primary defenses against infectious
pathogens are the physical and chemical barriers of the skin and mucosa, which separates the
external and internal environments (1). Breach of these barriers allow pathogens to enter the body,
requiring activation of the immune system to clear the infection (2). The immune system is a host
defense system comprising many biological structures and processes within an organism that
defends against foreign infection as well as damaged and transformed cells. The ability of the
immune system to act optimally depends on its capacity to distinguish foreign and self and to react
to non-self. In higher organisms, the immune system is classified into the innate and adaptive
immune system (3). The innate immune system is rapidly engaged in an unspecific manner to
foreign pathogens or damaged self through recognition of pathogen-associated molecular patterns
(PAMP) or damage-associated molecular patterns (DAMP) (4, 5). In contrast to the innate immune
system, the adaptive immune system is activated over a longer time-period and is associated with
controlled activation of T- and B lymphocytes (T- and B cells), with immense specificity towards its
targets, and immunological memory (5). B cells are activated and differentiate into plasma cells that
produce immunoglobulins (Ig), commonly referred to as antibodies, following interaction between
soluble antigens binding to the B cell receptor (BCR). T cells on the other hand are activated through
cell-to-cell interactions when the T cell antigen receptor (TCR) complex encounters peptide
antigens presented to them by antigen presenting cells (APC). APCs present antigens through
major histocompatibility complex I or II (MHCI and MHCII), which interact with the two major
subsets of T cells, CD8 positive (CD8+) and CD4 positive (CD4+) T cells, respectively. CD8+ T cells
are also called cytotoxic T lymphocytes (CTLs) while CD4+ T cells are designated as T helper cells
(Th) (2). The CTLs target virus-infected cells and induce cell death by three mechanisms.
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The secretion of proinflammatory cytokines, interaction between
the Fas ligand and Fas receptor, and the secretion of cytolytic
granules containing perforin, which creates pores in the target
cell allowing the entry of proteases, including Granzyme B, that
induce apoptosis (6, 7). CD4+ T cells are indirectly involved in
clearing infection by modulating the activity of other immune
cells, including macrophages (Mø), neutrophils, B cells and CTLs
(2). CD4+ T cells can be grouped into several subsets and include
T helper (Th) 1 (Th1), Th2, Th9, Th17, Th22 as well as follicular
helper T (Tfh) cells and regulatory T cells (Tregs). The CD4+ T
cell subsets are defined by the distinct expression of surface
molecules and endogenous production of cytokines, which are
driven by the presence of extracellular cytokines and activation
of key transcription factors (8). Tfh cells are primarily involved
in promoting survival, proliferation and class-switching of
germinal center B cells and support germinal center
development. Th1, Th2, Th9, Th17, and Th22 subsets, on the
other hand, are involved in host defense against specific
microbial pathogens. The Th1 and Th2 subsets were the
first Th cell subsets to be identified. Whereas Th1 cells
kill intracellular bacteria through activating Mø and
CTLs, Th2 cells are drivers of immune reactions directed
against extracellular parasites (8, 9). Th17 cells, which are
characterized by the transcription factor retinoic acid receptor
(RAR)-related orphan receptor g (RORg) and production of the
cytokines IL-17A, IL-17F, IL-21 and IL-22, are involved in
protection against pathogens on mucosal surfaces (8, 10–12).
Th22 cells also secrete IL-22, but in contrast to Th17 cells, do not
secrete IL-17 nor express RORg (13). As Th22 cells are mainly
found in the skin where IL-22 induces expression of
antimicrobial peptides in keratinocytes and epithelial cells they
are likely involved in maintaining homeostasis in skin (13, 14).
Th9 cells, which are characterized by the secretion of IL-9, are
involved in immune responses towards extracellular parasites,
allergic inflammation and anti-tumor immune response.
Interestingly, the anti-tumor functions of Th9 cells were found
to be superior as compared to Th1 and other Th subsets and
involves activation of the innate and adaptive immune system,
including, generation of a profound CTL response against neo
antigens (15, 16). Recently, it has also become evident that CD4+
subset of T cells can be cytotoxic themselves. These cytotoxic
CD4+ T cells can induce cell death through interacting with
peptides presented on MHC II, similar to CD8+ CTLs (17).
While the CD4+ subsets are crucial in clearing infection,
dysregulation may also result in pathological conditions
including autoimmune diseases, allergy and asthma (14, 15, 18,
19). While Th1 and Th17 cells are implicated in autoimmunity
and Th2 cells are involved in allergic immune responses, Th22
cells appear to be involved in both autoimmunity and allergy (14,
20–22). Th9 cells have recently been implicated in tumor
immunity and promoting tolerance to transplanted organs (15,
23, 24). The activities of T cell subsets are balanced in part by
unique CD4+ Treg T cell subpopulation. Tregs are vital to
immune homeostasis and self-tolerance, dampening
inflammation, and preventing the development of autoimmune
disease, but may also be involved in promoting cancer
Frontiers in Immunology | www.frontiersin.org 2
progression (25). The balance between pro-inflammatory and
anti-inflammatory signals is critically important.

It is widely accepted that the fundamental processes in T cell
biology, such as T cell activation, differentiation and effector
functions are closely linked to changes in the cellular metabolic
programs. Key metabolic pathways such as glycolysis, fatty acid
synthesis and mitochondrial metabolism play a crucial role in T
cell immunometabolism (26).
T CELL METABOLISM: FROM
QUIESCENCE TO EFFECTOR FUNCTION

T cell metabolism is crucial for maintaining homeostasis in naïve
and memory cells, while also priming cells for rapid activation.
Additionally, T cell metabolism drives and mirrors the activation
and differentiation states of T cells. The focus of this section will
be on how activation of T cells and metabolism are related as well
as how metabolic reprograming drives the phenotype of
activated T cells.

Naïve T cells enter the circulation from the thymus and are
actively maintained in a reversible form of cell cycle arrest by a
combination of self-peptide–MHC engagement of the TCR/CD3
and by interleukin (IL)-7 stimulation (27). Activation of T cells
leads to exit of the quiescent state, inducing cell growth, clonal
expansion and differentiation. This process is initiated and
regulated by three key factors, perturbation of cell surface
receptors, nutrient availability and oxygen levels (28).

The magnitude of acute T cell activation depends on activation
of the TCR and co-stimulation of a group of T cell surface co-
receptors. These co-receptors include the CD3, CD4, CD8 CD28/
CTLA4 and more (29). As mentioned, the CD4 and CD8
molecules directly interact with the MHC II and MHC I
molecules, respectively, and influence the early mode of T cell
activation. Interaction between the MHC-peptide complex and
CD4/CD8 co-receptors is recognized by the TCR, leading to
activation of a signaling complex composed of the protein
tyrosine kinase (PTK) C-terminal Src kinase (Csk) and
lymphocyte-specific protein kinase (Lck). These kinases
phosphorylate the immunoreceptor tyrosine kinase-based
activation motifs (ITAMs) on the z-chain of CD3. This induces
downstream signaling by the recruitment, phosphorylation and
activation of the zeta-chain associated protein kinase 70 (ZAP70).
ZAP70 initiates a downstream signaling cascade and includes
activation of phospholipase Cg1 (PLCg1), which promotes
calcium mobilization, activation of protein kinase C (PKC) and
activation of Ras pathway (30–32). The combination of these
signaling cascades promotes activation of several transcription
factors, including Nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB), Nuclear factor of activated T-cells
(NFAT) and Activator protein 1 (AP-1). This leads to
production and secretion of the T cell-specific growth factor IL-2
(33–38). The costimulatory receptor CD28 interacts with its
ligands CD80 and CD86, which are differentially expressed by
APCs. CD86 is constitutively expressed on APCs, while expression
of CD80 is induced by stimulation of Toll-like receptors (TLRs)
March 2022 | Volume 13 | Article 840610
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(39). Activation of CD28 leads to cross phosphorylation of intrinsic
CD28 receptor tyrosine residues followed by attachment and
activation of phosphatidylinositol kinase 3 (PI3K) (40, 41). PI3K
phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to
phosphatidylinositol 3,4,5 phosphate (PIP3), leading to activation
of protein kinase B (PKB or Akt) and NFkB. This pathway
regulates T cell survival through the expression of the anti-
apoptotic gene B-cell lymphoma-extra-large (BCL-XL) and Akt-
dependent upregulation of IL-2 production (39). CTLA4, however,
is considered an inhibitory receptor and stimulation will, to some
extent, suppress TCR/CD3-CD28 induced activation by competing
with CD28 for CD80/86. Perturbation of the CTLA4 receptor will
lead to the recruitment of endogenous protein tyrosine and serine/
threonine phosphatases. This includes Src homology protein 2
domain-containing tyrosine phosphatase 2 (SHP-2) and protein
phosphatase 2A (PP2A). This will lead to dephosphorylation and
inhibition of several proteins in the signaling pathway, including
ZAP70, consequently reducing the activation, growth and clonal
expansion of T cells (42–47). Exhausted T cells (see below for an
explanation) may be found in the environment of chronic
infections and cancer cells often display increased expression of
inhibitory receptors, including CTLA4 and programmed death
receptor 1 (PD-1) (45, 48).

Naïve T cells have relatively low metabolic activity (49), but in
response to activating stimuli, metabolic activity is rapidly
increased (50). This rapid response is possible due to increased
nutrient uptake post stimulation. This may occur concomitant
with the presence of untranslated mRNA, idle ribosomes, rapid
turnover of transcription factors required for T cell activation,
and the presence of an abundance of most of the glycolytic
enzymes in quiescent T cells. Together this facilitates
upregulation of protein, DNA and lipid synthesis (51, 52).
Perturbation of the TCR/CD3 complex and the CD28 marker
is further associated with activation of Calcium Calmodulin-
dependent protein kinase 2 (CaMKK2) (53). CaMKK2 is known
to activate the energy sensor AMP-dependent protein kinase
(AMPK) in T cells (54, 55). AMPK is an energy sensor, which is
mainly activated by low levels of ATP and liver kinase B1
(LKB1)-dependent phosphorylation (56). Although AMPK is
commonly activated in response to an increased ADP/ATP
ratio, TCR/CD3-CD28 signaling increases mitochondrial
biogenesis and activation of this energy associated enzyme
independently of the ADP/ATP ratio (55). This suggests that
AMPK activation and increased mitochondrial biogenesis is
induced in preparation for the energy demands required for T
cell growth and proliferation. Engagement of TCR/CD3-CD28
also promotes recruitment of PI3K and activation of Akt in the
immune synapse. This regulates the activity of the mammalian
target of rapamycin, mTOR/raptor complex 1 (mTOR complex
1/mTORC1) through inhibition of the key upstream regulator
tuberous sclerosis complex 2 (TSC2), which functions as a
GTPase activity protein (GAP) for Ras homolog enriched in
brain (Rheb) GTPase (57). mTOR kinase forms two distinct
protein complexes, mTORC1 and mTORC2, which are crucial
for driving differentiation of CD8+ and CD4+ T cells (58). The
mTORC1 complex is defined as regulatory-associated protein of
Frontiers in Immunology | www.frontiersin.org 3
mTOR (RAPTOR), while mTORC2 is defined as rapamycin
insensitive companion of mTOR (RICTOR) (57).

The GTP-bound form of Rheb directly interacts with
mTORC1, which tunes the induction and activity of several
transcription factors involved in regulation of mitochondrial
activity and biomass production. This includes sterol
regulatory element-binding proteins (SREBP) hypoxia-
inducible factor 1a (HIF-1a) and MYC, resulting in increased
glycolysis, glutaminolysis and lipid synthesis (59). mTORC2, on
the other hand, is more involved in fatty acid oxidation and
negatively regulates CD8+ T cell memory differentiation through
Akt-dependent phosphorylation of forkhead box protein O1
(FOXO1) resulting in cytosolic retention (60, 61). mTORC2
directly phosphorylates Akt on Serine 473, thereby, promoting
the expression of glucose transporter 1 (GLUT1), activating
hexokinase 2 (HK-2) and phosphofructokinase-1 (PFK-1),
phosphorylation and expression of 2-phosphofructkinase 6/
fructose 2,6-bisphosphatase (PFKFB)-3 and 4. This promotes
in increased glucose uptake and glycolysis (summarized in
Figure 1) (62–65). TCR/CD3-CD28 stimulation is further
associated with induction of lactate-dehydrogenase A (LDHA)
that converts pyruvate to lactate (66). This metabolic
reprograming of T cells result in increased glycolysis and
lactate production despite presence of oxygen (67). This
process is commonly referred to as the Warburg effect and
supports accumulation of glycolytic intermediates that can
enter the pentose phosphate pathway (PPP), to produce ribose
5-phosphate (R5P), which is used in nucleotide synthesis. The
Warburg effect is also associated with the production of
nicotinamide adenine dinucleotide phosphate (NADPH),
which has two main functions; it acts as a redox agent and is
essential as an electron donor in anabolic biomass synthesis (67,
68). TCR/CD3 and CD4/CD8-induced PTK activity
phosphorylates the muscle form of pyruvate kinase (PKM2)
leading to nuclear localization of PKM2 dimers, which
participate in regulating gene expression rather than glycolysis
(69). In fact, regulation of PKM2 activity is a key factor together
with pyruvate dehydrogenase kinase 1 (PDK1) in preventing
pyruvate entering the mitochondrion. PDK1 inhibits the enzyme
pyruvate dehydrogenase (PDH), which catalyzes the formation
of acetyl co-enzyme A (AcCoA) and TCA cycle entry. This leads
to accumulation of pyruvate in the cytosol, which is used to
produce lactate and regenerate NAD+ from NADH (70, 71).

Many proliferating cells, including TCR/CD3-CD28
stimulated T cells, may adopt profiles associated with oxidative
phosphorylation (OXPHOS) when glucose is limited. This is
achieved by increased uptake and metabolism of the amino acid
glutamine (72). This requires upregulation of the glutamine
transporter, alanine-serine-cysteine transporter 2 (ASCT2/
SLC1A5) and differential regulation of the glutaminase (GLS)
isoforms, kidney glutaminase (KGA) and glutaminase C (GAC)
(73, 74). TCR/CD3-CD28 co-stimulation upregulates expression
of GAC, while downregulating KGA. GLS catalyzes the
deamidation of glutamine to glutamate, which is the first step
of glutaminolysis. Glutaminolysis is mainly regulated through
MYC-induced expression of key genes (75). Glutamine
March 2022 | Volume 13 | Article 840610
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metabolism is crucial for proliferating cells as it is involved in
several metabolic pathways. This includes production of a-
ketoglutarate (a-KG) from glutamate and alanine by
transferring the amino group from glutamate to pyruvate by
alanine aminotransferase (ALT) (76). The product, a-KG may
enter the TCA cycle to form citrate. Citrate can be shunted out of
the mitochondrion to support cytosolic AcCoA levels and used
as a substrate lipogenesis and mevalonate metabolism as well as
cholesterol synthesis (77, 78). a-KG may also support
production of carbon intermediates in the TCA cycle and the
production of reduced forms of the electron donors NADH and
flavin adenosine dinucleotide (FADH) required for OXPHOS
(79). Glutaminolysis also supports production of NADPH
through the PPP and TCA cycle, which along with glutamate
and cysteine, is used to produce the antioxidant glutathione
(GSH) (80, 81). Finally, glutaminolysis provides both carbon and
Frontiers in Immunology | www.frontiersin.org 4
nitrogen residues used for synthesis of polyamines, amino acids
and DNA and RNA nucleotides (82). Inhibition of
glutaminolysis as well as reduced ornithine and putrescine
synthesis decrease T cell proliferation, highlighting the
important role of glutaminolysis (83).

As glutamine has a central role in proliferating cells, including
activated T cells, glutamine is sometimes referred to as a
conditionally essential amino acid. In fact, exogenous
glutamine deprivation and inhibition of glutaminolysis prevent
T cell activation, proliferation and clonal expansion (84). This
reliance on glutamine metabolism is sometimes referred to as
“glutamine-addition”. Glutamine-dependent anapleurosis is
further known to dictate glucose uptake and glycolysis in
proliferating cancer cells (85, 86). Extracellular glutamine
depletion is also associated with metabolic reprogramming, as
glutamine synthetase (GS) converts glutamate to glutamine, is
FIGURE 1 | T cell receptor perturbation drives metabolic reprograming. T cell activation by ligation of the TCR and CD28 cell surface marker induces metabolic
reprograming through activation of protein kinases that induces calcium dependent activation of the AMPK pathway to induce synthesis of mitochondria. In addition,
mTORC1 activation induces lipid synthesis and enhances lipid synthesis, glutaminolysis and glycolysis required for rapid proliferation, whereas mTORC2 induces
glucose uptake and glycolysis while repressing fatty acid oxidation. Figure was created using assets from Servier Medical Art, licensed under a Creative Common
Attribution 3.0 Generic License. (http://smart.servier.com/). APC, antigen presenting cell; TCR, T cell receptor; PI3K, phosphatidylinositol kinase 3; CaMK II, calcium
calmodulin-dependent kinase II; AMPK, adenosine monophosphate-dependent kinase; TSC2, tuberous sclerosis complex 2; Rheb, RAS homolog enriched in the
brain; LKB1, liver kinase B1; SREB, sterol regulatory element-binding proteins; HIF-1a, hypoxia-inducible factor 1 a; mTORC, Mechanistic target of rapamycin
complex; GLUT1, Glucose transporter 1; FOXO1, forkhead box O1; FAO, fatty acid oxidation; HK1, hexokinase 1; PFK-1, phosphofructokinase 1.
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upregulated (87). Glutamine anapleurosis can also be used to
produce the amino acid asparagine, which in addition to being
important for protein synthesis, is also regulating activation of T
cells by directly enhancing Lck activity (88–90). In response to
glutamine deprivation, asparagine becomes an essential amino
acid. Despite this, mammals do not possess functional
asparaginase, the enzyme required for asparagine to re-enter
the TCA cycle (89). In fact, ectopic expression of the catalytically
active asparaginase inhibits cell growth and proliferation by
redirecting asparagine to the TCA cycle rather than protein
synthesis (89, 91). Arginine is another amino acid important for
T cell activation, and supplementation of extracellular arginine
increases long-term survival and effector functions of T cells,
accompanied by a reduction in glycolysis and enhanced oxidative
phosphorylation (92). T cell activation and clonal expansion also
require uptake of the amino acids cysteine, methionine and the
branched chain amino acid (BCAA) leucine. While naïve T cells
do not express transporters for cysteine and cystine, this is
rapidly induced by CD3/CD28-induced activation. In early
activation, uptake of cysteine and methionine is crucial for
proliferating T cells (93). Leucine is important for determining
the fate of CD4+ T cells as it regulates activation of mTORC1.
During leucine depletion the leucine sensor sestrin 2 (SESN2)
binds to the GTPase-activating protein towards Rags-2
(GATOR2), forming an inhibitory complex towards mTORC1
(94, 95). Loss of the leucine transporter SLC7A5/LAT1 (CD98)
limits T cell activation and effector maturation owing to
impairments in mTORC1 activity (96). Finally, serine is used
for one-carbon metabolism and purine synthesis through the B
vitamin 10-formyltetrahydrofolate. Serine also supports 5-
methyltetrahydrofolate, and generation of the methyl donor S-
adenosyl methionine (97).

In addition to nutrient availability, oxygen tension also varies
greatly in different tissues. Many lymphoid organs, including
spleen and thymus, are known to have low oxygen levels and
are considered to be in a state of physiological hypoxia (<4% O2)
(98). T cells, which are highly mobile in nature encounters a wide
range of oxygen levels in the body. For example, during thymic
development, thymocytes inhabit within relatively low oxygen
(< 1%). Activated T cells are faced with both high oxygen levels in
the lungs and arterial blood as well as the hypoxic and anoxic
conditions in inflammatory lesions and tumors (99–101). As
low oxygen concentration is metabolically challenging, hypoxia
induces metabolic programs required to adapt to the environment.
T cell differentiation, function and survival is known to be affected
by exposure to hypoxia, a response mainly mediated by the
transcription factor HIF-1a, directly or indirectly (98). HIF-1a,
is stabilized and heterodimerizes with the constitutively expressed
HIF-1b, also known as aryl hydrocarbon receptor nuclear
transporter (Arnt) under hypoxic conditions. The HIF complex
translocate into the nucleus where it binds to hypoxia response
elements (HREs) (102). In the presence of oxygen, HIF-1a is
rapidly degraded by the enzyme prolyl hydroxylase domain
proteins (PHD) 1, 2 and 3, thus the HIF-1a complex has
limited transcriptional activation capacity in normoxia. HIF-1a
induces a metabolic shift by inducing a glycolytic phenotype
Frontiers in Immunology | www.frontiersin.org 5
mediated by increased expression of genes involved in glucose
uptake and glycolysis, including GLUT1, HK2, PKM2, LDHA,
while actively reducing glucose oxidation through the expression
of PDK1 (102–104). This indicates that HIF-1a induces a
metabolic phenotype where glycolysis is the primary source for
ATP. As pyruvate is shunted towards lactate, rather than the TCA
cycle, this reduces the ability to produce citrate. To compensate
for this, cells at hypoxia produce citrate and cytosolic AcCoA
required for fatty acid synthesis through glutaminolysis. In this
case, a-KG is metabolized to citrate through the TCA cycle in a
reverse fashion by reductive carboxylation. These reactions are
catabolized by the two isocitrate dehydrogenase (IDH) isozymes,
IDH1 and IDH2, which are induced by low oxygen (105, 106).
This demonstrates that during hypoxia, HIF-1a drives T cells
to adapt a metabolic phenotype relying on glycolysis and
glutaminolysis to support proliferation and clonal expansion.

In addition to its role in early activation, it has become
increasingly clear that distinct metabolic programs define the
various T cell subsets (Figure 2) (107). It is also known that T cell
differentiation can be manipulated through modulating
metabolic activity in vitro (108–110). However, the extent of
how metabolism affects T cell function in response to infection is
not fully understood.

As mentioned, naïve T cells generate most of their ATP from
oxidative phosphorylation and in general display a less energetic
state than activated T cells yet can rapidly reprogram metabolism
upon activation (50, 111, 112). This rapid response towards
antigen is likely made possible by the rapid turnover of proteins
(51). While this metabolic reprograming stems, at least in part,
from an increased demand for ATP to fuel rapid proliferation,
there is also increasing evidence that fine-tuning of specific
metabolic pathways drive differentiation into various subsets.
This is best characterized for the Th1, Th2 and Th17 subsets.

Th1, Th2 and Th17 cell differentiation induces three distinct
metabolic phenotypes. However, all subsets have a relatively high
rate of glycolysis when compared to Tregs, naïve ormemory T cells
(113). While Glucose is known to be crucial for T cells to produce
IFNg, as cells cultured in galactose have severely reduced IFNg-
secretion. This has been linked to the dual role of the enzyme
glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as it can
bind to, and repress translation of IFNg mRNA (110). This was
shown to be related to glucose-derived mannose combustion.
Supplementation with mannose could partially restore IFNg
production in cells cultured with the glycolysis inhibitor 2-deoxy-
D-glucose (2DG). Interestingly, the transcription factor T-bet,
which is crucial for Th1 differentiation, was reduced when cells
were cultured in the presence of galactose, but was restored by
mannose supplementation (114). Lastly, inhibition of GLS-1 has
been shown to increase Th1 differentiation (73). Th2 cells are
reportedly the most glycolytic of the Th subsets, correlating with
high expressionofGLUT1and low rate offatty acidoxidation (113).
mTORC2, which as previously mentioned, is an important
regulator of fatty acid oxidation and glycolysis, is also
important for differentiation of Th1 and Th2 cells through
distinct mechanisms. Th1 cells depend on mTORC2-dependent
phosphorylationofAkt,whileTh2cells dependonphosphorylation
March 2022 | Volume 13 | Article 840610
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of PKC (115). Peroxisome proliferation activating receptor-g
(PPAR-g), which is a regulator of fatty acid metabolism, is also
involved in promoting Th2 differentiation while repressing Th1
differentiation (116). Th17 differentiation induces a metabolic
phenotype distinct from both Th1 and Th2 cells. Th17
differentiation requires HIF-1a stabilization and induction of
PDHK1, preventing mitochondrial pyruvate oxidation in favor of
lactate production (71, 104, 117). GLS1-dependent glutamine
metabolism is also a crucial factor for Th17 differentiation (109).
GLS1 expression in T cells can be induced by the transcription
factor inducible cAMPearly repressor (ICER) (109).BlockingGLS1
shifts Th17 cells to a Th1-like phenotype (73). Th17 differentiation
also requires fatty acid synthesis (118). Themetabolic phenotype of
Th9 andTh22 cells is not as extensively studied compared to that of
the other CD4+ effector cells. However, Th9 cells have a higher
glycolytic rate than both Th2 and Th17 cells, and require activation
of mTORC1 and HIF-1a (119).
Frontiers in Immunology | www.frontiersin.org 6
Treg differentiation depends on the oxidation of long fatty
acids, induced by activation of AMPK (113). Although Tregs
upregulate glycolysis compared to naïve cells this is to a lesser
degree than the effector CD4+ T cells and it is not necessary to
support Treg differentiation (113, 120). In support of this Treg
differentiation is inhibited in favor of Th17 differentiation by
HIF-1a-induced glycolysis (117, 121). In fact, increasing glucose
uptake and glycolysis in Tregs represses suppressor functions
despite increasing proliferation (122, 123). Compared to effector
CD4+ T cells, Tregs depend on fatty acid oxidation to fuel
mitochondrial respiration (120). Treg differentiation may also be
reduced by the presence of exogenous amino acids including
glutamine, tryptophan and arginine (124). Lastly, extracellular
lactate may enhance Treg function through uptake via the
monocarboxylate transporter 1 (MCT1) (123).

Memory subsets of T cells are characterized by a reliance on
fatty acid oxidation and low rate of glycolysis (125).
FIGURE 2 | Th subsets display distinct metabolic programs. Quiescent Th cells rely mainly on oxidative phosphorylation (Ox.Phos) to maintain homeostasis, while
the effector subsets are characterized by increased glycolytic metabolism (Glc) as well as a differential reliance on glutaminolysis (Gln), fatty acid oxidation (FAO and
fatty acid synthesis (FAS) to support effector functions. Figure was created using assets from Servier Medical Art, licensed under a Creative Common Attribution 3.0
Generic License. (http://smart.servier.com/t).
March 2022 | Volume 13 | Article 840610
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Supplementing the amino acid arginine has been shown to
enhance memory formation and reprogram T cells from a
glycolytic to an oxidative phenotype (92). Similar to naïve T
cells, memory T cells have a rapid turnover of proteins related to
activation, including glycolytic enzymes (51).

The microenvironment is also important for modulating T cell
activity and metabolism. Recently, it was discovered that T cells
create acidic niches within lymphoid organs to dampen effector
functions (126). This is also well-defined in the tumor
microenvironment (TME), which is characterized by the presence
of anti-inflammatory cytokines, low levels of oxygen and
acidification by lactate (127–130). In rheumatoid arthritis the
microenvironment of the synovium exerts pro-inflammatory
effects on the CD4+ T cells by repressing glycolytic rate (131). It
is further known that increased body temperature may enhance
proliferation and effector functions of both CD4+ and CD8+ T cells
(132, 133) Together this demonstrates how the microenvironment
may shape T cell activity.

T cell exhaustion is featured in both cancer and persistent
infections. Exhausted T cells can be defined by an increased
expression of inhibitory ligands, including PD-1 and CTLA-4
and are more apoptotic than effector and memory cells (48, 134).
Exhausted T cells also display a distinct metabolic phenotype, with
reduced glucose uptake as well as mitochondrial dysfunction,
which reduces capacity for oxidative metabolism. The presence
of extracellular metabolites as well as low abundance of important
nutrients may further inhibit metabolism and prevent the
appropriate T cell activity (135, 136).
T CELL METABOLISM IN INFECTION

As detailed above, T cell metabolism and functionality are closely
related and metabolic reprograming is crucial for appropriate T
cell activity. In this section, we will briefly describe how T cell
metabolism is regulated in certain acute infections and how T cell
metabolism may aid or hinder pathogen clearance under acute
and chronic conditions of infection. We will use examples of
virus infections by SARS-CoV-2 and HIV as these viruses are
known to induce differential effects on T cell metabolism.We will
also briefly describe T cell metabolism in bacterial infections,
here exemplified by infections of Mycobacterium tuberculosis.

T Cell Metabolism in SARS-CoV-2 Infections
When T cells are engaged in the immune response, they can be
roughly divided into naïve, effector and memory cells, each with
accompanying metabolic programs (137). The immune system,
when properly regulated will have a protective role. However, in
some cases the immune system might exasperate the
inflammation associated with infection (138). This is apparent
for SARS-CoV-2 infections, which cause the well-known
coronavirus disease 2019 (COVID-19). Despite that the
underlying molecular mechanism responsible for sustaining
SARS-CoV-2 virulence is enigmatic, how SARS-CoV-2 attaches
on the surface of host cells through a variety of receptors is in part
Frontiers in Immunology | www.frontiersin.org 7
well described. Attachment may be through receptors, such as
angiotensin converting enzyme 2 (ACE2), neuropilin-1 (NRP1),
AXL, and antibody–FcgR complexes (139). ACE2 is expressed in
various human organs and may play a role in regulating
cardiovascular and renal function. In addition, the ACE2 protein
is a functional receptor for the spike glycoprotein of the human
coronavirus and is considered a causative agent of COVID-19
disease. Next, NRP1 is a membrane-bound coreceptor to a
tyrosine kinase for both vascular endothelial growth factor
(VEGF) and semaphorin (SEMA3A) family members, both
playing versatile roles in angiogenesis, axon guidance, cell
survival, migration, and invasion. Furthermore, the gene AXL,
which encodes the tyrosine-protein kinase receptor UFO, is
involved in stimulation of cell proliferation and survival through
PI3K-AKT-mTOR, MEK/ERK, NF-kB, and JAK/STAT activation
(140–143). In line with the fact that COVID-19 uses receptor
ligation for infection, several reports reveal that COVID-19
ligation through and activation of the above-mentioned signal
transduction molecules, induces metabolic reprogramming (144,
145). In fact, this metabolic reprograming can be detected by
positron emission tomography (PET) by increased accumulation
of 18F labelled fluorodeoxyglucose (FDG) (146). This metabolic
reprograming is also associated with a distinct profile of serum
metabolites, which might be used as a prognostic measurement of
disease severity (147). It has further been demonstrated that this
increased level of FDG in the tissue correlate with increased
glycolysis in several cells, including epithelial cells and immune
cells, reviewed by Kumar (148). Notably, peripheral blood
mononuclear cells (PBMCs) display metabolic dysfunction,
characterized by increased glycolysis and reduced oxygen
consumption (149). SARS-CoV 2-infected monocytes also show
enhanced glycolytic rate. Interestingly, the same study reports that
increasing extracellular glucose concentration increased SARS-
CoV 2 replication in monocytes (150). Because of this central role
of glycolysis in COVID-19 the glucose analog 2-deoxy-D-glucose
(2DG), which inhibits glycolysis, has undergone a phase III trial
and received emergency approval in the treatment of moderate
and severe COVID-19 in India. However, the trial was conducted
in only 220 patients and the data has not been made available to
the public (151). In this review we have mainly focused on the
metabolism of T cells in response in COVID-19.

In both CD4+ and CD8+ T cells COVID-19 inhibits activation
of mTORC1, which reduces glycolytic activity, as well as causing
mitochondrial dysfunction and increased susceptibility to apoptosis
(Figure 3) (145). In line with this, expression levels of GLUT1 are
reported to be decreased in T cells in patients with severe COVID-
19 as compared to healthy controls or patients infected by influenza
virus. However, contradictory results exist. A study by De Biasi et al.,
showed with one exception that T cells from COVID-19 patients
had a similar capacity for metabolic reprogramming to non-infected
T cells (152). However, the COVID-19 patients all required
respiratory aid, while most patients in the latter study had pO2

>90%. This might indicate a link between metabolic alteration,
mitochondrial dysfunction and declining oxygen saturation (145,
152). This is supported by a study by Siaska et al., where T cell
metabolism was differentially affected in mild compared to
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moderate and severe disease. This was evident by an elevated uptake
of fatty acids in T cells from patients with mild or no symptoms,
while glucose uptake was similar to that of quiescent T cells from
healthy controls (153). This study also revealed that moderate and
severe disease was correlated with increased mitochondrial content,
ROS and expression of basigin, which is reported to drive
hyperinflammation and bone degradation in rheumatoid arthritis
(153, 154).

Several studies have shown that recovered COVID-19
patients display symptoms for weeks or months after disease
onset, commonly referred to as “long COVID” (155–157). These
symptoms include chest pains, joint pains, cognitive disorders,
anxiety, depression and neurological disorders. Long COVID
even affects individuals who initially had mild symptoms upon
infection (155, 156, 158). Interestingly, T cells from COVID-19
patients reportedly have increased levels of triple methylated
histone 3 lysine 27 (H3K27me3), a potentially epigenetic effect
that persists in recovered patients (159). Reports demonstrate
that the H3K27me3 modification represses T cell activation,
Frontiers in Immunology | www.frontiersin.org 8
differentiation and metabolic activity, by inhibiting expression
of several transcription factors involved in metabolic regulation.
These include MYC, PPARg and peroxisome proliferator-
activated receptor gamma coactivator-related protein 1
(PPRC1) (Figure 3) (160, 161). A recent study demonstrates a
correlation between neurologic symptoms in recovered patients
and T-cell immune reactivity. Patients with neurologic
symptoms were also shown to have a distinct T-cell phenotype
compared to healthy COVID convalescents. Notably, in
individuals with long COVID Tfh cells had increased reactivity
to the nucleocapsid of the SARS-CoV-2 virus, while the COVID
convalescents showed reactivity towards spike proteins (157).
This is consistent with an earlier study revealing that T cells from
patients with neurological symptoms following COVID-19
recovery, displayed a distinct reactivity. The same study also
showed an increase in the population of exhausted CD4+ T cells
(162). Whether these effects are related to the epigenetic changes
induced by methylation of H3K27 is not clear. Further studies
will be needed to determine how T-cell metabolism and
FIGURE 3 | SARS-CoV-2 induces metabolic defects in acute and long-term infection. Acute infection by SARS-CoV-2 inhibits activation of mTORC1, causing
reduced glycolysis and glutaminolysis as well as enhanced apoptosis and mitochondrial defects. Long-term SARS-CoV-2 induces triple methylation of histone 3
lysine 27 (H3K27me3), resulting in reduced activation through inhibition of MYC peroxisome proliferator-activated receptor g (PPARg) and peroxisome proliferator-
activated receptor gamma coactivator-related protein 1 (PPRC1). Figure was created using assets from Servier Medical Art, licensed under a Creative Common
Attribution 3.0 Generic License. (http://smart.servier.com/).
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metabolic dysfunction are correlated to COVID-19 disease
severity and if similar phenomena can be found for other
infectious agents.

As T-cell metabolism is correlated to both short-term survival
and long-term effects further studies of T-cell metabolism in
COVID-19 may result in better stratification of patients as well as
offering new therapeutic targets to minimize the impact of
COVID-19.

T Cell Metabolism and HIV Infections
The excessive immune response for severely affected patients
may be caused by so called cytokine storms, which is simply
defined as release of too many cytokines into the blood too
quickly (163). In patients where this occurs, coupled with
inability to clear infection leads to chronic infection, a
condition leading to T-cell exhaustion (137). Exhausted T cells
are characterized by an increased expression of inhibitory
markers and a progressive and hierarchical loss of function as
seen in HIV infections, where HIV is the causative agent for
acquired immunodeficiency syndrome (AIDS) (164). HIV target
Frontiers in Immunology | www.frontiersin.org 9
the CD4 cell surface marker, allowing infection of CD4+ T cells
and Mø (165). During the acute phase of HIV infection, most
patients experience a marked increase in HIV viral load coupled
with increased levels of the PD‐1 receptor on HIV‐infected T
cells. Untreated patients will in this case experience T-cell
exhaustion. The positive effects of antiretroviral therapy (ART),
which in most cases significantly inhibits viral replication, also
lowers high PD-1 expressing T cells, suggesting a link between
viral load and the level of PD-1 expressing T cells (166, 167). The
HIV virus infects cells by first interacting with CD4, followed by
interaction with the chemokine receptor CCR5 onMø or CXCR4
on T cells (168). In addition to CD4 and CXCR4, HIV is reported
to exploit GLUT1 to infect T cells (169). GLUT1 expression has
been shown to be elevated on circulating CD4+ T cells in patients
with chronic HIV-1 infection. As HIV-induced surface
expression of GLUT1 coincide with increased glucose uptake
and increased glycolytic activity (Figure 4) (170, 171) it is likely
that such a metabolic pattern mirror HIV infected CD4+ T cells
in AIDS patients. Recently, it was demonstrated that in acute
HIV-1 infections, viral replication is correlated with increased
FIGURE 4 | HIV infection induces increased glycolysis and mitochondrial respiration in CD4+ T cells. HIV infects CD4+ T cells through interaction with CD4 and
chemokine receptor CXCR4. HIV-infection supports glycolytic metabolism by increasing expression of the glucose transporter GLUT1, which can also be exploited to
further infect CD4+ T cells. Additionally, HIV induces expression the of nucleotide-binding domain leucine-rich repeat-containing receptor X1 (NLRX1) to induce
increased oxidative phosphorylation (Ox.Phos). The increased metabolic rate supports enhanced viral replication. Figure was created using assets from Servier
Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. http://smart.servier.com/.
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expression of nucleotide-binding domain leucine-rich repeat-
containing receptor X1 (NLRX1). NLRX1 is most likely required
for the HIV-induced metabolic reprograming of CD4+ T cells
and leads to increased glycolysis and oxygen consumption.
Interestingly, blocking glycolysis using the glucose analogue
2DG or mitochondrial respiration using rotenone or
metformin inhibits HIV replication in CD4+ cells (171). This
is in line with the fact that CD4+ T cells cultured with the simple
sugar galactose exhibit less viral replication and reduced HIV-
induced cell death, supporting that HIV infections requires
glycolytic activity (172). Furthermore, some HIV-infected
patients maintain low virus titers even without ART. This was
associated with distinct HIV-specific CD8+ T cells. Such CD8+ T
cells can be distinguished from CD8+ T cells from patients
sensitive to ART. In the ART-insensitive patients, the CD8+ T
cells expressed enhanced levels of mTORC2 and increased fatty
acid oxidation. and ART-insensitive patients were further
associated with formation of increased numbers of CD8+
memory T cells Interestingly, in ART treated CD8+ T cells,
treatment with IL15 reflected increased mTORC2 expression and
a fatty acid consuming phenotype (173). In line with these
observations, T-cell metabolism may have prognostic potential,
and may even provide therapeutic targets in cases of
HIV infections.

The current knowledge of T-cell metabolism in HIV infection
indicates that the HIV virus exploits the glycolysis of CD4+ T cells
to both infect and enhance replication rate, while high glycolytic
rate of CD8+ T cells confer resistance to infection (170, 171, 173).
Hence, both CD4+ and CD8+ T-cell metabolic profiles may serve
as prognostic markers of the patients. In line with this, it is
speculated that targeting glycolysis of e.g., CD4+ T cells may
reduce T-cell replication in patients suffering from viral infection,
such as by HIV. Importantly, this understanding of metabolism in
HIV indicates a potential for repurposing metformin for the
management of HIV infection (171). Together, this highlights
the importance of further studies to determine the efficacy of
metabolic inhibition in the management of HIV infection.

T-Cell Metabolism in
Tuberculosis Infections
Tuberculosis remains a major threat to human global health,
with an estimated one-fourth of the world population latently
infected (174). Tuberculosis is caused by Mycobacterium
tuberculosis (MT) infection. T cells and Mø are crucial players
in the anti-mycobacterial host defense and in containing the
spread of mycobacteria during latent disease (175). This is
highlighted by the observation that HIV-induced depletion of
CD4+ T cells and the level of PD-1 expression leads to increased
co-morbidity in MT-infected individuals (176, 177). Together
this points to the importance of stringent regulation of CD4+ T
cells in defense against MT infection.

With an increasing body of evidence, it is argued that metabolic
changes at the cellular level, is vital to mount an effective immune
response to MT. This include pathways found to be necessary for
the full activation of lymphocytes and include regulation of
cytokine production, pyrimidine metabolism, as well as
production of glutathione and large amounts of mitochondrial
Frontiers in Immunology | www.frontiersin.org 10
reactive oxygen species (ROS) in response to MT infection (178).
To this end, the mitochondrial matrix protein Cyclophilin D
(CypD) acts as a peptidyl-prolyl cis-trans isomerase that
regulates the mitochondrial permeability transition pore (PTP).
PTP is a nonspecific large conductance pore when open leads to
cell death. PTP expression has been implicated in ischemia/
reperfusion injury in multiple organs, in neurodegenerative
disorders, and in muscular dystrophies (179, 180). Interestingly,
loss of CypD is implicated in metabolic changes, which include
increased aerobic glycolysis, mitochondrial OXPHOS, and
consumption of glucose and glutamine. This is further
associated with increased T-cell activation to proliferation and
cytokine production, such as TNFa and IFNg. Moreover, MT
infection in CypD ablated individuals, lead to immunopathology
caused by T-cell dysfunction, however, without affecting bacterial
burden. Moreover, CypD-deficient mice succumbed earlier to
infection than wild-type mice stressing the role of CypD and
dysregulated T-cell function potentially associated with altered
immune cell metabolism inMT infections (181). It is also reported
that both early and long-term MT infection induces distinct
defects to the metabolism of CD8+ T cells. MT infection
increases expression of both PD-1 and CTLA4, which further
correlates with decreased glucose uptake as well as reduced
glycolysis and mitochondrial respiration. This further reflects a
repressed metabolic programing normally induced by stimulation
of the anti-CD3/CD28 complex (182).

As the tissue microenvironment also affects the effector
functions and metabolism of T cells, targeting metabolic
pathways can also affect T-cell activity indirectly. This is the
case for MT-induced granulomas, in which Mø catabolize
tryptophan and secrete transforming growth factor b (TGF-b)
to create an immunosuppressive environment (178, 183, 184).
Hence, the capability of T cells in clearing MT infections is
largely limited by the inability to enter the granulomas in which
MT induces expression of indoleamine 2,3-dioxygenase (IDO),
and tryptophan catabolism to form the immunosuppressive
metabolite kynurenine (185, 186). Moreover, IDO expression
has previously been linked to a decline in IFNg, demonstrating
how MT-induced changes in Mø metabolism may induce
tolerance and prevent clearance (183). This likely occurs
through interaction between kynurenine and the aryl
hydrocarbon receptor (AHR) in combination with TGF-b,
which drives Treg differentiation (Figure 5) (187). In
conclusion, MT infections contribute to decreased T cell
glycolytic metabolism through several mechanisms. Despite
that the knowledge is sparse, such changes may further have
implications for how and to what extent the immune system is
able to counteract a MT infection and to what extent the immune
system may be capable to eradicate the MT bacteria.
CONCLUSION

We have briefly summarized some knowledge on T-cell
metabolism in situation of infections by virus and bacteria.
Research over the last couple of decades have revealed that T-
cell metabolism is closely linked, not only to proliferation and
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clonal expansion, but that cell-specific metabolism also dictate
cell differentiation programs and reflect effector functions (136).
As detailed here, T-cell metabolism may in addition aid
pathogen clearance or confer resistance to infections by virus
and bacteria. However, in some cases T-cell metabolism may be
displayed as T-cell exhaustion leading to tolerance, or even
support of inflammation. The latter is displayed in certain
cases of viral infection, where immune cell metabolism also
supports viral replication (135, 169, 170, 181, 182).
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Modulating T-cell metabolism by supplementation with key
nutrients or employing inhibitors of key metabolic pathways has
previously been shown to enhance memory formation or
enhance effector function of T cells in cancer, or even induce
pro-inflammatory and migratory programs (92, 108, 188, 189).
As T-cell exhaustion is a feature in both persistent infection and
cancer it is expected that reversing the exhausted phenotype will
have markedly clinical potential (190). T-cell metabolism may
also be important in both the acute and long-term effects of
FIGURE 5 | Mycobacterium tuberculosis (MT) infection results in an immunosuppressive microenvironment. Macrophages (Mø) are unable to clear MT infection,
resulting in granuloma formation. MT induces expression of indoleamine 2,3-dioxygenase (IDO), which catabolized tryptophan (Trp) to kynurenine (Kyn), which binds
to the aryl hydrocarbon receptor (AHR) in CD4+ T cells, coupled with secretion of transforming growth factor b (TGF-b) that binds to the TGF-b receptor (TGF-bR).
Together this results in upregulation of FOXP3 and Treg differentiation, characterized by suppression of CD4+ T cell glycolysis (Glc) and interferon g (IFN-g) secretion.
Figure was created using assets from Servier Medical Art, licensed under a Creative Common Attribution 3.0 Generic License. (http://smart.servier.com/).
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COVID-19, making it an interesting target for therapeutic
applications (145, 155, 159, 162).

As detailed in this review, metabolic reprograming of T cells is
crucial for conveying protection against infectious pathogens. On
the other hand, some pathogens may exploit or modify T cell
metabolism to prevent the appropriate effector functions.
Further research is needed to determine if targeting
dysfunctional T cell metabolism may be used therapeutically in
infectious diseases to enhance effector functions and reverse
T-cell exhaustion in chronic infections.
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