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Bone marrow (BM) resident macrophages interact with a population of long-term

hematopoietic stem cells (LT-HSCs) but their role on LT-HSC properties after stress is not

well defined. Here, we show that a 2 Gy-total body irradiation (TBI)-mediated death of

LT-HSCs is associated with increased percentages of LT-HSCs with reactive oxygen

species (ROS) and of BM resident macrophages producing nitric oxide (NO), resulting in

an increased percentage of LT-HSCs with endogenous cytotoxic peroxynitrites.

Pharmacological or genetic depletion of BM resident macrophages impairs the

radio-induced increases in the percentage of both ROS1 LT-HSCs and peroxynitrite1

LT-HSCs and results in a complete recovery of a functional pool of LT-HSCs. Finally, we

show that after a 2 Gy-TBI, a specific decrease of NO production by BM resident

macrophages improves the LT-HSC recovery, whereas an exogenous NO delivery

decreases the LT-HSC compartment. Altogether, these results show that BM resident

macrophages are involved in the response of LT-HSCs to a 2 Gy-TBI and suggest that

regulation of NO production can be used to modulate some deleterious effects of a TBI on

LT-HSCs.

Introduction

Total body irradiation (TBI) and localized radiation therapies are widely used in clinics. Despite their effi-
ciency for bone marrow (BM) transplantation or to reduce tumor size, irradiation of healthy tissues pre-
sent in the radiation field can lead to major deleterious side effects in patients. BM hematopoietic stem
cells (HSCs) that ensure the renewal of mature blood cells lifelong are very sensitive to irradiation.1-3

Indeed, a 2 Gy-TBI results in apoptosis, oxidative stress, and genomic instability in HSCs, decreasing
their functionality and potentially leading to leukemia.4-7 Thus, it is of prime importance to find out how to
protect HSCs from the harmful effects of radiation.

HSCs are localized in complex cellular microenvironments called HSC niches, essential for HSC protec-
tion and regulation,8,9 as they orchestrate HSC fate under homeostatic and stress conditions.10 In
homeostasis, N-CADHERIN1 stromal cells support a highly quiescent HSC reserve,11 NG21 periarterio-
lar cells maintain HSC in a dormant state,12 CXCL12-abundant reticular (CAR) cells are essential to
maintain a quiescent HSC pool,13 and Akt-activated endothelial cells balance self-renewal and differentia-
tion of HSCs.14 BM resident macrophages (MF), localized in the mesenchymal niche, have a major role
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Key Points

� After a 2 Gy TBI, NO
produced by BM
resident macrophages
leads to formation of
cytotoxic peroxynitrites
in LT-HSCs.

� Depletion of BM
resident macrophages
or inhibition of NO
production sup-
presses the cytotoxic
effects of a 2 Gy TBI
on LT-HSCs.
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in the retention of HSCs in their niche, in their quiescence, and in
their protection from oxidative stress.15,16 In accordance, a-smooth
muscle actin (SMA)1 monocytes and macrophages expressing
cyclooxygenase-2 (COX-2) maintain HSC quiescence by preserving
low levels of reactive oxygen species (ROS).17 In response to a
stress, such as irradiation, this a-SMA1 population further increases
its COX-2 expression inducing prostaglandin E2 production to
reduce the ROS level in HSCs and thus, maintains HSC pool integ-
rity.18 In the mesenchymal niche, BM resident MF expressing
CD169 (also called sialoadhesin) are radioresistant and necessary
for effective transplantation and hematopoietic reconstitution after
lethal irradiation.15,19 Therefore, BM resident MF are thought to be
HSC protectors, particularly in response to stress.20 However,
CD1691 MF may also have deleterious effects on HSCs as they
can secrete proinflammatory cytokines21 and produce chemokines
that can recruit inflammatory monocytes. In accordance, a beneficial
effect of an MF depletion has been shown in a model of severe
aplastic anemia, as the absence of MF rescued HSC pool and
reduced mortality in mice.22

Here, we study the effects of a 2 Gy-TBI on ROS, nitric oxide (NO),
and peroxynitrite production by BM resident CD1691 MF and
long-term HSCs (LT-HSCs). Using pharmacological or genetic
depletion of CD1691 MF, we characterize the role of BM resident
CD1691 MF on LT-HSCs after a 2 Gy-TBI and show how the
modulation of NO production can be used to control some deleteri-
ous effects of TBI on HSCs.

Methods

Mice

Eight- to 12-week-old C57BL/6 male mice were bred in our animal
facility or purchased from Janvier Laboratory (CD45.21 C57BL/6JRj
mice) or Charles River Laboratory (CD45.11 C57BL/6-Ly5.1 mice).

CD169-DTR homozygous mice (CD169DTR/DTR, no. RBRC04395)
were purchased from RIKEN BRC through the National Bio-
Resource Project of the MEXT/AMED (Japan).23,24 CD169-DTR
heterozygous mice (CD169DTR/1) were obtained by crossing
CD169DTR/DTR with C57BL/6JRj mice.

Experimental procedures were performed in accordance with the
European Community Council Directive (EC/2010/63) and were
approved by our ethics committee (APAFIS#18486-20190115
14438518v1). All mice were housed in our specific-pathogen-free-
animal facility (registration number C9203202) and handled in
compliance with the institutional guidelines and French Ministry of
Agriculture’s regulations.

Macrophage depletion

Chemical model. Clodronate-liposomes and phosphate-buffered
saline (PBS)-liposomes were purchased from LIPOSOMA. C57BL/
6 mice were anesthetized with isoflurane before IV retro-orbital injec-
tion. Clodronate-liposomes (200 mL) or PBS-liposomes (200 mL)
were twice injected 40 and 16 hours before irradiation.25

Genetic model. CD169DTR/1 and control C57BL/6 mice were
injected intraperitoneally with a single dose of 10 mg/Kg Diphtheria
Toxin (DT; Sigma-Aldrich #D0564)15 72 hours before irradiation.

Irradiation

Irradiations were performed on a GSR-D1 irradiator (g-Service Med-
ical GmbH company). It is a self-shielded irradiator with 4 137Cs
sources for a total activity of 180.28 TBq (March 2014), which
emits g rays.

Statistical analysis

All statistical analysis was performed using Prism 8 (GraphPad Soft-
ware). A 2-tailed Mann-Whitney U test was used to evaluate the sta-
tistical significance between the 2 groups. P , .05 was considered
statistically significant.

Detailed methods are provided in the supplemental Appendix.

Results

A 2 Gy-TBI of mice induces production of NO by BM

CD1691 MF and of ROS by LT-HSCs, resulting in

LT-HSCs containing cytotoxic peroxynitrites

In wild-type (WT) mice, a 2 Gy-TBI resulted in a first rapid decrease
in the number of BM LT-HSCs followed by a partial recovery start-
ing from 10 days after TBI (Figure 1A, left panel). These kinetics
were associated with 2 waves of increased percentages of ROS1

LT-HSCs. The first wave started 5 hours after TBI and ended 5
days after TBI, and the second wave started from 6 days after TBI
and lasted up to 21 days after TBI (Figure 1A, right panel). In
response to oxidative stress, MF produce NO through activation of
the NO synthase 2 (iNOS).26 In accordance, a 2 Gy-TBI led to a
2.5-fold increase of iNOS expression, mainly in resident CD1691

MF (Figure 1B, left panels) as 4.3-fold more CD1691 MF

expressed iNOS compared with CD169neg MF (supplemental Fig-
ure S1A, left panel). This increased expression of iNOS in CD1691

MF was associated with the first wave of increased percentages of
CD1691 MF producing NO starting 5 hours after TBI and extend-
ing at least up to 2 days after TBI and with a second increase
detected at day 10 after TBI (Figure 1B, right panel). Kinetics of
total MF producing NO after a 2 Gy-TBI showed that CD1691

MF were the main producers of NO (supplemental Figure S1B,
right panel). These 2 increases of NO1 CD1691 MF were con-
comitant with the 2 waves of increased ROS1 LT-HSCs observed
after a 2 Gy-TBI (see Figure 1A).

NO by itself is a weak oxidant27 but is extremely diffusible and can
react with superoxide ions (O2-) produced from ROS to form perox-
ynitrite anions (OONO-) that are pathophysiologically relevant
endogenous cytotoxins, highly toxic to cells28 (Figure 1C). After a 2
Gy-TBI, 2 waves of increased percentage of LT-HSCs containing
peroxynitrites were detected: one between 12 hours and 2 days
after TBI and a second between 10 and 15 days after TBI (Figure
1D, left panel). These 2 waves were concomitant with increased
percentages of NO1 CD1691 MF and ROS1 LT-HSCs (see Fig-
ure 1A-B) and were associated with 2 waves of increased percen-
tages of apoptotic LT-HSCs: a first one starting 5 hours after TBI
and a second one starting 6 days after TBI (Figure 1D, right panel).

These results suggest that peroxynitrite production via the radio-
induced ROS increase in LT-HSCs and the NO production by
CD1691 MF might account for the deleterious effects of a 2
Gy-TBI on LT-HSCs.
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Pharmacological or genetic depletion of CD1691

MF preserves functional LT-HSCs after a 2 Gy-TBI

To characterize the role of resident CD1691 MF on LT-HSCs after
a 2 Gy-TBI, mice were previously treated with clodronate-liposomes
(CLO-lipo) or PBS-liposomes (PBS-lipo) as a control (Figure 2A,
upper scheme). Forty hours after CLO-lipo treatment, 86% of total
BM MF were depleted, and the CD1691 MF subpopulation was
depleted by 98% (supplemental Figure S2A). As previously
described,15,29 lineageneg Sca-11 c-kit1 cells (LSKs) were mobi-
lized 40 hours after CLO-lipo treatment (supplemental Figure S2B).
This mobilization was not associated with a decreased number of
LT-HSCs (Figure 2A, left panel), probably because BM LSKs have
an increased proliferation (supplemental Figure S2C).

In contrast to PBS-lipo, CLO-lipo treatment delivered 40 hours
before a 2 Gy-TBI did not result in an increased percentage of
ROS1 LT-HSCs 1 day after TBI (Figure 2A, upper right panel). The
LT-HSC number, which decreased by 3.7-fold in PBS–lipo-treated
mice, decreased only by 1.9-fold in CLO–lipo-treated mice (Figure
2A, lower left panel). This higher number of LT-HSCs in CLO–lipo-
treated mice was associated with a lower percentage of apoptotic
LT-HSCs and a higher percentage of LT-HSCs in S-G2-M (Figure
2A, middle and right panels). Thus, CLO-lipo treatment diminished
the early deleterious effects of a 2 Gy-TBI on LT-HSCs. Five months
after 2 Gy-TBI, CLO-lipo mice have recovered a normal number of
total MF, but still have a decreased number of CD1691 MF (sup-
plemental Figure S2D) and have a normal number of LT-HSCs,
whereas in PBS–lipo-treated mice, the number of LT-HSCs was
3-fold decreased (Figure 2B, left panel) and the percentage of
LT-HSCs in apoptosis was 2.3-fold increased (Figure 2B, right
panel).

As CLO-lipo depletes not only BM macrophages but most phago-
cytic cells, it can modulate the cell composition of the LT-HSC
niches.15,29,30 Thus, we studied by FACS analysis the effect of
CLO-lipo on cells that are part of the LT-HSC niches (supplemental
Figure S3A). Compared with PBS-lipo, a CLO-lipo treatment
resulted, 40 hours later, in unchanged numbers of arteriolar endo-
thelial cells (AECs) and sinusoidal endothelial cells (SECs),
decreased numbers of osteoblasts (OBCs) and stromal CAR cells
(3.6- and 2.4-fold, respectively), an increased number of stromal
platelet-derived growth factor receptor Alpha (PDGFRa) cells (2.6-
fold) and a dramatically decreased number of CD1691 MF (45-
fold) (supplemental Figure S3B). One day after a 2 Gy-TBI, PBS-
lipo-treated mice showed a decreased number of CD1691 MF
(3.9-fold) and increased numbers of AECs and SECs (2- and 1.2-
fold, respectively), whereas CLO-lipo-treated mice showed a further
decrease of CD1691 MF (2.3-fold), an increased number of SECs
(1.6-fold), and decreased numbers of CAR and PDGFRa cells (1.4-
and 2.4-fold, respectively) (supplemental Figure S3C). Thus, CLO-
lipo treatment mostly decreased CD1691 MF number but also

slightly modified the number of other cells that are part of the
LT-HSC niches.

Altogether, these results show that a CLO-lipo treatment delivered
40 hours before a 2 Gy-TBI protects LT-HSCs from the short- and
long-term harmful effects due to irradiation and suggest a deleteri-
ous role of MF, in particular CD1691 MF, in the effects of a 2
Gy-TBI on LT-HSCs.

To study the role of CD1691 MF in the responses of LT-HSCs to
a 2 Gy-TBI, we used a genetic mouse model to specifically deplete
CD1691 MF.15,23 Three days after intraperitoneal injection of DT in
CD169DTR/1 mice, LSKs were mobilized in peripheral blood. This
mobilization was not associated with a decreased number of
LT-HSCs between non-irradiated WT and CD169DTR/1 mice, prob-
ably because BM LSKs have an increased proliferation (supplemen-
tal Figure S4A).

In BM niches of CD169DTR/1 mice, an unchanged number of AECs, a
slight increased number of SECs (1.5-fold), slight decreased numbers
of OBC, CAR, and PDGFRa cells (1.7-, 1.7-, and 1.6-fold, respec-
tively), and a severe decrease of CD1691 MF (35-fold) were found
(supplemental Figures S4B,C). Analysis of these BM cells 1 day after
a 2 Gy-TBI showed a decreased number of CD1691 MF (2.5-fold)
and an increased number of SEC (1.9-fold) in WT mice but did not
show any modification of components of the niches in CD169DTR/1

mice, except for the CD1691 MF compartment, which was further
decreased (2.3-fold) after TBI (supplemental Figure S4D). These
results indicate that, except for CD1691 MF, other cell populations
found in the LT-HSC niches were less affected in CD169DTR/1 mice
than in the CLO-lipo model and suggest that the LT-HSC phenotype
shown in this study was mainly due to the absence of CD1691 MF.

After a 2 Gy-TBI performed 3 days after DT injection (Figure 2C),
the BM cellularity followed the same kinetics in both WT and
CD169DTR/1 mice (supplemental Figure S4E). The first wave of
increased percentages of apoptotic LT-HSCs occurred in WT mice
and, at a lower extent, in CD169DTR/1 mice, but the second wave
of LT-HSC apoptosis, observed 6 days after TBI in WT mice, was
not found in CD169DTR/1 mice (Figure 2C, upper right panel). Com-
pared with WT mice, the LT-HSC number in CD169DTR/1 mice
started to recover as soon as 5 days after TBI and reached a nor-
mal number from 15 days after TBI (Figure 2C, lower left panel). In
WT mice, LT-HSCs were cycling 10 days after TBI (Figure 2C,
lower right panel), but their number did not increase, suggesting
that this higher proliferation was counterbalanced by the second
wave of apoptosis (Figure 2C, upper right panel).

To characterize pathways regulating the second wave of apoptosis
in WT mice, transcriptomic analysis of CD169DTR/1 LT-HSCs vs
WT LT-HSCs isolated 5 days after TBI (ie, just before the second
waves of ROS and apoptosis occurring only in WT mice) was per-
formed (supplemental Figure S5). This analysis showed that in

Figure 1. Decreased number of LT-HSCs and increased percentages of ROS
1
LT-HSCs, NO

1
CD169

1
macrophages (MF) and peroxynitrites

1
LT-HSCs

after a 2 Gy-TBI. (A) Kinetics of LT-HSC number (left) and the percentage of ROS1 LT-HSCs (right) in WT mice after a 2 Gy-TBI (n $ 3 mice for each time point).

(B) Left: Increased iNOS expression in CD1691 MF of WT mice 1 day after a 2 Gy-TBI (n 5 3 independent experiments) and representative flow analysis of iNOS

expression in CD1691 MF 1 day after a 2 Gy-TBI. Right: Kinetics of CD1691 MF producing NO in WT mice after a 2 Gy-TBI (n $ 3 mice for each time point). (C)

Scheme describing the formation of peroxynitrites from radio-induced production of ROS and NO. (D) Kinetics of peroxynitrites1 LT-HSCs (left) and of caspases 3/71

LT-HSCs (right) in WT mice after a 2 Gy-TBI (n $ 3 mice for each time point). Data are represented with mean 6 SEM or min to max box-and-whisker; *P , .05,

**P , .01, ***P , .001, ****P , .0001 (2-tailed Mann-Whitney U test).
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UP-regulated pathways in CD169DTR/+ LT-HSC vs WT LT-HSC at D5 post-2 Gy TBI

DOWN-regulated pathways in CD169DTR/+ LT-HSC vs WT LT-HSC at D5 post-2 Gy TBI
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Figure 3. Effects of genetic depletion of CD169
1
MF on LT-HSC functionality after TBI. (A) Top: Scheme of the experimental protocol of LSK engraftment. Bottom:

Number of donor LT-HSCs in recipient mice 5 months after LSK transplantation (n 5 3 independent experiments). (B) Scheme of the experimental protocol of BM
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CD169DTR/1 LT-HSCs, genes involved in DNA repair and cell cycle
process in response to ionizing radiation were upregulated, and
genes involved in cell death and response to TNFa were downregu-
lated (Figure 2D).

Five months after a 2 Gy-TBI, CD169DTR/1 mice, which still had a
2.3-fold decreased number of CD1691 MF (supplemental Figure
S4F), recovered a normal LT-HSC number, whereas WT mice had
a 1.7-fold decreased number of LT-HSCs (Figure 2E). To determine
when CD1691 MF were involved in the deleterious effects of a 2
Gy-TBI on LT-HSCs, DT was injected into CD169DTR/1 mice 4
days after a 2 Gy-TBI (ie, after the first wave of increased ROS1

LT-HSCs) (supplemental Figure S6A). Ten days after TBI, CD1691

MF have been efficiently depleted (supplemental Figure S6B), but
this delayed CD1691 MF depletion did not suppress the second
wave of ROS1 LT-HSCs, did not decrease the percentage of apo-
ptotic LT-HSCs, and did not lead to an increased LT-HSC number
after a 2 Gy-TBI (Figure 2F).

As a 2 Gy-TBI has effects on many organs, only 1 leg of WT and
CD169DTR/1 mice was irradiated at 2 Gy (supplemental Figure
S7A). One day later, the LT-HSC number was 1.6-fold decreased
in the irradiated leg of WT mice, and percentages of ROS1

LT-HSCs and apoptotic LT-HSCs were increased when compared
with the non-irradiated leg. In the irradiated leg of CD169DTR/1

mice, the decrease of the LT-HSC number was only 1.3-fold
smaller, and percentages of ROS1 LT-HSCs and apoptotic
LT-HSCs were similar to the ones observed in the non-irradiated
leg (supplemental Figure S7B). These data suggest that CD1691

MF deficiency results in a local protection of LT-HSCs against the
deleterious effects of a 2 Gy irradiation.

To characterize the role of CD1691 MF in the short-term functions
of LT-HSCs after a 2 Gy-TBI, LSK from WT or CD169DTR/1 mice
were sorted 24 hours after TBI and transplanted into conditioned
recipient mice. Five months later, recipient mice that were trans-
planted with LSK from irradiated WT donor mice had a decreased
number of LT-HSCs, whereas recipient mice transplanted with LSK
from irradiated CD169DTR/1 donor mice had a normal number of
LT-HSCs (Figure 3A).

We also characterized the role of CD1691 MF in the long-term
functions of LT-HSCs 5 months after a 2 Gy-TBI. BM from WT or
CD169DTR/1 mice was harvested 5 months after a 2 Gy-TBI and
transplanted into conditioned recipient mice. BM from recipient
mice was then analyzed 5 months later (Figure 3B). BM cellularity
and chimerism (Figure 3C), myeloid-biased MPP2 and MPP3 num-
bers associated with inflammation (Figure 3D), and mature cell num-
bers (data not shown) were similar in the 4 groups of mice.
However, whereas recipient mice that were transplanted with BM
from irradiated WT donor mice had decreased numbers of LT- and
ST-HSCs, recipient mice transplanted with BM from irradiated

CD169DTR/1 donor mice had normal numbers of LT- and ST-HSCs
(Figure 3E).

Altogether, these data show that CD1691 MF deficiency results in
early protection of functional LT-HSCs against the deleterious
effects of a 2 Gy irradiation.

The CD1691 MF depletion suppressed the

radio-induced increase of ROS1 LT-HSCs and

could be partially mimicked by a NAC treatment

A 2 Gy-TBI of CD169DTR/1 mice did not result in any increased
percentage of ROS1 LT-HSCs nor percentage of LT-HSCs con-
taining peroxynitrites over time (Figure 4A, left, middle panels). Of
note, MF present in CD169DTR/1 mice did not produce radio-
induced NO (Figure 4A, right panel).

To prevent the radio-induced increase of ROS due to TBI, WT mice
were treated with N-acetyl-L-cysteine (NAC), a ROS scavenger,31

before and after a 2 Gy-TBI (Figure 4B). This treatment resulted in a
2.2-fold reduced percentage of ROS1 LT-HSCs 1 day after TBI (ie,
similar to the percentage found in irradiated CD169DTR/1 mice) (Fig-
ure 4C, left panel). In 2 Gy-irradiated WT mice, NAC treatment also
decreased by 1.3-fold the percentage of CD1691 MF producing
NO (Figure 4C, middle panel) and by 2.3-fold the percentage of
LT-HSCs with peroxynitrites (Figure 4C, right panel). These lower per-
centages were associated with a 1.4-fold decreased percentage of
radio-induced apoptotic LT-HSCs (Figure 4D, left panel) and with a
1.5-fold increase of the LT-HSC number (Figure 4D, right panel). Ten
days after TBI, the percentage of ROS1 LT-HSCs was still 2.2-fold
decreased by NAC treatment, and no increase in the percentage of
radio-induced apoptotic LT-HSCs (Figure 4E) was observed, suggest-
ing the abolishment of a second wave of apoptosis. Finally, 21 days
after TBI, the LT-HSC number was 1.6-fold increased in WT mice
treated with NAC but was significantly decreased compared with irra-
diated CD169DTR/1 mice or to non-irradiated mice (Figure 4F).

Altogether, these results suggest that in WT mice, the first wave of
apoptosis in LT-HSCs is only partially ROS-dependent as a NAC
treatment did not completely suppress apoptosis 1 day post-TBI. In
contrast, the second wave of apoptosis in LT-HSCs is ROS-
dependent as, 10 days after TBI, NAC treatment suppresses this
second wave of apoptosis. In CD169DTR/1 mice, the first wave of
apoptosis is ROS-independent as there is no increase of ROS1

LT-HSCs after TBI in these mice (Figure 4A, left panel) and as a
NAC treatment did not decrease LT-HSC apoptosis (Figure 4D, left
panel).

Modulation of NO production regulates LT-HSC

recovery after a 2 Gy-TBI

To determine the role of NO in the early effects of a 2 Gy-TBI on
LT-HSCs, WT mice were treated with 1400W, a selective inhibitor

Figure 4. Effects of CD1691 MF depletion or NAC treatment on the radio-induced increases of the percentages of ROS1 and peroxynitrite1 LT-HSCs. (A) Kinetics

of percentages of ROS1 LT-HSCs (left) and peroxynitrite1 LT-HSCs (middle) in WT and CD169DTR/1 mice. Kinetics of percentages of CD1691 MF and CD169neg MF

producing NO (right) in WT and CD169DTR/1 mice (n $ 3 mice for each time point). (B) Scheme of the experimental protocol for NAC treatment of WT or CD169DTR/1

mice. (C) Percentages of ROS1 LT-HSCs (left), of CD1691 MF producing NO (middle), and of peroxynitrite1 LT-HSCs (right) 1 day after a 2 Gy-TBI in WT and

CD169DTR/1 mice treated or not with NAC. (D) Percentage of caspases 3/71 LT-HSCs (left) and number of LT-HSCs (right) 1 day after a 2 Gy-TBI in WT and CD169DTR/1

mice treated or not with NAC (n $ 5 mice for each time point). (E) Percentages of ROS1 LT-HSCs (left) and caspases 3/71 LT-HSCs (right) 10 days after a 2 Gy-TBI in

WT mice treated or not with NAC (n $ 4 mice). (F) LT-HSC number 21 days after a 2 Gy-TBI in WT and CD169DTR/1 mice treated or not with NAC (n $ 4 mice for each

time point). Data are represented with mean 6 SEM; *P , .05, **P , .01, ***P , .001, ****P , .0001, ns: not statistically significant (2-tailed Mann-Whitney U test).
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of iNOS,32,33 30 minutes before and 1 hour and 30 minutes and 4
hours and 30 minutes after a 2 Gy-TBI (Figure 5A). In 1400W-
treated irradiated mice, a progressive decrease in the percentage of
NO1 CD1691 MF was found to finally reach levels similar to those
observed in non-irradiated mice (Figure 5B, left panel). This reduced
NO production was associated with decreased percentages of
peroxynitrite1 LT-HSCs and of apoptotic LT-HSCs after TBI (Figure
5B, middle and right panels) and resulted in an increased number
of LT-HSCs at 21 days post-TBI (Figure 5C), indicating that an early
inhibition of NO production led to a partial rescue of the LT-HSC
pool.

Conversely, to determine if increased NO levels were involved in the
decreased number of LT-HSCs after TBI, DT-injected CD169DTR/1

mice were inoculated with the NO donor SIN-134,35 10 minutes, 11
hours, 24 hours, and 48 hours after a 2 Gy-TBI (Figure 5D). Twelve
hours post-TBI, increased percentages of peroxynitrite1 LT-HSCs,
apoptotic LT-HSCs, and ROS1 LT-HSCs were found in SIN-1-
treated CD169DTR/1 mice (Figure 5E). Finally, 21 days after TBI,
the LT-HSC number was significantly decreased in SIN-1-treated
CD169DTR/1 mice compared with non-irradiated ones (Figure 5F).

Altogether, these results suggest a critical role of NO in the fate of
LT-HSCs after a 2 Gy-TBI.

Discussion

In this study, we show that in response to a 2 Gy-TBI, BM resident
CD1691 MF have a detrimental effect on LT-HSCs. Their absence
at the time of irradiation decreased the radio-induced ROS1

LT-HSCs and apoptotic LT-HSCs and allowed a complete recovery
of functional LT-HSCs long-time after TBI. In the irradiated heart,
CD681 MF that are recruited after irradiation are responsible for
cardiac physiological alterations,36 and in the irradiated lung, the
radio-induced fibrosis is accounted for recruited interstitial MF but
not for resident alveolar MF.37 These studies suggest that inflam-
matory recruited MF account for some detrimental effects of irradia-
tion and that tissue-resident MF are protective sentinels restoring
tissue homeostasis after injury.38 In contrast, our results show that
in the irradiated BM, the resident MF are involved in the radio-
induced toxicity. This is consistent with studies showing that resi-
dent MF can induce tissue toxicity in the context of diseases such
as obesity or atherosclerosis39,40 or acute inflammation models.41,42

After a 2 Gy-TBI, the percentage of CD1691 MF producing NO
increased rapidly via an enhanced expression of iNOS, a property
of proinflammatory MF,26,43 suggesting that resident BM CD1691

MF might acquire a proinflammatory M1 phenotype in response to
a 2 Gy-TBI. This increase of NO1 CD1691 MF is associated with
an increased percentage of LT-HSCs containing peroxynitrites. Per-
oxynitrites, whose formation results from a chemical reaction
between NO and superoxide anions,27 are cytotoxic endogenous

oxidants. This cytotoxicity is accounted for by mechanisms such as
(i) inactivation of superoxide dismutase enzymes,44-46 (ii) induction
of DNA damages,47 and (iii) abnormal mitochondrial function leading
to secondary ROS formation.48 How peroxynitrites are involved in
LT-HSC apoptosis is still unknown.

Although NAC treatment decreased both percentages of NO1 MF
and peroxynitrite1 LT-HSCs after a 2 Gy-TBI, it did not totally sup-
press the first wave of LT-HSC apoptosis but lowered it to the one
found in CD169DTR/1 mice. In contrast, NAC treatment prevented
the second wave of LT-HSC apoptosis in WT mice. These results
indicated that early effects of a 2 Gy-TBI on LT-HSCs involved both
ROS-independent and ROS-dependent apoptosis and that the sec-
ond wave of apoptosis was only ROS-dependent. Here, we demon-
strated that the ROS-dependent apoptosis is mainly due to
peroxynitrite formation as a result of the combination of ROS pro-
duced by LT-HSCs with NO produced by CD1691 MF. The ROS-
independent apoptosis can be due to a mitochondrial dysfunction
that leads to caspase 3 activation49-51 as we found a 2.6-fold
increase of the percentage of LT-HSCs with mitochondrial ROS 1
day after a 2 Gy-TBI (our unpublished data).

In accordance with the phenotypes observed, transcriptomic analy-
sis of LT-HSCs, harvested before the second waves of ROS and
apoptosis, showed, in CD169DTR/1 LT-HSCs, an increased expres-
sion of genes involved in cell proliferation and in response to ioniz-
ing radiation and a decreased expression of genes involved in
apoptosis, such as Ddit3, Jun, and Fos, and involved in response to
TNFa. Ddit3, Jun, and Fos expressions are increased in response
to endoplasmic reticulum (ER) stress and are associated with ROS
production by mitochondria and apoptosis.52,53 The decreased
expression of these genes in CD169DTR/1 LT-HSC suggests that,
in WT mice, the first wave of radio-induced ROS might induce an
extended activation of Ddit3 due to ER stress, leading to the sec-
ond wave of ROS. TNFa is produced by MF in stress conditions54

and has a major role in mitochondrial-mediated cell death.55 In addi-
tion, in vivo administration of TNFa in WT mice results in a
decreased long-term repopulating activity of HSCs.56 Our transcrip-
tomic analysis showed a decreased expression of genes involved in
response to TNFa in CD169DTR/1 LT-HSCs, suggesting that, after
a 2 Gy-TBI of WT mice, TNFa is rapidly secreted by CD1691 MF
and leads to mitochondrial and ER dysfunctions57 in LT-HSCs that
result in ROS and apoptosis. In accordance with the role of this
early secretion of TNFa by CD1691 MF, we showed that CD1691

MF depletion after the first wave of ROS did not abolish the sec-
ond wave of ROS.

Treatment of WT mice with the iNOS inhibitor 1400W, which leads
to a specific inhibition of NO produced by MF,58 led to decreased
percentages of both peroxynitrite1 LT-HSCs and apoptotic
LT-HSCs and to a better recovery of LT-HSC number 21 days
post-TBI. A 1400W treatment combined with radiotherapy

Figure 5. Modulation of NO production regulates LT-HSC recovery after a 2 Gy-TBI. (A) Scheme of the experimental protocol for the treatment of WT mice with

the iNOS inhibitor (1400W) before and after a 2 Gy-TBI. (B) Kinetics of percentages of NO1 CD1691 MF (left), peroxynitrites1 LT-HSCs (middle), and caspases 3/71

LT-HSCs (right) in WT mice treated or not with 1400W (n $ 4 mice for each time point). (C) Kinetics of LT-HSC number in WT mice treated or not with 1400W (n $ 4

mice for each time point). (D) Scheme of the experimental protocol for the treatment of CD169DTR/1 mice with the NO donor (SIN-1) after a 2 Gy-TBI. (E) Percentages of

peroxynitrites1 LT-HSCs (left), caspases 3/71 LT-HSCs (middle), and ROS1 LT-HSCs (right) 12 hours after a 2 Gy-TBI, in CD169DTR/1 mice treated or not with SIN-1

(n $ 5 mice). (F) LT-HSC number 21 days after a 2 Gy-TBI, in CD169DTR/1 mice treated or not with SIN-1 (n $ 6 mice). Data are represented with mean 6 SEM;

*P , .05, **P , .01, ****P , .0001, ns: not statistically significant (2-tailed Mann-Whitney U test).
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increases survival and delays or suppresses tumor growth in the
pancreas, lung, and breast cancer.59,60 Our results strengthened its
use in cancer treatment as we showed that 1400W treatment also
protected LT-HSCs from potentially deleterious effects of radiother-
apy. In contrast, the use of SIN-1, a NO donor, led to a decreased
number of the LT-HSCs in CD169DTR/1 mice 21 days after irradia-
tion, strengthening the association between the presence of environ-
mental NO and the harmful effect of irradiation on LT-HSCs.
Interestingly, a SIN-1 treatment to 2 Gy-irradiated WT mice further
decreased LT-HSC number 21 days post-TBI (our unpublished
data), suggesting NO delivery as a potential way to reduce the radia-
tion dose in conditioning regimens used in medical myeloablation.61

Altogether, this study characterized an unexpected role of BM
CD1691 macrophages in the response of LT-HSCs to a 2 Gy-TBI
and suggested that modulation of NO production might be an inter-
esting tool in the medical use of ionizing radiation.
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