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Endoplasmic reticulum (ER) stress has been linked with various
acute and chronic neurodegenerative diseases. We previously
found that optic nerve (ON) injury and diseases induce
neuronal ER stress in retinal ganglion cells (RGCs). We further
demonstrated that germline deletion of CHOP preserves the
structure and function of both RGC somata and axons inmouse
glaucoma models. Here we report that RGC-specific deletion of
CHOP and/or its upstream regulator ATF4 synergistically pro-
motes RGC and ON survival and preserves visual function in
mouse ON crush and silicone oil-induced ocular hypertension
(SOHU) glaucoma models. Consistently, topical application
of the ATF4/CHOP chemical inhibitor ISRIB or RGC-specific
CRISPR-mediated knockdown of the ATF4 downstream
effector Gadd45a also delivers significant neuroprotection in
the SOHUglaucomamodel. These studies suggest that blocking
the neuronal intrinsic ATF4/CHOP axis of ER stress is a prom-
ising neuroprotection strategy for neurodegeneration.

INTRODUCTION
When the endoplasmic reticulum (ER) is overwhelmed by misfolded
proteins or disturbed calcium homeostasis, cells experience ER stress
and activate a complex cascade of reactions, in general called the
unfolded protein response (UPR).1,2 ER stress is linked with various
acute and chronic neurodegenerative diseases.3–5 Modulation of ER
stress and UPR signaling molecules protects injured neurons and im-
proves functional recovery in experimental spinal cord injury,6–10

stroke,11–13 Alzheimer’s disease (AD),14,15 Parkinson’s disease
(PD),16,17 amyotrophic lateral sclerosis (ALS),18 prion disease,19–21

and retina degenerations.22–27 We previously found that traumatic
optic nerve (ON) injury, ocular hypertension, and optic neuritis
induce neuronal ER stress in retinal ganglion cells (RGCs).28–30 We
further demonstrated that germline knockout (KO) of CHOP, a
downstream pro-apoptotic molecule of ER stress,31–33 or treatment
with small molecular CHOP inhibitors, preserves the structure and
function of both RGC somata and axons in several mouse optic neu-
ropathy models.28–30,34 These findings indicate the critical impor-
tance of ER stress in the pathophysiology of axonopathies and that
inhibition of the CHOP branch of ER stress is a promising neuropro-
tection strategy.3,35
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CHOPmediates ER stress-induced apoptosis by downregulating anti-
apoptotic Bcl236 and upregulating pro-apoptotic Bim and PUMA,37,38

death receptor 5 (DR5), and caspase 8 cleavage.39 CHOP also can form
heterodimers with its upstream transcription factor ATF4 to cause cell
death by upregulating protein synthesis and inducing oxidative
stress.40 Axonal ATF4 was linked to AD pathogenesis,41 and ATF4
activation promotes dopaminergic cell death induced by PD neuro-
toxins and pathogenic a-synuclein aggregates.42 It is clinically impor-
tant and scientifically interesting to determine the role of neuronal
specific ATF4/CHOP inhibition in neuroprotection. The Cre-depen-
dent CHOP floxed mouse line and ATF4 floxed mouse line have been
generated for cell-type-specific testing.43,44 Taking advantage of our
recently developed RGC-specific AAV promoter, mouse g-synuclein
(mSncg)45 and silicone oil-induced ocular hypertension (SOHU)
mouse glaucomamodels,46–48 we demonstrate here that RGC-specific
deletion of CHOP, ATF4, or both significantly preserves glaucoma-
tous RGC somata and axons and visual function. Consistently,
ISRIB, a small molecule inhibitor of the ATF4/CHOP axis, and
CRISPR-mediated knock down of Gadd45a, a potential ATF4 down-
stream effector, also provide neuroprotection in the mouse glaucoma
model. This study confirms that targeting the neuronal intrinsic
ATF4-CHOP axis of ER stress is a promising neuroprotective strategy.
RESULTS
RGC-specific deletion of ATF4 and/or CHOP promotes

significant RGC soma and axon survival after ON crush injury

To test the effect of neuronal intrinsic inhibition of ATF4 and/or
CHOP, we employed CHOP floxed mice43 and ATF4 floxed mice,44

and we generated an ATF4/CHOP double-floxed mouse line. Because
endogenous levels of ATF4 and CHOP in naive RGCs are quite low, it
is difficult to detect the KO effect in the naive transgenic mouse lines.
ON crush (ONC) induced upregulation ofATF4 andCHOP in injured
RGCs at 3 days post crush (3dpc)28 (Figures 1A and 1B), and
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Figure 1. ATF4 and/or CHOP deletion promotes RGC

soma and axon survival in ONC model

(A) Representative confocal images of retina cross-sections

showing ATF4 (red) and CHOP (green) mRNA expression in

GCL by ISH at 3dpc (days post crush) in WT, ATF4, or

CHOP KO mice. GCL, ganglion cell layer; ISH, in situ hy-

bridization. Scale bar, 20 mm. (B) Quantification of mean

fluorescence intensity of ATF4 and CHOP in GCL at 3dpc.

n = 5 in all groups. Data are presented as means ± SEM.

*p < 0.05, one-way ANOVA with Tukey’s multiple com-

parisons test. (C) Upper panel, representative confocal

images of peripheral flat-mounted retinas showing surviving

RBPMS-positive (red) RGCs at 14dpc. Scale bar, 20 mm.

Lower panel, light microscope images of semi-thin

transverse sections of ON with PPD staining at 14dpc.

Scale bar, 10 mm. (D) Quantification of surviving RGC

somata and axons at 14dpc, represented as percentage

of crushed eyes compared to the sham contralateral

control eyes. WT, n = 10; ATF4f/f, n = 6; CHOPf/f, n = 9;

and ATF4f/f/CHOPf/f, n = 7. Data are presented as

means ± SEM, **p < 0.01, ****p < 0.0001, one-way

ANOVA with Tukey’s multiple comparisons test.
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intravitreal injection of AAV2-Cre driven by RGC-specific promoter
mSncg45 in ATF4- and CHOP-floxed mice (Figure S1A) significantly
inhibited ATF4 and CHOP expression in injured RGCs (Figures 1A
and 1B). Consistently, RGC-specific ATF4 or CHOP deletion signifi-
cantly increased RGC soma survival afterONC injury (Figures 1C, 1D,
and S1B). Interestingly, ATF4 KO provided greater RGC protection
than CHOP KO, and ATF4/CHOP double KO was more effective
than either one alone. RGC-specific deletion of CHOP or both
ATF4 andCHOPalso protectedRGCaxons, although axonprotection
byATF4KOdid not reach statistical significance (Figures 1C and 1D).

RGC-specific deletion of ATF4 and/or CHOP significantly

promotes both RGC soma and axon survival in the SOHU

glaucoma model

Next, we tested the RGC autonomous effect of ATF4/CHOPdeletion in
a mouse glaucoma model (Figure S1B). We generated the SOHU glau-
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coma model in one eye and used the contralateral
eye as naive control.46–48 ATF4 and
CHOP upregulation was readily detected in the
SOHU eyes 1 week post silicone oil (SO) injection
(1wpi) (Figures 2A and 2B). ATF4 or CHOP dele-
tion in RGCs did not affect intraocular pressure
(IOP) elevation (Figure 2C). Optokinetic tracking
response (OKR) is a natural reflex that objectively
assesses mouse visual acuity.49,50 Deletion of
ATF4, CHOP, or both in RGCs significantly pre-
served visual acuity of the glaucomatous eyes
3 weeks post SO injection (3wpi) (Figure 2D). A
common RGC electrophysiological assay, pattern
electroretinogram (PERG), consistently showed
significant increase of the peak-to-trough (P1-
N2) amplitude ratio of the SOHU eyes to contralateral (CL) eyes after
ATF4/CHOPKO (Figure 2E), also indicating improved visual function.

In addition to in vivo visual function assessment, we also performed
in vivo OCT imaging of mouse retinas and found that RGC-specific
KO of ATF4, CHOP, or both significantly increased the thickness
of the ganglion cell complex (GCC), including both RGC dendrites
and axons, in glaucoma eyes (Figures 2F and 2G). Histological anal-
ysis of postmortem retina whole mounts (Figure S2A) and ON sec-
tions (Figure S2E) consistently demonstrated significant increase of
RGC somata and axons in SOHU eyes after deletion of ATF4,
CHOP, or both in RGCs (Figures 3 and S2B–S2D). Although there
was no statistically significant difference in glaucoma neuroprotec-
tion among the groups of RGC-specific manipulation, ATF4/CHOP
double KO consistently showed better effects. Taken together, these
results indicate that RGC-specific inhibition of ATF4 and CHOP
py: Nucleic Acids Vol. 33 September 2023 287
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Figure 2. ATF4 and/or CHOP deletion preserve visual

functions in SOHU glaucoma model

(A) Representative confocal images of retina cross-sections

showing ATF4 (red) and CHOP (green) mRNA expression in

GCL by ISH at 1wpi (1 week post SO injection). Scale bar,

20 mm. (B) Quantification of mean fluorescence intensity of

ATF4 and CHOP in GCL at 1wpi. n = 5. Data are presented

as means ± SEM. ***p < 0.001, two-tailed unpaired t test.

(C) IOP measurements at 3wpi. Naive, n = 15; WT SOHU,

n = 15; ATF4f/f, n = 12; CHOPf/f, n = 9; ATF4f/f/CHOPf/f, n =

15. (D) Visual acuity measured by OKR at 3wpi, represented

as percentage of SOHU eyes compared to the sham

contralateral control eyes. WT SOHU, n = 15; ATF4f/f, n =

12; CHOPf/f, n = 9; and ATF4f/f/CHOPf/f, n = 15. (E)

Quantification of P1-N2 amplitude of PERG at 3wpi,

represented as percentage of SOHU eyes compared to

the sham contralateral control eyes. WT SOHU, n = 15;

ATF4f/f, n = 12; CHOPf/f, n = 9; and ATF4f/f/CHOPf/f, n =

15. (F) Representative OCT images of mouse retina in

living SOHU glaucoma animals at 3wpi. GCC (ganglion

cell complex), including RNFL, GCL, and IPL layers, is

indicated as double-end arrows. (G) Quantification of

GCC thickness measured by OCT at 3wpi, represented

as percentage of GCC thickness in the SOHU eyes

compared to the sham contralateral control eyes. WT

SOHU, n = 15; ATF4f/f, n = 12; CHOPf/f, n = 9; and

ATF4f/f/CHOPf/f, n = 15. All the data are presented as

means ± SEM, *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001, one-way ANOVA with Tukey’s multiple

comparisons test.
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achieves significant neuroprotection of RGCs and ONs in both trau-
matic ON injury and SOHU glaucoma models.

Topical application of ISRIB promotes both RGC soma and axon

survival in SOHU glaucoma model

ISRIB is a small molecule blocker of the ATF4/CHOP pathway iden-
tified by high-throughput screening with a luciferase reporter driven
by 50 UTR of ATF4 mRNA.51 We tested its effect on glaucomatous
neurodegeneration. Topical application of ISRIB to retina by retro-
bulbar injection every 3 days had no effect on IOP elevation (Fig-
ure 4A), but it afforded consistent and significant neuroprotection
of visual functions (Figures 4B and 4C), GCC thickness (Figures 4D
and 4E), and RGC somata and axons (Figures 4F, 4G, and S3).

Inhibition of ATF4 downstream effector Gadd45a promotes

neuroprotection in SOHU glaucoma model

Gadd45a is a potential downstream effector of the eIF2a-ATF4
branch of ER stress that mediates ER stress-induced cell death and
muscle atrophy.44,52 We previously found that ONC injury induces
Gadd45a expression in RGCs.28 Gadd45a was also consistently upre-
gulated in glaucomatous RGCs (Figures 5A and 5B).We have demon-
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strated highly effective gene knockdown in RGCs
by AAV-mSncg-mediated CRISPR.45 Using a
similar strategy to co-express Cas9 and Gadd45a
gRNAs in mouse RGCs, we confirmed that
knockdown of Gadd45a in RGCs also produced significant neuropro-
tection in the SOHU glaucoma model (Figures 5C–5H and S4).

DISCUSSION
We previously demonstrated that germline deletion of CHOP or sys-
temic administration of ATF4/CHOP inhibitors significantly protects
RGC somata and axons.29,34 Here we investigated the autonomous ef-
fects of RGC-specific deletion of ATF4 and its downstream effector
molecule CHOP in mouse optic neuropathy models. We demon-
strated that neuronal ER stress, especially the ATF4-CHOP branch,
plays a damaging autonomous role in traumatic and glaucomatous
neurodegeneration. Consistent with the previous finding that ATF4
and CHOP act together to induce oxidative stress and apoptosis,40

we confirmed that ATF4 and CHOP double KO synergistically pro-
motes RGC and ON survival and preserves visual function in mouse
ON crush and SOHU glaucoma models. Intriguingly, a recent study
has extensively profiled the transcriptional targets of ATF4 and
CHOP in RGCs and found that these two transcription factors regu-
late distinct molecular pathways.53 Moreover, CHOP was found to
inhibit ATF4 overactivation during mitochondrial stress, and dele-
tion of CHOP may increase ATF4 expression.54 Therefore, targeting



Figure 3. ATF4 and/or CHOP deletion promotes RGC

soma and axon survival in SOHU glaucoma model

(A) Upper panel, representative confocal images of pe-

ripheral flat-mounted retinas showing surviving RBPMS-

positive (red) RGCs at 3wpi. Scale bar, 20 mm. Lower

panel, light microscope images of semi-thin transverse

sections of ON with PPD staining at 3wpi. Scale bar,

10 mm. (B) Quantification of surviving RGC somata at

3wpi, represented as percentage of glaucomatous eyes

compared to the sham contralateral control eyes. WT, n =

17; ATF4f/f, n = 12; CHOPf/f, n = 9; and ATF4f/f/CHOPf/f,

n = 17. (C) Quantification of surviving RGCs axons at

3wpi, represented as percentage of glaucomatous eyes

compared to the sham contralateral control eyes. WT, n =

17; ATF4f/f, n = 12; CHOPf/f, n = 9; and ATF4f/f/CHOPf/f,

n = 17. Data are presented as means ± SEM, *p < 0.05,

***p < 0.001, one-way ANOVA with Tukey’s multiple

comparisons test.
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RGC-intrinsic ATF4 and CHOP simultaneously is a more promising
neuroprotection strategy for optic neuropathies than inhibition of
either alone. In addition, ATF4 activation has been found to be asso-
ciated with AD,41 PD,42 and ALS.55 Blocking the ATF4-CHOP
pathway is, therefore, very likely to benefit multiple neurodegenera-
tive diseases. Because recent findings suggest that astrocyte networks
establish a connection between the glaucomatous and the contralat-
eral eyes,56,57 it would be interesting to examine the responses of as-
trocytes in both eyes before and after ATF4/CHOP modulation.

Pharmacological small molecule modulators have been actively devel-
oped to target ER stress molecules.58 Multiple FDA-approved drug
compounds, such as adaptaquin, vortioxetine, trazodone, and diben-
zoylmethane, have been found to be neuroprotective through blocking
the ATF4/CHOP pathway.59–61 Recently, we identified three tricyclic
drug compounds as general ER stress inhibitors through a small-scale
high-throughput screening using a CHOP promoter-driven luciferase
cell-based assay. Systemic administration of these agents showed
considerable neuroprotection in mouse optic neuropathy models.34

ISRIB is an effective chemical inhibitor of ATF4/CHOP by activating
eIF2B.51,62,63 In addition to enhancing long-term memory,64 it was
found to be neuroprotective in mouse models of prion disease, ALS,
and ONC.21,34,65,66 Here we performed retrobulbar injection of ISRIB
to topically deliver it to the retinas and for the first time demonstrated
that it provides significantneuroprotection in amouse glaucomamodel.
However, ISRIB has poor solubility and is not suitable for human use.
An ISRIB analog, 2BAct, has been developed with more favorable solu-
Molecular Thera
bility and pharmacokinetic properties.67 It would
be very interesting to test 2BAct in mouse optic
neuropathy models. Further effort to develop neu-
roprotectants targeting ATF4/CHOP is certainly
warranted.

CRISPR-mediated gene therapy directly inhibit-
ing the ATF4/CHOP pathway is another prom-
ising therapeutic strategy for neuroprotection. We previously
demonstrated RGC and ON protection in a mouse ONC model by
AAV-mediated RGC-specific CRISPR knockdown of CHOP and
SARM1.45 In the current study, we used the same vectors with
Gadd45a gRNAs, which also deliver significant neuroprotection in
the SOHU glaucoma model. We recently generated a hyperCas12a,
which enables highly efficient multiple gene editing simultaneously
through a single poly-crRNA array driven by pol-II promoter in
mouse retina in vivo.68 This toolset will allow us to use AAV-
hyperCas9 and corresponding crRNAs driven by RGC-specific pro-
moters to develop synergistic neuroprotection gene therapy strategies
that inhibit ATF4, CHOP, and their key downstream effectors, such
as Gadd45a, specifically in RGCs.

Collectively, the results of the present study demonstrate that ge-
netic and pharmacologic blocking of RGC-intrinsic ATF4 and
CHOP protects injured and glaucomatous RGCs and ONs,
suggesting that inhibiting the neuronal intrinsic ATF4/CHOP
axis of ER stress is a promising neuroprotection strategy for
neurodegeneration.

MATERIALS AND METHODS
Animals

C57BL/6J wild-type (WT) (#000664) and CHOPf/f (#030816)43 mice
(7–9 weeks old) were purchased from Jackson Laboratories (Bar Har-
bor, Maine). ATF4f/f mouse line was a gift from Dr. Sean Morrison’s
lab that was generated by Dr. Chris Adams lab.44 All mice were
py: Nucleic Acids Vol. 33 September 2023 289
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Figure 4. Retrobulbar injection of ISRIB promotes

RGC soma and axon survival and preserves visual

function in SOHU glaucoma model

(A) IOP measurements at 3wpi. Naive, n = 10; WT SOHU,

n = 10; ISRIB SOHU, n = 12. Data are presented as

means ± SEM, ****p < 0.0001, one-way ANOVA with

Tukey’s multiple comparisons test. (B) Visual acuity

measured by OKR at 3wpi, represented as percentage of

SOHU eyes compared to the sham contralateral control

eyes. WT, n = 10; ISRIB, n = 12. Data are presented as

means ± SEM, ***p < 0.001, two-tailed unpaired t test. (C)

Quantification of P1-N2 amplitude of PERG at 3wpi,

represented as percentage of SOHU eyes compared to

the sham contralateral control eyes. WT, n = 10; ISRIB,

n = 12. Data are presented as means ± SEM, **p < 0.01,

two-tailed unpaired t test. (D) Representative OCT images

of mouse retina in living SOHU glaucoma animals at 3wpi.

GCC is indicated as double-end arrows. (E) Quantification

of GCC thickness measured by OCT at 3wpi, represented

as percentage of GCC thickness in the SOHU eyes

compared to the sham contralateral control eyes. WT, n =

10; ISRIB, n = 12. Data are presented as means ± SEM,

**p < 0.01, two-tailed unpaired t test. (F) Upper panel,

representative confocal images of peripheral flat-mounted

retinas showing surviving RBPMS-positive (red) RGCs at

3wpi. Scale bar, 20 mm. Lower panel, light microscope

images of semi-thin transverse sections of ON with PPD

staining at 3wpi. Scale bar, 10 mm. (G) Quantification of

surviving RGC somata and axons at 3wpi, represented as

percentage of glaucomatous eyes compared to the sham

contralateral control eyes. WT, n = 10; ISRIB, n = 12.

Data are presented as means ± SEM, **p < 0.01,

***p < 0.001, two-tailed unpaired t test.
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housed in standard cages on a 12-h light-dark cycle. All experimental
procedures were performed in compliance with animal protocols
approved by the IACUC (#32093) at Stanford University School of
Medicine.

Constructs

The AAV2-mSncg-Cas9 and AAV2-hU6-sgRNAs-hU6-sgRNAs
have been described before.45 To maximize the KO efficiency, we
designed two pairs (four gRNAs) targeting exon 2 and 3 of
mouse Gadd45a. Pair 1: gRNA1: 50-GGCACAGTACCACGT
TATCG-30, gRNA2: 50-CATTACGGTCGGCGTGTACG-30. Pair 2:
gRNA3: 50-CGAAGACGACGACCGGGATG-30, gRNA4: 50-CG
CAGACCCCGGACCTGCAC-30. The AAV vectors containing two
pairs of gRNAs were mixed for packaging of AAV-Gadd45a gRNAs.
AAV-Cas9 and AAV-Gadd45a gRNAs were intravitreally injected at
ratio 2:1.
290 Molecular Therapy: Nucleic Acids Vol. 33 September 2023
AAV production and intravitreal injection

The detailed procedure of AAV production has
beendescribedpreviously.29,45,69,70TheAAVtiters
were determined by real-time PCR and diluted to
1.5� 1012 vector genome (vg)/ml. For intravitreal
injection, mice were anesthetized with xylazine
and ketamine based on their body weight (0.01 mg xylazine/g +
0.08 mg ketamine/g). A pulled and polished microcapillary needle
was inserted into the peripheral retina just behind the ora serrata.
Approximately 2 mL of the vitreous was removed to allow injection
of 2 mL AAV into the vitreous chamber to achieve 3 � 109 vg/retina.
The contralateral eyeswere injectedwith 2mL controlAAV2 as control.

ON crush model

ONC was performed 2 weeks following AAV injection.69–72 After
anesthetization by intraperitoneal injection of Avertin (0.3 mg/g),
the ONwas exposed intraorbitally while care was taken not to damage
the underlying ophthalmic artery and crushed with a jeweler’s forceps
(Dumont #5; Fine Science Tools, Foster City, California) for 5 s
approximately 0.5 mm behind the eyeball. Neomycin eye ointment
(Akorn, Somerset, New Jersey) was used to protect the cornea after
surgery.



Figure 5. GADD45a knockdown (KD) promotes RGC

soma and axon survival and preserves visual function

in SOHU glaucoma model

(A) Representative confocal images of retina cross-sections

showing GADD45a (red) mRNA expression in GCL by

immunostaining at 1wpi. Scale bar, 20 mm. (B)

Quantification of mean fluorescence intensity of GADD45a

in GCL. n = 5. All the data are presented as means ±

SEM. ***p < 0.001, two-tailed unpaired t test. (C) IOP

measurements at 3wpi. Naive, n = 13; WT SOHU, n = 13;

GADD45a KD, n = 11. Data are presented as means ±

SEM, ****p < 0.0001, one-way ANOVA with Tukey’s

multiple comparisons test. (D) Visual acuity measured by

OKR at 3wpi, represented as percentage of SOHU eyes

compared to the sham contralateral control eyes. WT, n =

13; GADD45a KD, n = 10. Data are presented as

means ± SEM, ****p < 0.0001, two-tailed unpaired t test.

(E) Quantification of P1-N2 amplitude of PERG at 3wpi,

represented as percentage of SOHU eyes compared to

the sham contralateral control eyes. WT, n = 13;

GADD45a KD, n = 6. Data are presented as means ±

SEM, *p < 0.05, two-tailed unpaired t test. (F)

Quantification of GCC thickness measured by OCT at

3wpi, represented as percentage of GCC thickness in the

SOHU eyes compared to the sham contralateral control

eyes. WT, n = 13; GADD45a KD, n = 9. Data are

presented as means ± SEM, ***p < 0.001, two-tailed

unpaired t test. (G) Upper panel, representative confocal

images of peripheral flat-mounted retinas showing

surviving RBPMS-positive (red) RGCs at 3wpi. Scale bar,

20 mm. Lower panel, light microscope images of semi-thin

transverse sections of ON with PPD staining at 3wpi.

Scale bar, 10 mm. (H) Quantification of surviving RGC

somata and axons at 3wpi, represented as percentage of

glaucomatous eyes compared to the sham contralateral

control eyes. WT, n = 13; GADD45a KD, n = 9. Data are

presented as means ± SEM, **p < 0.01, two-tailed

unpaired t test.
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SOHU glaucoma model and IOP measurement

SOHU mouse models and IOP measurement have been detailed
before.46–48 In brief, mice were anesthetized by an intraperitoneal in-
jection of Avertin (0.3 mg/g) and received the SO (Alcon Labora-
tories, 1,000 mPa s) injection at 9–10 weeks of age. Prior to injection,
one drop of 0.5% proparacaine hydrochloride (Akorn, Somerset, New
Jersey) was applied to the cornea to reduce its sensitivity during the
procedure. A 32G needle was tunneled through the layers of
the cornea at the superotemporal side close to the limbus to reach
the anterior chamber without injuring the lens or iris. Following
this entry, � 2 mL silicone oil (1,000 mPa s, Silikon, Alcon Labora-
tories, FortWorth, Texas) was injected slowly into the anterior cham-
ber using a homemade sterile glass micropipette, until the oil droplet
expanded to cover most areas of the iris (diameter�1.8–2.2 mm). Af-
ter the injection, veterinary antibiotic ointment (BNP ophthalmic
Molecular Thera
ointment, Vetropolycin, Dechra, Overland Park,
Kansas) was applied to the surface of the injected
eye. The contralateral control eyes received a
mock injection with 2 mL normal saline to the
anterior chamber. Throughout the procedure, artificial tears (Systane
Ultra Lubricant Eye Drops, Alcon Laboratories, Fort Worth, Texas)
were applied to keep the cornea moist.

The detailed procedure for IOP measurement has been described
before.46,47 The IOP of both eyes was measured by the TonoLab
tonometer (Colonial Medical Supply, Espoo, Finland) according to
product instructions under a sustained flow of isoflurane (3% isoflur-
ane at 2 L/min mixed with oxygen) delivered to the nose by a special
rodent nose cone (Xenotec, Rolla, Missouri). 1% Tropicamide Sterile
Ophthalmic Solution (Akorn, Somerset, New Jersey) was applied
three times at 3-min intervals to fully dilate the pupils (about
10 min) before taking measurements. During this procedure, artificial
tears were applied to keep the cornea moist. Since IOP measurement
requires pupil dilation, which essentially relieves ocular hypertension
py: Nucleic Acids Vol. 33 September 2023 291
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during the period of pupil dilation, we only measure IOP 3 weeks after
SO injection immediately before sacrificing the animals in the acute
and severe ND (no dilation) SOHUmodel that we described before.48

Fluorescent in situ hybridization with retina cross-sections

Fluorescent in situ hybridization was performed by using the RNA-
scope Multiplex Fluorescent Detection Reagents V2 (Advanced Cell
Diagnostics, ACD, Hayward, CA, USA) according to the manufac-
turer’s instructions. RNAscope probe Mm-ATF4 (Cat No.405101)
and Mm-Ddit3-C3 (Cat No.317661-C3) were purchased from ACD.
Adult mice were perfused with ice-cold 4% PFA/PBS, and eyes were
dissected out and fixed in 4% PFA/PBS at 4�C overnight. The eyes
were dehydrated with increasing concentrations of sucrose solution
(10%, 20%, and 30%) overnight before embedding in OCT on dry
ice. Serial cross-sections (12 mm) were cut with a Leica cryostat and
collected on Superfrost Plus Slides. The sections were pretreated
with protease and then subjected to in situ hybridization with RNA-
scope Multiplex Fluorescent Detection Reagents V2 according to the
manufacturer’s instruction (ACD, Hayward, CA). Briefly, sections
were hybridized with the probe solution, followed by amplification
and probe detection using TSA plus fluorophores (AKOYA,Marlbor-
ough, MA, USA). The sections were mounted with Fluoromount-G
(SouthernBiotech, Birmingham, AL, USA). Images were captured by
a Zeiss LSM 880 confocal laser scanning microscope with 40�/1.0
Oil DIC (Carl Zeiss Microscopy, Thornwood, NY, USA). The quanti-
fication of ATF4 and CHOP fluorescence intensity was measured by
NIH ImageJ after background correction. The results were calculated
as the mean gray value (integrated density/retina area).

Immunohistochemistry of whole mounts and cross-sections of

retina

The detailed procedures have been published before.30,45–48,71 Briefly,
after perfusion fixation with 4% PFA in PBS, mice eyeballs and ONs
were dissected out and post-fixed with 4% PFA for 2 h at room tem-
perature. 30% sucrose was then used for cryoprotection of the tissues.
Retinas were dissected out for whole-mount retina immunostaining.
For cross-sections of retina, the eyeballs were embedded in tissue-tek
OCT on dry ice for subsequent cryo-section with a Leica cryostat. The
primary antibodies used for immunostaining were as follows: anti-
RBPMS at 1:4,000 (Custom made at ProSci) and anti-GADD45a at
1:200 (Santa Cruz, sc-6850). Secondary antibodies were then applied
(1:200; Jackson ImmunoResearch, West Grove, Pennsylvania) and
incubated for 1 h at room temperature before mounting. The quanti-
fication of GADD45a fluorescence intensity was measured by NIH
ImageJ. The results were calculated as the mean gray value (integrated
density/area).

RGC counting

The detailed procedures have been published before.45–48,71,73 For pe-
ripheral RGC counting in the ON crush model, whole-mount retinas
were immunostained with the RBPMS antibody, eight fields were
sampled from peripheral regions of each retina using a 40� lens
with a Zeiss M2 epifluorescence microscope, and RBPMS-positive
RGCs were counted by Volocity software (Quorum Technologies).
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For whole-retina RGC counting in the SOHU glaucoma model, the
entire retina was imaged with the 20� objective lens of a Keyence
fluorescence microscope (Figure S2A). Eight circles drawn by
Concentric Circle plugin of NIH ImageJ were used to define the
peripheral, middle, and inner areas of the retina. Multiple
100 � 100 mm counting frames were applied automatically by
AxonCounter plugin of ImageJ to sample about 10% of each retina.
The number of surviving RGCs in the sampled areas was manually
counted by Cell Counter plugin of ImageJ. The percentage of RGC
survival was calculated as the ratio of surviving RGC numbers in
injured eyes compared to contralateral uninjured eyes. The investiga-
tors who counted the cells were masked to the treatment of the
samples.

ON semi-thin sections and quantification of surviving axons

The detailed procedure of ON semi-thin section preparation and par-
aphenylenediamine (PPD) staining has been described previ-
ously.30,45,46,48,71 Briefly, ONs were post-fixed in situ with 2% glutar-
aldehyde and 2% PFA in 0.1 M PBS. Semi-thin (1-mm) cross-sections
of the ON 2 mm distal to the eye (globe) were collected. After PPD
staining, each ON was imaged by a 100� oil objective lens of a Key-
ence bright field microscope to cover the entire area of the ON
without overlap. Multiple 10 � 10 mm counting frames were applied
automatically by AxonCounter plugin of ImageJ to sample about 10%
of each ON (Figure S2E).74 The number of surviving axons in the
sampled areas was manually identified and counted by Cell Counter
plugin of ImageJ. The mean of the surviving axon number in the
injured ON was compared to that in the contralateral control ON
to yield a percentage of axon survival value. The investigators who
counted the axons were masked to the treatment of the samples.

Spectral-domain optical coherence tomography imaging

The detailed procedure has been published previously.46,48,71 Briefly,
after anesthetization (0.01 mg xylazine/g + 0.08 mg ketamine/g) and
pupil dilation, the retina fundus images were captured with the Hei-
delberg Spectralis SLO/OCT system (Heidelberg Engineering, Ger-
many). The mouse retina was scanned with the ring scan mode
centered by the ON head under high-resolution mode (each B-scan
consisted of 1,536 A-scans). The scanning ring had a fixed diameter
of 160 mm, and the focal length was fixed at scale 37D. The ON
head was always placed in the center of the ring, which allowed scan-
ning the same area and same distance from the ON head to the ring of
each eye. The GCC includes retinal nerve fiber layer (RNFL), ganglion
cell layer (GCL), and inner plexiform layer (IPL). The average thick-
ness of GCC around the ON head was measured manually with the
aid of Heidelberg software. The investigators whomeasured the thick-
ness of GCC were masked to the treatment of the samples.

Pattern electroretinogram recording

The detailed procedure has been published previously.46,48,71,75,76

Briefly, after anesthetization (0.01mg xylazine/g + 0.08mg ketamine/g)
and pupil dilation, PERG of both eyes was recorded simultaneously
with the Miami PERG system (Intelligent Hearing Systems, Miami,
Florida) according to manufacturer’s instructions. The pattern
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remained at a contrast of 100% and a luminance of 800 cd/m2, and it
consisted of four cycles of black-gray elements, with a spatial frequency
of 0.052 c/d. Two consecutive recordings of 200 traces were averaged to
achieve one readout; each trace recorded up to 1,020 ms. The first pos-
itive peak in thewaveformwas designated asP1 and the secondnegative
peak as N2. The amplitude was measured from P1 to N2.

Optokinetic tracking response (OKR)

The detailed procedure has been published previously.46,49,50 Briefly,
mice were placed on a platform in the center of four 17-inch LCD com-
puter monitors (Dell, Phoenix, AZ), with a video camera above the
platform to capture the movement of the mouse. A rotating cylinder
with vertical sine-wave grating was computed and projected to the
four monitors by OptoMotry software (CerebralMechanics, Leth-
bridge, Alberta, Canada). The sine-wave grating, settled at 100%
contrast and speed of 12� per second, provides a virtual reality environ-
ment to measure the spatial acuity (cycle/degree) of the left eye when
rotated clockwise and the right eye when rotated counterclockwise.
The maximum frequency (cycle/degree) that the mouse could track
was identified and recorded by investigators masked to treatment.

Retrobulbar injection of ISRIB

ISRIB (MedChemExpress, Hy-12495) was freshly prepared with PBS
before injection. The animals were anesthetized with a sustained flow
of isoflurane (3% isoflurane at 2 L/min mixed with oxygen) delivered
to the nose by a special rodent nose cone (Xenotec, Rolla, Missouri),
and then the drug solutions (2 mM, 100 mL) were injected through the
inferior palpebral subconjunctiva using a 30G disposable syringe one
time every 3 days in the SOHU eyes. The contralateral control eyes
received retrobulbar injection with 100 mL PBS.

Statistical analysis

GraphPad Prism 9 was used to generate graphs and for statistical an-
alyses. Data are presented as means ± SEM. Student’s t test was used
for two groups comparison, and one-way ANOVA with post hoc test
was used for multiple comparisons.
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