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Abstract

Background: Androgen receptor (AR) is critical to the initiation, growth, and
progression of prostate cancer. Once activated, the AR binds to cis-regulatory
enhancer elements on DNA that drive gene expression. Yet, there are 10–100× more
binding sites than differentially expressed genes. It is unclear how or if these excess
binding sites impact gene transcription.

Results: To characterize the regulatory logic of AR-mediated transcription, we
generated a locus-specific map of enhancer activity by functionally testing all
common clinical AR binding sites with Self-Transcribing Active Regulatory Regions
sequencing (STARRseq). Only 7% of AR binding sites displayed androgen-dependent
enhancer activity. Instead, the vast majority of AR binding sites were either inactive
or constitutively active enhancers. These annotations strongly correlated with
enhancer-associated features of both in vitro cell lines and clinical prostate cancer
samples. Evaluating the effect of each enhancer class on transcription, we found that
AR-regulated enhancers frequently interact with promoters and form central
chromosomal loops that are required for transcription. Somatic mutations of these
critical AR-regulated enhancers often impact enhancer activity.

Conclusions: Using a functional map of AR enhancer activity, we demonstrated that
AR-regulated enhancers act as a regulatory hub that increases interactions with other
AR binding sites and gene promoters.

Keywords: Prostate cancer, Androgen receptor, Enhancers, STARRseq, Non-coding
mutations
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Background
Androgen receptor (AR)-mediated transcription is the primary driver of prostate cancer

(PCa) growth and proliferation [1]. Activation of this critical signaling pathway occurs

when AR binds to androgens such as testosterone or dihydrotestosterone (DHT). This

induces the translocation of the AR into the nucleus, where it interacts with DNA at

AR binding sites (ARBS). Almost all of these cis-regulatory elements (CREs) are located

at distal intergenic or intronic regions [2, 3]. The AR cistrome is influenced by various

transcription factors and pioneer factors, including FOXA1, HOXB13, and GATA2 [2,

4, 5]. Once bound to DNA, the AR recruit numerous co-activators (CBP/p300, SRC/

p160), chromatin modifiers (SWI/SNF-BRG1), and co-repressors (HDAC, NCoR) in a

highly coordinated manner [6]. This protein complex physically interacts with gene

promoters via chromosomal loops, activating basal transcriptional machinery to drive

transcription. Yet similar to other nuclear receptors, most AR-regulated genes interact

with multiple ARBS [7]. There are vastly more ARBS (tens of thousands) than AR-

regulated genes (hundreds) [8, 9]. We do not know if these ARBS enhancers interact in

an additive, synergistic, or dominant mechanism to induce gene transcription.

Characterization of ARBS enhancer activity is critical to interpret the underlying regu-

latory logic of this transcription factor.

Enhancers have traditionally been identified by correlating transcription factor bind-

ing sites with chromatin accessibility, RNA polymerase II, GROseq, or enhancer-

associated histone modifications such as H3K27ac [10–13]. These features all broadly

correlate with active enhancers, but they are not causative and therefore are extremely

prone to false positives [14]. For example, global loss of the enhancer mark H3K27ac

has no functional impact on gene transcription, chromatin accessibility, or histone

modifications [15]. Therefore, ectopic reporter assays, which quantify the enhancer-

induced transcription of a gene, still remain the cornerstone of enhancer validation

[16]. These assays are not influenced by endogenous chromatin compaction or epigen-

etic modifications and can test the potential enhancer capability of each specific CRE

[17]. While robust, conventional approaches are very low-throughput. To overcome

these limitations, several massively parallel reporter assays (MPRA) have been devel-

oped including Self-Transcribing Active Regulatory Regions sequencing (STARRseq)

[18]. In this method, enhancer activity is quantified by measuring the rate of self-

transcription of the genomic region cloned downstream of a minimal promoter. By

quantifying self-transcribed mRNA, the enhancer activity of many thousands of poten-

tial regulatory sites can be measured simultaneously and provide locus-specific

resolution.

There is increasing clinical evidence that non-coding mutations can act as onco-

genic drivers in PCa [19–21]. Recent studies by our lab and others have shown

that ARBS are highly mutated in a tissue-specific manner [22, 23]. Given the crit-

ical role of AR in PCa progression and treatment resistance, any changes to the

transcriptional landscape could alter tumor cell proliferation and sensitivity to AR

pathway inhibitors. However, establishing a causal link between non-coding muta-

tions and PCa growth is extremely challenging due to the lack of functional CRE

annotation. Therefore, the vast majority of these non-coding mutations remain un-

explored in PCa. Better characterization of these CRE in PCa is essential to stratify

potential driver mutations.
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To provide the first locus-specific AR regulatory map, we functionally quantified the

enhancer activity of all commonly observed clinical ARBS with STARRseq. We demon-

strated that only 7% of ARBS have androgen-dependent enhancer activation, while 11%

had enhancer activity that was independent of AR binding. Surprisingly, the vast

majority of ARBS (81%) did not have significant androgen-dependent or constitutively

active enhancer activity. These in vitro annotations strongly correlated with enhancer

associated histone modifications in clinical PCa samples. To characterize the mechan-

ism of AR enhancers, we then trained a machine learning classifier that successfully

predicted active enhancers and identified key features of active enhancers. Integrating

both the long-range chromatin interactome and transcriptomic data, we found that an-

drogen inducible enhancers were significantly more enriched as anchors for gene loop-

ing and acted as “hubs” to activate AR-regulated genes. Finally, combining these results

with whole genome sequencing of primary and metastatic PCa, we identified and char-

acterized a non-coding somatic mutation that significantly impacted AR enhancer ac-

tivity of a critical tumor suppressor.

Results
Functional quantification of AR enhancer activity

To characterize AR CREs, we experimentally tested the enhancer activity of all com-

monly occurring clinical ARBS with STARRseq, a massive parallel enhancer assay

(Fig. 1a). In this approach, genomic DNA is cloned downstream of a minimal promoter.

Those sites with high enhancer activity will cause high self-transcription that is

expressed as mRNA. By quantifying the relative rate of self-transcribed RNA with next-

generation sequencing, the enhancer activity can be directly measured. During

optimization of this method, we found that similar to published work [24], smaller

ARBS inserts (< 250 bp) had lower STARRseq activity, suggesting that the flanking se-

quences contribute to AR enhancer activity (Additional file 1: Fig. S1). As the current

synthesis limit of pooled oligos is ~ 200 bp, we used a capture-based approach to main-

tain a large insert size. To avoid testing rare or poor-quality ARBS, we targeted those

clinical AR peaks identified from a large ChIPseq study [2] that were found in either all

normal prostate tissue (n = 7), primary PCa tumors (n = 13), or both. With this conser-

vative selection criterion, we identified 262 ARBS present in only normal prostate tis-

sue, 3225 ARBS present only in PCa tumors, and 652 ARBS in both normal and PCa

tumors. Having selected these regions, we designed a custom DNA capture assay to en-

rich three different groups: common clinical ARBS (clinical ARBS; n = 4139), a positive

control of previously identified strong enhancers that are not associated with AR [25]

(n = 500), and regions that contain an androgen response element (ARE) motif but

there is no AR binding in either clinical samples or cell lines (n = 2783). With this, we

then captured fragmented normal genomic DNA and cloned it into a second-

generation STARRseq plasmid [26]. A total of 365,265 unique on-target inserts (median

50 inserts/region) were cloned, with a normal distribution of inserts across our capture

regions and a median insert size > 500 bp (Additional file 1: Fig. S2A). Using this tar-

geted library, we tested for AR enhancer activity in an androgen-dependent PCa cell

line (LNCaP). The resulting data demonstrated good reproducibility across biological

replicas (Pearson correlation 0.84–0.99; Additional file 1: Fig. S2B) and a strong
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Fig. 1 STARRseq identifies AR-dependent enhancers. a Schematic representation of AR STARRseq. In this,
high confidence ARBS (n = 4139), non-AR enhancers (positive control; n = 500), and regions with ARE motifs
but no AR binding (n = 2783) were captured from normal human DNA and cloned into hSTARR-ORI
plasmid. The resulting plasmid library was transfected into LNCaP cells by electroporation. Following DHT/
EtOH treatment, STARR mRNA was extracted and sequenced to quantify the enhancer-mediated rate of
self-transcription at each region. b Strong androgen-dependent enhancer activity (blue) was observed at
known AR binding sites (red; GSE83860) proximal to KLK3. c Enhancer activity of AR CREs with varying levels
of STARRseq signal (n = 42) was validated with a luciferase assay (4 biological replicates ± SEM). A strong
correlation is observed between luciferase and STARRseq signals. d Volcano plot of androgen-dependent
changes in STARRseq enhancer activity for clinical ARBS, ARE motif alone, and non-AR enhancers.
Significantly induced enhancers (LFC > 1, p-adj < 0.05) are highlighted in red. e Schematic representation of
the different classes of AR enhancers. f Heatmap of STARRseq (blue) represented as LFC over input plasmid
library. Publicly available ChIPseq of AR (GSE83860, pink), Pol2 (GSE28126, purple), and H3K27ac (GSE51621,
pink) in EtOH or DHT-treated LNCaP cells is shown as reads per kilobase of transcript, per million mapped
reads (RPKM). GROseq (GSE83860) shows the normalized LFC of either the positive (pink) or the negative
(cyan) RNA strands. The heatmap is divided based on the functional classes of each enhancer class
identified by STARRseq. g Density map of androgen-induced changes to H3K27ac ChIPseq and STARRseq at
inactive and inducible AR enhancers
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STARRseq signal at known AR enhancers including the AREIII that regulates KLK3

(Fig. 1b). To validate our STARRseq results, we randomly selected ARBS consisting of

high, intermediate, and low enhancer activity (n = 42) and tested with a luciferase re-

porter assay. Similar to previously published work, our results for the STARRseq en-

hancer activity correlated with a conventional luciferase reporter assay [18, 26]

(Fig. 1c). Importantly, as STARRseq is a plasmid-based approach, the enhancer activity

is independent of endogenous chromatin compaction and therefore quantifies the po-

tential activity at each genomic region. This is clearly demonstrated with the non-AR

positive controls which had strong enhancer activity regardless of being found in either

heterochromatin or euchromatin [25] (Additional file 1: Fig. S3). When comparing all

genomic regions tested, AR-driven enhancer activity was almost exclusively limited to

clinical ARBS with only 2/2783 ARE motif containing regions showing a significant in-

crease in signal following androgen treatment (Fig. 1d). Interestingly, within the clin-

ical ARBS regions, we observed three distinct classes of enhancer CRE: a “classical” AR

enhancer that increases activity when treated with androgen (inducible), enhancers that

were active regardless of androgen treatment (constitutive), and those ARBS that had

minimal enhancer activity (inactive) (Fig. 1e). Of these, inactive ARBS were by far the

most common (81.9%; 3388/4139) with no significant enhancer activity either before or

after ARactivation. A total of 11.2% (465/4139) and 6.9% (286/4139) were constitutively

active or inducible enhancers, respectively. While there is significant overlap in the AR

cistrome of LNCaP and the tested clinical binding sites, some ARBS are unique to only

clinical PCa and not found in LNCaP cells. Interestingly, none of the clinical specific

ARBS were inducible enhancers (n = 867; Additional file 1: Fig. S4A + B). This rate of

inactivity is significantly less than expected compared to the clinical ARBS that overlap

with LNCaP (p < 2.1 × 10−16). As these regions did not have AR binding in our experi-

mental model, they were separated in subsequent analysis (no AR). To confirm that

our AR CRE annotations correlated with enhancer activity in vitro, we compared each

group with published enhancer-associated features including H3K27ac, RNA polymer-

ase II (Pol2), and bidirectional eRNA (GROseq) [27–29] (Fig. 1f). We observed a strong

correlation between the enhancer groups and these features. Specifically, constitutive

AR enhancers demonstrated high levels of H3K27ac, Pol2, and eRNA that were com-

parable in both androgen-deprived (EtOH) and androgen-containing (DHT) conditions.

In contrast, these features increased for inducible enhancers when cells were treated

with androgens. For inactive ARBS, enhancer-associated features were broadly reduced

compared to active enhancers though there was some variation observed. We also found

that there were marked differences in AR-mediated DNase I hypersensitive sites be-

tween different ARBS, with inducible enhancers increasing accessibility following either

4 or 12 h of androgen treatment (Additional file 1: Fig. S5A). There was no significant

enrichment for any one AR enhancer class at super enhancers as these elements are

relatively rare at ARBS (Additional file 1: Fig. S5B). Yet while such descriptive features

generally correlate with active AR enhancers, they are extremely prone to false-

positives at individual CRE. For example, while inducible AR enhancers generally have

higher androgen-induced H3K27ac than inactive ARBS, there is significant overlap be-

tween these classifications (Fig. 1g). Given that inactive CREs are far more common

than induced enhancers, this dramatically increases the false-positive rate. Specifically,

if an active enhancer is called solely on AR and H3K27ac ChIPseq, there is a > 80%
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false-positive rate. Supporting these results, the enhancer activity of high H3K27ac in-

active and inducible CRE was validated with a luciferase reporter assay (Additional file

1: Fig. S6). Overall, these results demonstrate that functional enhancer testing with

STARRseq can provide locus-specific resolution that is needed to annotate AR CREs.

Clinical validation of enhancer annotation

While histone modifications do not accurately identify individual AR enhancer CREs

(Fig. 1g), these features, particularly H3K27ac, do broadly correlate with active en-

hancers (Fig. 1e). Therefore, to determine if our enhancer annotations represent clinical

AR activity, we analyzed previously published AR (n = 87), H3K27ac (n = 92), and

H3K27me3 (n = 76) ChIPseq from primary PCa tissue [8]. Supporting our in vitro

classifications, we observed significant enrichment of both AR and H3K27ac at indu-

cible and constitutive enhancers as compared to inactive ARBS (p-adj < 0.0001; Fig. 2a).

Further, while not as dramatic, we also found a statistically significant enrichment of

the repressive H3K27me3 mark at inactive ARBS compared to constitutive and induced

enhancers (p-adj < 0.05). However, as these primary PCa samples contain physiological

levels of androgen, we could not separate induced and constitutive enhancers as the

AR would be active in these tumors. Therefore, to further validate our in vitro classifi-

cations, we conducted H3K27ac ChIPseq on prostate tumors from patients enrolled in

a neoadjuvant antiandrogen enzalutamide (ENZA) clinical trial (NCT03297385). ENZA

is a classical antagonist that directly inhibits androgen binding and prevents transloca-

tion of the AR into the nucleus [30]. Therefore, by characterizing the H3K27Ac in

matched tumor samples collected pre- and post-ENZA, we can interrogate the impact

of AR activity on H3K27Ac. As expected, ChIPseq results from pre-ENZA patients

were very similar to the primary PCa samples with an enrichment of H3K27ac in con-

stitutive and inducible ARBS as compared to inactive ARBS (Fig. 2b). However, when

the AR is inhibited by ENZA treatment, H3K27ac was enriched only at constitutive en-

hancers while both inducible and inactive CRE had markedly lower histone modifica-

tions (Fig. 2b). When normalized to constitutive and inactive CRE, inhibiting the AR in

these patients strongly reduced H3K27ac at inducible AR enhancers (Fig. 2c). Overall,

these results demonstrate that our in vitro classifications strongly correlate to clinical

AR activity and suggest that this plasmid-based enhancer assay represents AR activity

in situ.

Genomic features associated with AR enhancers

Having mapped the AR CRE enhancer activity, we next analyzed the DNA motifs at

each ARBS to determine what feature correlated with active enhancers. Unfortunately,

this gave very poor results with almost no difference in DNA motifs including AREs at

inactive, inducible, and constitutively active ARBS (Additional file 1: Fig. S7A). This

matches with our experimental findings, where almost no genomic regions that only

contain an ARE motif alone and no AR binding had inducible enhancer activity

(Fig. 1d). To better characterize these CREs, we then incorporated all publicly available

ChIPseq data from LNCaP (n = 90; Additional file 2) and trained a machine learning

classifier to predict enhancer activity at each ARBS (Fig. 3a). All transcription factor

and histone ChIPseq were processed and normalized with a standardized bioinformatic
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pipeline to reduce technical variation. With this extremely large experimental dataset,

we utilized a bootstrapped multinomial logistic regression model with a sparsity LASSO

regularizer to identify inducible and inactive ARBS. On test data, our model managed

65% precision for the inducible group and a 62% precision for the inactive group with

an overall accuracy of 60%. Given the low frequency of induced enhancers, this is a >

10× enrichment compared to random ARBS. The introduction of additional functional

genomic datasets including DHS or ATACseq did not improve the predictive power of

this model. To validate this model, we experimentally tested LNCaP-specific ARBS not
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included in our clinical STARRseq library that were predicted to be inducible (n = 8) or

inactive (n = 8) enhancers (Fig. 3b). Confirming the model, we observed that ~ 60% of

the predicted induced enhancers could be accurately identified with our classifier. As

this uses a relatively simple multinomial logistic regression model, we can quantify the

predictive strength of each DNA-bound factor and identify those features that strongly

correlate with inducible AR enhancers. When calculating the differential binding energy

for the inducible and inactive groups, we observed that most features associated with

inducible enhancers were unsurprisingly found in androgen-treated conditions. Specif-

ically, AR, PIAS1, ARID1A, MED1, and RUNX1 binding in androgen-treated condi-

tions were strong predictors of inducible AR enhancers (Fig. 3a). In contrast,

occupancy by CTBP2, WDHD1, and TLE3 at ARBS in EtOH were generally predictive

of inactive CRE though these did not have comparable predictive strength to inducible

features. To identify which functional genomic features best predicted inducible AR en-

hancers, we down-sampled our model by reducing the number of features and then re-

tested each classifier compared to the general model. With this, we found that of all in-

dividual features, AR + DHT peak height had the best power to identify inducible en-

hancers at ARBS and was significantly better than either H3K27ac or any other

transcription factors/histone marks (Fig. 3c; 0.81 vs. 0.55 AUC). If expanded to three

features, ChIPseq of AR+/−DHT and PIAS1 + DHT gave the best results with compar-

able recall to the larger general model (Additional file 1: Fig. S7B; 0.83 vs. 0.86 AUC).

Overall, this machine learning classifier provides a powerful tool to identify both those

regions that are likely to be inducible enhancers and also the specific features associ-

ated with active AR enhancers.

Role of AR enhancers on gene expression

We next investigated how each AR enhancer class impacts androgen-mediated tran-

scription. As enhancer-promoter (E-P) interactions frequently occur within neighboring

primary sequences [24, 31], we first correlated the distance between promoters of

androgen-induced genes to each AR enhancer class. We observed that inducible en-

hancers were significantly more likely to be near an androgen-upregulated differentially

expressed genes (DEG) than a constitutive or inactive enhancer (Fig. 4a). However, E-P

interactions frequently occur over considerable distances in the primary sequence due

to chromatin looping [32]. Therefore, to quantify the chromatin loops between individ-

ual ARBS and AR-regulated genes, we incorporated a published AR ChIA-PET dataset

from VCaP cells. While AR expression is higher in VCaP than LNCaP cells, we ob-

served a good congruence in both the AR cistrome and H3K27ac induction at function-

ally annotated clinical ARBS (Additional file 1: Fig. S8). With this chromatin looping

data, we found that inducible ARBS interact more frequently with promoters at andro-

gen upregulated DEG than either constitutive or inactive ARBS (p < 0.0001; Fig. 4b).

No enrichment was observed between any enhancer class and androgen downregulated

DEG suggesting that this occurs through an indirect mechanism. We also observed that

inducible AR enhancers form significantly more chromatin loops to either other ARBS

or chromosomal sites suggesting that they may act as regulatory “hubs” (p < 2 × 10−16;

Fig. 4c). To better quantify the relationship between AR CREs, we transformed the

pairwise interactions into an undirected network with all LNCaP ARBS or DEG TSS
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being represented as a vertex and chromatin loops as edges (Fig. 4d). All ARBS were in-

cluded, even those not tested by STARRseq, to provide a comprehensive AR interaction

network. Matching our earlier analysis, we found that inducible AR enhancers have a

significantly enriched interaction frequency with upregulated DEG (Fig. 4e). When

quantifying the relationships between AR CREs in connected or independent networks,

we found that inducible enhancers were significantly more likely to be a central node

in this regulatory network (p < 2 × 10−9; Fig. 4f, Additional file 1: Fig. S9A). A similar

trend was observed when comparing networks of only tested ARBS regions (Add-

itional file 1: Fig. S9B). These findings suggest that inducible enhancers may play a

critical role in AR-mediated transcription as a central node between promoters and AR

CREs.

To functionally test these descriptive results, we used CRISPRi to selectively inhibit

annotated CREs and quantify the impact on AR-mediated gene expression [33]. Genes

were chosen based on their enhancer complexity ranging from a single inducible en-

hancer that loops to the gene promoter (DBI) to a mixture of inactive, constitutive, and

inducible AR enhancers (KLK3, STEAP4, FKBP5) (Fig. 4g; Additional file 1: Fig. S10A).

Similar to previously published work, when the KLK3 inducible AR enhancer (AREIII)

was inactivated, it also decreased the neighboring gene KLK2 [34]. Highlighting the

specificity of this approach, inactivation of the KLK3 promoter did not downregulate

KLK2 (Additional file 1: Fig. S10B). In support of our functional assay, the inactivation

of inducible AR enhancers significantly reduced androgen-mediated transcription at all

genes tested (Fig. 4g). Surprisingly, in addition to the inducible enhancers, many of the

constitutive and inactive ARBS also contributed to AR-mediated gene transcription. In-

hibition of the KLK3 constitutive enhancer significantly impaired gene expression sug-

gesting a co-operative action between these two enhancers. In contrast, inhibition of a

constitutive enhancer did not significantly alter androgen-mediated transcription of

FKBP5, while targeting either the AR inducible enhancer or inactive ARBS reduced ex-

pression. Finally, AR-mediated transcription of STEAP4 was significantly reduced by

inhibiting inactive, constitutive, or inducible ARBS. This is particularly striking as the

STEAP4 inducible AR enhancer forms a chromosomal loop to this TSS over a > 2Mb

distance (Additional file 1: Fig. S10A). These functional results suggest that while indu-

cible enhancers are critical for gene expression, other AR enhancer classes can also

contribute to gene transcription. Supporting this role, we observed that genes regulated

by inducible enhancers that interact with inactive or constitutive enhancers had signifi-

cantly higher levels of androgen-mediated transcription than those inducible enhancers

that do not (p < 0.0001; Fig. 4h). To confirm this was not an artifact of the experimental

system, we next quantified the evolutionary conservation of each ARBS class. This was

based on the assumption that only those CREs involved in gene transcription would be

conserved via selective pressure. In support of our in vitro data, we observed similar

evolutionary conservation of inducible, inactive, and constitutive ARBS that were signifi-

cantly higher than random ARE motif regions (Fig. 4i). Overall, this data suggests that

while inducible ARBS have increased contacts with both promoters and other ARBS,

both inactive and constitutive enhancers can play a role in gene transcription.

Given these results, we proposed that inducible enhancers may act as a regulatory

hub between multiple ARBS and gene promoters. To test this, we conducted single cell

ATACseq (scATACseq) to identify co-accessible AR CREs and determine the cis-
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regulatory interactions (Additional file 1: Fig. S11). Co-accessible DNA elements

strongly correlate with physical proximity [35] and can characterize how AR binding

changes CRE interactions, something that would not be possible with AR HiChIP or

ChIA-PET. Similar to published DNaseI hypersensitivity data [27, 36], our aggre-

gated scATACseq showed that AR binding altered the chromatin accessibility

(Fig. 5a). This led to an increased regional deviation between each ARBS enhancer

class within DHT-treated cells (Fig. 5b). When comparing the relative fold change

in accessibility, the largest increase was seen at inducible enhancers though both

inactive and constitutive ARBS were significantly altered (Fig. 5c). As expected, AR

binding led to a significant increase in the co-accessibility between multiple prox-

imal ARBS following activation (Fig. 5d). When we incorporated these results into

gene-specific networks, we observed that gained inducible enhancers frequently in-

creased the number and complexity of interactions between ARBS. A representa-

tion of this alteration in co-accessibility is shown in Fig. 5e. To quantify these

changes, we used our cis-regulatory networks to determine the relative impact of

each AR CRE class on network complexity. In agreement with our proposed

model, we found that inducible enhancers had the most significant impact on AR

CRE interaction complexity and increased interactions with other ARBS (p < 4 ×

10−4; Fig. 5f). Overall, inducible enhancers significantly increase network interac-

tions between inactive and constitutive CREs and potentially act as a regulatory

hub between promoters and other ARBS.

Characterization of genetic alterations

Despite increasing evidence of non-coding driver mutations in PCa, these have been ex-

tremely difficult to identify due to both the poor annotation of CREs and the large

number of non-coding somatic mutations. Given the critical function of inducible en-

hancers on AR-mediated gene expression, we speculated that non-coding mutations at

these CREs could potentially alter gene transcription in PCa. To identify mutations at

AR enhancers, we overlaid whole genome sequencing of primary PCa (n = 196) [37]

and metastatic CRPC (n = 101) [19] with our functional enhancer annotations. As pre-

viously published, we observed a significant enrichment of single nucleotide variants

(SNV) at ARBS in both primary PCa [22, 23] and also metastatic CRPC (Fig. 6a).

Within the annotated ARBS, we found 751 SNVs in primary PCa and 1013 SNVs in

metastatic PCa with 14% of the regions containing overlapping mutations (Add-

itional file 1: Fig. S12A). Similar to most protein coding driver mutations in PCa, there

were very few recurrent somatic mutations at ARBS [38]. We did not observe any dif-

ference in the SNV distribution between inducible, inactive, or constitutively active

ARBS (two-sample Kolmogorov-Smirnov test, p > 0.5). To test the impact of these som-

atic mutations on AR enhancer activity, we focused on those metastatic SNVs that

occur in inducible enhancers which looped to the TSS of AR-upregulated genes.

Within the small set tested, we found that 19% (3/16) of SNVs significantly altered AR

enhancer activity (Fig. 6b, Additional file 1: Fig. S12B). Interestingly, one of the affected

enhancers was found to interact with the TSS of ZBTB16, a well-known AR-regulated

tumor suppressor that is commonly mutated in CRPC [39, 40] (Fig. 6c). When this spe-

cific AR enhancer was inactivated with CRISPRi, we observed a significant decrease in
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the expression of ZBTB16 (Fig. 6d). Taken together, these results show that non-

coding SNVs at ARBS can impact enhancer activity of regulatory regions required for

the AR-mediated gene expression.

Discussion
The AR, like most nuclear receptors, binds to thousands of chromosomal sites but only

regulates hundreds of genes [24, 41, 42]. The majority of AR-regulated gene promoters

therefore physically interact with multiple ARBS [7]. Yet, how these binding sites work

together to induce transcription is poorly understood, as annotation of non-coding

CREs has been challenging. While descriptive approaches, including histone ChIPseq

or GROseq, largely correlate with enhancer activity, they cannot provide the locus-

specific resolution that is needed to understand these complex interactions. To anno-

tate these individual regions, we systematically tested the enhancer activity of all com-

monly occurring clinical ARBS using an optimized STARRseq [26]. From this, we

found that only a fraction of ARBS (7%) showed androgen-dependent enhancer activity,

while the majority (81%) were inactive. This is analogous to work in stem cells where

only a small percentage of CREs marked with NANOG, OCT4, H3K27ac, and
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H3K4me1 were found to be active enhancers [43, 44]. However, as we tested only a sin-

gle time point, in an effort to limit the impact of androgen-induced DEG on AR activ-

ity, it is possible that there may be differing activity at ARBS at later time points. Yet,

the results from this plasmid-based assay strongly correlate with epigenetic features in

both PCa cell lines and clinical tumors, suggesting that the enhancer capability of the

individual CRE is predictive of steady-state AR enhancer activity in situ (Figs. 1e and

2b). In matched patients pre- and post-ENZA treatment, we observed that H3K27ac at

inactive and constitutive enhancers was generally not affected by AR inhibition, while

inducible enhancers had a marked decrease following ENZA treatment. Supporting

these results, in a larger patient population of primary PCa, H3K27ac was significantly

enriched at both induced and constitutively active enhancers as compared to

Fig. 6 SNVs impact AR enhancer activity. a An increase in SNVs at ARBS is observed in both primary (left)
and metastatic (right) PCa. b The impact of clinical SNV on androgen-dependent enhancer activity was
quantified with a luciferase assay at inducible ARBS. Those SNVs that significantly altered AR enhancer
activity (3/16) are shown (4 biological replicates ± SEM; *p < 0.05, ***p < 0.001). c Genome browser snapshot
of ZBTB16 gene locus. Gene looping is observed between enhancer ARBS_490 and ZBTB16 promoter.
d Expression of ZBTB16 was quantified by qPCR after CRISPRi inhibition of ARBS_490. Androgen-induced
expression of ZBTB16 is suppressed compared to non-target (NT) gRNA control (3 biological replicates ±
SEM; **p < 0.01)
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inactive ARBS (Fig. 2a). However, these descriptive ChIPseq results only broadly correl-

ate with AR enhancer activity (Fig. 1g). They cannot annotate individual CREs and pro-

vide the resolution needed to characterize complex protein interactions, identify non-

coding mutations, or delineate the underlying regulatory logic of AR-mediated tran-

scription. By systematically testing all clinical ARBS for enhancer activity, this provides

a detailed “map” needed to investigate these clinically important problems.

Using this functional annotation, we then characterized what features correlate with

active enhancers. We initially interrogated DNA motifs in each AR enhancer class but

this provided almost no predictive power as ARE motifs were equally distributed be-

tween inducible, inactive, and constitutive enhancers (Additional file 1: Fig. S7). This is

in contrast to work with glucocorticoid receptors that suggested steroid response ele-

ments were more likely to be found at active enhancers [24]. Potentially, this may be

due to the larger size of the ARBS tested, as many motifs will be randomly found in the

large fragments (> 500 bp) used into our STARRseq library. Yet, while DNA motifs did

not stratify enhancer CREs, many genomic features correlated with androgen-mediated

enhancer activity. We expanded our analysis and trained a machine learning classifier

to predict enhancer classes from all publicly available ChIPseq studies in LNCaP. Using

this model, we could robustly predict inducible enhancers with a recall rate 10×

greater than random ARBS. Importantly, we experimentally validated these predicted

annotations and found that our model could successfully identify those regions likely to

be inducible AR enhancers at a similar rate to our test set (Fig. 3b). Using this classifier,

we identified those features that were predictive of AR enhancer activity (Fig. 3a). From

this, we found that inducible enhancers strongly associate with both AR enhancer-asso-

ciated features including H3K27ac and MED1, and co-activators such as PIAS1 and

ARID1A [6, 45]. As this classifier is predictive for androgen inducible enhancers, it can-

not identify those features which are critical, but broadly found, at many ARBS such as

FOXA1. When each feature of this larger model was systematically down-sampled, we

found that AR peak height could identify inducible enhancers at ARBS better, though

not as well as our complete model, than any individual feature including H3K27ac

(Fig. 3c). However, enhancer activity is not solely due to AR binding, as many inactive

ARBS (196/2479) have a greater AR peak height than the median inducible enhancers.

Having annotated the different AR enhancers, we then characterized how each class

impacted gene transcription. We found that inducible enhancers were more likely than

inactive or constitutive enhancers to interact with either other ARBS or TSS of

androgen-upregulated genes (Fig. 4a, b, e). Further, inducible enhancers had the highest

number of chromosomal contacts of all ARBS and were central in AR CRE interaction

networks (Fig. 4c, f). To test their role in transcription, we functionally inactivated each

class of AR enhancers (Fig. 4g). Supporting their central role, all tested inducible en-

hancers strongly contributed to AR-mediated transcription. Surprisingly, transcription

was not solely dependent on inducible enhancers and we observed that inhibition of

specific constitutive or inactive ARBS also reduced androgen-induced transcription.

This is unlikely to be an artifact of the STARRseq assay, as the annotations strongly

correlate with enhancer features both in vitro and in vivo. While we cannot discount

that these regions have enhancer activity in a different cellular context or time point,

our results suggest that multiple ARBS CREs work in concert to drive gene transcrip-

tion. In support of this model, we observed that those inducible enhancers interacting
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with additional ARBS have increased androgen-induced gene expression than those

that do not (Fig. 4h). Further, we found that inducible, inactive, and constitutive AR en-

hancers had similar evolutionary conservation (Fig. 4i). It is unlikely that inactive or

constitutive enhancers would be conserved, given the high rates of genetic drift in the

non-coding genome, if they did not have a critical function in gene transcription. This

proposed model of activity is not unique to AR and a similar phenotype has been ob-

served with several other transcription factors. Recent work using CRISPRi to knockout

individual estrogen receptor binding sites demonstrated hierarchical or synergistic in-

teractions between enhancers on gene expression [46]. In addition, work with the anti-

gen receptor showed that both active and inactive enhancers are required for gene

expression [47]. Intriguingly, this suggests that enhancer activity is not the only feature

required for AR-mediated transcription. While speculative, these inactive ARBS may

work in concert with induced enhancers to increase the local protein concentration

and potentially drive the formation of biological phase condensates that have been ob-

served with other nuclear receptors at strongly active enhancers [48]. Supporting this

model, we observed that AR binding at inducible enhancers significantly increased co-

accessibility between ARBS (Fig. 5f) which causes inducible AR enhancers to be in close

physical proximity to multiple ARBS (Fig. 4c). How these interactions occur is poorly

understood and there is conflicting evidence that transcription factor binding can in-

duce new chromatin loops or stabilize established interactions [34, 49]. Regardless of

the mechanism, it is clear that inducible enhancers work with other AR CREs to drive

AR-mediated gene transcription.

We and others have previously demonstrated that ARBS are highly mutated in pri-

mary PCa [22, 23]. Given the critical role of AR in PCa, we speculated that these som-

atic mutations could potentially alter the transcriptional activity of the tumor and

potentially impact PCa growth and proliferation. However, selecting non-coding muta-

tions for experimental validation is challenging due to both the large number of ARBS

and SNVs and the relatively low frequency of recurrent mutations at CRE [50]. Further

compounding this problem, mutations at multiple CRE can also impact gene expres-

sion thereby causing the same phenotype with different mutations [51]. Yet, while chal-

lenging to identify, non-coding somatic mutations can play a critical role in PCa

disease progression [19–21]. By using our functional enhancer annotation to “map”

specific CRE that are likely to impact androgen-mediated transcription, we stratified

potential somatic mutations for testing. Focusing on inducible AR enhancers, we dem-

onstrated that 19% of the SNVs tested significantly altered enhancer activity (3/16;

Fig. 6b). This is significantly higher than a recent study using an orthogonal MPRA of

H3K27ac sites which showed 1.8% of primary PCa SNVs impacting enhancer activity

[23]. This difference could be due to technical issues related to insert size (146 vs. >

500 bp), the specific genomic regions tested (H3K27ac vs. inducible ARBS), the stage of

PCa progression (primary vs. mCRPC), and the relatively small number of genomic re-

gions tested (n = 16). Of particular interest, we identified a somatic mutation in meta-

static PCa that significantly reduced the activity of a critical AR enhancer required for

the expression of ZBTB16 (Fig. 6d). This androgen-regulated gene is a well-

characterized tumor suppressor that is frequently mutated in late-stage PCa [39, 52].

Immunohistochemical staining showed a significant reduction of ZBTB16 in high-

grade localized PCa specimens and weak or no expression in metastatic PCa biopsies
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[53]. ZBTB16 knock-down experiments demonstrated increased PCa growth [39] and

ectopic expression inhibited prostate cancer tumorigenesis in mouse models [54]. Fur-

ther, loss of ZBTB16 promotes a metastatic and ENZA-resistant phenotype in prostate

cancer cells [39]. Given such a repressive function, homozygous ZBTB16 mutations

have been found to occur in 4–9% of CPRC tumors [40, 55, 56]. While these mutations

occur in protein coding regions, our study demonstrates that somatic mutations in AR

enhancer can also reduce ZBTB16 expression.

In conclusion, we have created the first functional map of potential AR enhancer

activity. By quantifying the activity of each ARBS, this provides mechanistic insight

into mammalian gene regulation. Together, our data demonstrates that AR-driven

inducible enhancers act as a regulatory hub that frequently cooperates with other

ARBS to drive transcription. Identification of key enhancers can be used to stratify

non-coding mutations for functional testing. These results have been integrated

into an easy-to-use web app that is searchable by gene or genomic coordinates

(https://lacklab.shinyapps.io/LSSHL/).

Material and methods
Cell lines

Cell lines were purchased from ATCC and routinely tested for mycoplasma contamin-

ation. LNCaP cells were routinely grown in RPMI 1640 media (Gibco) with 1%

penicillin-streptomycin and 10% fetal bovine serum (FBS). No activation of the IFNγ

pathway by double-stranded DNA was observed in electroporated LNCaP cells which

have been shown to systematically alter STARRseq activity [26] (Additional file 1: Fig. S13A).

Generation of ARBS STARRseq library

Common clinical ARBS were defined as those sites that were present in all normal

prostate (n = 3) or independent PCa tumors (n = 13) [2]. Pooled human male genomic

DNA (Promega) was randomly sheared (500–800 bp) using a Covaris M220 Focused-

ultrasonicator. The fragments were end-repaired and ligated with Illumina compatible

adaptors using the NEBNext Ultra™ II DNA Library Prep Kit (NEB). The adaptor-

ligated DNA was hybridized to custom Agilent biotinylated oligonucleotide probes

across a 700-bp region (53,032 probes; 4.684 Mbp oligo) and then pulled down by

Dynabeads M-270 Streptavidin beads (NEB). The post-capture DNA library was ampli-

fied with STARR_in-fusion_F and STARR_in-fusion_R primers (Additional file 3: Table

S1) and then cloned into AgeI-HF (NEB) and SalI-HF (NEB) digested hSTARR-ORI

plasmid (Addgene plasmid #99296) with NEBuilder HiFi DNA Assembly Master Mix

(NEB). The ARBS STARRseq library was transformed into MegaX DH10B T1R electro-

competent cells (Invitrogen). Plasmid DNA was extracted using the Qiagen Plasmid

Maxi Kit.

ARBS STARRseq

LNCaP cells (> 1.3 × 108 cells/replica; 3 biological replicas) were electroporated with

266–300 μg (1 million cells:2 μg DNA) of the ARBS STARRseq capture library using

the Neon Transfection System (Invitrogen). Electroporated cells were immediately re-

covered in RPMI 1640 medium supplemented with 10% FBS. After overnight recovery,
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the media were changed to RPMI 1640 medium supplemented with 5% charcoal-

stripped serum (CSS) and 1% penicillin-streptomycin. Approximately 72 h after electro-

poration, the cells were treated with 10 nM DHT or EtOH for 4 h, washed with PBS,

and then lyzed using the Precellys CKMix Tissue Homogenizing Kit and the Precellys

24 Tissue/Cell Ruptor (Bertin Technologies). Total RNA was extracted using Qiagen

RNeasy Maxi Kit (Qiagen), and the mRNA was isolated using the Oligo (dT)25 Dyna-

beads (Thermo Fisher). Isolated mRNA samples were treated with Turbo DNase I

(Thermo Fisher), synthesized into cDNA using the gene-specific primer (Additional

file 3: Table S1), treated with RNaseA (Thermo Fisher), and PCR amplified (15 cycles)

with the junction PCR primers (RNA_jPCR_f and jPCR_r primers, Additional file 3:

Table S1). The ARBS STARRseq capture library was PCR amplified with DNA-specific

junction PCR primers (DNA_jPCR_f and jPCR_r primers, Additional file 3: Table S1).

After junction PCR and AMPure XP beads clean-up, an Illumina compatible library

was generated by PCR amplification with TruSeq dual indexing primers (Illumina) and

sequenced on Illumina HiSeq4000 (150 bp; PE). The resulting sequencing data is avail-

able at GSE151064.

Analysis of STARRseq data

Reads were mapped to reference genome (hg19) with BWA aligner (v0.7.17) [57] and

all mapped reads with a MAPQ score < 60 or indels were removed. Captured region

coverage was quantified with BamCoverage function (v3.1.3) in DeepTools [58] while

discarding all reads on blacklisted regions (ENCODE ENCFF001TDO). Differential en-

hancer activity was quantified by DESeq2 (v1.26.0) [59]. Induced enhancers were de-

fined as having a log2 fold change (LFC) > 1 and p-adj < 0.05 in the DHT/EtOH

samples. Constitutively active enhancers had plasmid-normalized reads LFC > 1 in both

EtOH and DHT but no DHT induction (DHT/ETOH LFC < 1). Inactive regions had

both minimal DHT inducible activity and low plasmid to RNA ratios (plasmid-normal-

ized LFC < 1). Output of the DESeq2 was visualized with ggplot2 [60].

Clinical approval and sample collection

Clinical PCa tissue was collected before and after enzalutamide (ENZA) therapy from

the Dynamics of androgen receptor genomics and transcriptomics after neoadjuvant

androgen ablation study (ClinicalTrials.gov #NCT03297385). The trial was approved by

the IRB of the Netherlands Cancer Institute. Informed consent was signed by all partic-

ipants enrolled in the study, and all research was carried out in accordance with

relevant guidelines and regulations. Trial participants received 3 months of neoadjuvant

ENZA treatment prior to robotic-assisted laparoscopic prostatectomy. Biopsy (pre-

treatment) and prostatectomy specimens (post-treatment) were fresh-frozen and

sectioned prior to immunoprecipitation. Tissue sections were examined pathologically

for tumor cell content, and only those samples with a tumor cell percentage of ≥50%

were used for tissue ChIPseq analysis.

Tissue ChIPseq

ChIP on prostate cancer biopsy and prostatectomy tissues were performed as previ-

ously described [61]. Nuclear lysates of each tissue specimen were incubated with 5 μg
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of H3K27ac antibody (Active Motif, 39133) pre-bound to 50 μL magnetic protein A

Dynabeads (Thermo Fisher Scientific, 10008D). Immunoprecipitated DNA was proc-

essed for library preparation (Part# 0801-0303, KAPA biosystems kit), and samples

were sequenced using an Illumina HiSeq 2500 system (65 bp, single-end). Sequences

were aligned to the human reference genome hg19, duplicate reads were removed, and

reads were filtered based on MAPQ quality (≥ 20).

Tissue ChIPseq data processing

Intensity plots were generated using EaSeq [62]. For boxplots, the number of se-

quence reads per region of interest was calculated using bedtools multicov

(v2.25.0) [63]. The data was further processed in R (v3.4.4). Region read counts

were z-transformed per sample to correct for differences in total read count. Statis-

tical significance in read counts differences was determined using the Mann-

Whitney test, based on the median read count over all samples, and adjusted for

multiple testing using FDR.

RNAseq and ChIA-PET analysis

AR-regulated genes were identified from publicly available RNAseq data of LNCaP cells

treated with 100 nM DHT for 6 h (GSE64529) with DESeq2 (v1.26.0) [59]. The distance

between androgen-upregulated genes and ARBS was calculated with HOMER (v4.10)

[64]. The resulting data was merged in 100-bp bins and the cumulative distribution

function was determined with Ecdf in R (v3.6.1). Specific ARBS-promoter interactions

were identified from the published AR ChIA-PET performed in VCaP cell line

(GSE54946) by overlapping the loop end of either ARBS or gene’s TSS (± 5Kb) with

GenomicInteractions R package (v1.20.3) [65].

ChIPseq and GROseq analysis

Previously published ChIPseq and GROseq data were downloaded from the GEO

database and uniformly processed (Additional file 3: Table S1). The sequencing

reads were controlled for quality using FASTQC, and the reads were then mapped

to the human reference genome (hg19) with bowtie aligner (v0.12.9) [66]. All reads

mapped to the blacklisted regions (ENCODE ENCFF001TDO) were discarded. For

direct comparison of the H3K27ac ChIPseq with the STARRseq data, average

signal values of the inducible and inactive regions were calculated using bigWigA-

verageOverBed software(v377) [67]. For each region, log fold change values were

calculated between DHT and ETOH treatments in H3K27ac and STARRseq experi-

ments. Scatterplots were generated by ggplot2 R package (v3.2.0) [60]. ROSE [68]

was used to identify super enhancers from DHT H3K27ac ChIPseq. BigWig signal

tracks were generated with BamCoverage function (v3.1.3) of deepTools [58] with

RPKM normalization. For GROseq data, using log fold enrichment between +

strand of DHT over the + strand EtOH, a single track was generated. Similarly, a

single − track was also generated. Then − strand is subtracted from + strand to

final bigwig file. For each of the 500 positive control enhancer regions, we calcu-

lated the average accessibility scores using bigWigAverageOverBed from ENCODE’s

LNCaP DHT (ENCFF975MZT) and EtOH (ENCFF906QXX) DNase-seq
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experiments. Then we compared the top and bottom 100 to show differences in

accessibility. Later, for the same regions, we calculated the average STARRseq sig-

nal with bigWigAverageOverBed [67] from merged DHT and EtOH samples.

Conservation

One hundred vertebrate species conservation track was obtained from UCSC golden

path (http://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/hg19.100way.

phastCons.bw) for hg19 reference. The average conservation distribution of induced,

constitutive, inactive ARBS enhancers and negative control regions were calculated

with deeptools’ computeMatrix function (v3.1.3). Output distribution matrix then visu-

alized with deeptool’s plotProfile function (v3.1.3).

Network graph of AR CRE

A network graph was built using the annotated CREs (clinical ARBS and TSS) and

LNCaP ARBS (not tested for enhancer activity) as nodes and the chromosomal interac-

tions from VCaP ChIA-PET as edges. The interactions between each enhancer class or

ARBS were extracted from processed data and introduced as a graph with NetworkX

(v2.3). Only TSS of AR DEG were considered in the network. The annotated CRE net-

work graph contained 2361 nodes, 1951 edges, and 830 separate components. The an-

notated CRE and non-annotated ARBS graph contained 10,484 nodes, 12,437 edges,

and 1873 separate components. The relative density (Eq. 1) of two different classes was

calculated based on the expected frequency between two classes. If self-looping oc-

curred within the same class, the expected maximum edge frequency was duly calcu-

lated to reduce duplication (Eq. 2). For different classes in the bipartite graph, the

expected maximum edge frequency is calculated accordingly (Eq. 3). The interaction

frequency (Eq. 4) was scored as the ratio of observed versus expected edge number

relative to whole graph density.

D ¼ 2Eobs

V V þ 1ð Þ ð1Þ

Emax ¼ CR V ; 2ð Þ ¼ V V þ 1ð Þ
2

ð2Þ

Emax ¼ V � U ð3Þ

IF U ;Vð Þ ¼
Eobs; U ;Vð Þ
D� Emax

ð4Þ

Degree centrality and betweenness centrality scores were calculated by NetworkX. Al-

though a not-connected graph gives information about the whole network, it is biased

when comparing the centrality features of all elements. Therefore, we calculated the

centrality score from the largest connected component.

Enhancer luciferase assay

The region of interest (750–850 bp) was PCR amplified from pooled male human DNA

(Promega) and cloned into a STARRseq luciferase validation vector_ORI_empty plas-

mid (Addgene plasmid #99298) with HiFi DNA builder (NEB). Primers used to amplify

specific regions are described in Additional file 3: Table S1. LNCaP cells were co-
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transfected with 500 ng reporter plasmid and 5 ng of Renilla using TransIT-2020

(Mirus) and plated in phenol red-free RPMI (Gibco) supplemented with 5% CSS (Fisher

Scientific). Forty-eight hours post-transfection, cells were treated with 10 nM of DHT

or ETOH for 24 h. Firefly and Renilla luciferase activity were assayed by Dual-Glo Lu-

ciferase assay system (Promega). All the experiments had a minimum of 4 biological

replicas with 3 technical replicates in each experiment. Single nucleotide substitutions

of reporter constructs were carried out by inverse PCR mutagenesis as previously de-

scribed [69]. All mutagenic primers are given in Additional file 3: Table S1.

gRNA design and CRISPRi

Multiple gRNAs per enhancer region were designed with CRISPR-SURF [70] and

cloned into lentiGUIDE-puro (Addgene #52963). All gRNA sequences are provided in

Additional file 3: Table S1. LNCaP cells stably expressing dCas9-KRAB were generated

by transducing LNCaP cells with Lenti-dCas9-KRAB (Addgene #89567) followed by

blasticidin selection. dCas9-KRAB expression was confirmed by Western blot (Cas9:

CST Mouse mAB #14697, GAPDH: SC Rabbit pAB #25778) (Additional file 1: Fig.

S13B). LNCaP-dCas9-KRAB cells (200,000/well) were transfected with 1 μg of gRNA

using Mirus TransIT-X2 and selected with puromycin (2 μg/ml) for 72 h. The media

were then changed to phenol red-free RPMI supplemented with 5% CSS and treated

with EtOH or 1 nM DHT for 24 h. Androgen-induced expression was quantified by

qRT-PCR using gene-specific primers (Additional file 3: Table S1). As CRISPRi is

known to be prone to false negatives, all gRNAs were initially tested and then a single

gRNA was used against each genomic region. In each set, the expression of the non-

AR-regulated gene FXN was also quantified to assess non-specific inhibition. Each ex-

periment was done in triplicate with a minimum of 3 biological replicas.

Single cell ATACseq (scATACseq)

LNCaP cells were cultured in phenol red-free RPMI 1640 media supplemented with 5%

CSS and 1% antibiotics for 60 h and then treated with 100% EtOH or 10 nM DHT for

4 h. Nuclei from 1 × 106 cells were isolated according to 10x Genomics recommended

protocol (Nuclei Isolation for Single Cell ATAC Sequencing CG000169 Rev D). scA-

TACseq libraries were prepared using 10x Genomics Chromium Next GEM Single Cell

ATAC Library & Gel Bead Kit v1.1. Libraries were sequenced on a NextSeq500 Illu-

mina sequencer (23,428 unique PE reads/cell DHT and 27,077 unique PE reads/cell

EtOH). scATACseq analysis was done with 10X Cell Ranger software. Deviation/z-

score was calculated with chromVAR [71] and UMAP was calculated in ArchR [72]

(v0.9.3). ATACseq peaks were called using MACS (v2.2.6) [73]. Random genomic re-

gions were generated using bedtools (v2.29.2) [74]. scATACseq co-accessibility scores

in EtOH- and DHT-treated LNCaP scores were calculated using Cicero (v1.4.0) [35]

with 10X Genomics input. Co-accessible sites overlapping with STARRseq annotated

AR enhancers and LNCaP ARBS (GEO:GSM2219854) were calculated with bedtools

(v2.29.2) [63] and counted with R (v3.6.1). With these results, two network graphs

(EtOH+DHT) were built with annotated AR CREs, LNCaP ARBS (not present in STAR

Rseq library) and promoters as nodes with the predicted Cicero interactions as edges

(co-accessibility score > 0.1). Inexact graph matching was used to calculate the
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similarity score of these networks with the DeltaCon, a massive-graph similarity func-

tion algorithm [75]. The S affinity matrices were calculated as described (Eq. 5) where I

is the identity matrix, D is the diagonal degree matrix, and A is the adjacency matrix of

G and ε is the constant defined as ε ¼ 1
1þ maxiðdiiÞ. Next the Euclidean distance of two af-

finity matrices (d) was calculated (Eq. 6).

S ¼ sij½ � ¼ I þ ε2D−εA
� �−1 ð5Þ

d ¼ RootED S1; S2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXni

i¼1

Xn j

j¼1

ffiffiffiffiffiffiffi
s1;ij

p
−

ffiffiffiffiffiffiffi
s2;ij

p� �2
r

ð6Þ

If an edge adjacent to the node (v) was altered, the impact (w) was calculated as the

RootED distance between corresponding row vector S1, v and S2, v calculated where v =

j = 1→ nj and ni = 1. Otherwise, w = 0.

Machine learning of ARBS activity

All ChIPseq data used in machine learning was analyzed with the standardized ChIP-

Atlas bioinformatic pipeline [76]. Based on the inducible (N = 286), inactive (N = 2479),

and constantly active (N = 465) categorization of the clinical ARBS, we trained a classi-

fier to predict the groups using the bound factors in a given region as input. For each

ARBS region, we extracted the ChIPseq signal scores over a 750-bp region for 90 differ-

ent DNA binding factors (Additional file 2). To correct for variations in scores across

factors and to unify their values to a consistent range, we applied SES normalization to

estimate a score cutoff that separates non-specific from specific binding in each ChIP-

seq dataset [77]. Briefly, the method finds the score where the difference between the

cumulative distributions of the observed and control input scores is maximally differ-

ent. The median value of the scores above the binding cutoff was then used as the

mean of a sigmoid transformation for each bound factor to transform individual factors

to an occupancy score between 0 and 1. Heatmaps of the average occupancy score for

each bound factor at a 50-bp resolution for inducible and inactive enhancers are shown

in Additional file 1: Fig. S14A + B. Finally, we took the maximum occupancy score over

the 750-bp region as the feature of the factor’s activity. The classifier we chose to fit

was a bootstrapped multinomial logistic regression model with a sparsity LASSO regu-

larizer. Several other regularizations were tried including Ridge and Elastic but this was

found to give the best accuracy and interpretability. In an attempt to balance the num-

ber of samples between groups, we created dataset samples that consisted of 500 ran-

domly selected samples of the Non-Inducible group alongside all of the samples from

the Constitutively Active and Inducible ARBS groups. The data set was further split

into 80% training and 20% testing. The bootstrapped model consists of 100 thousand

different base logistic regression estimators which were all trained on a different subset

of the training data. Each subset contains a maximum of 50 training samples and 5 oc-

cupancy features. The fitted weights in the aggregate model are an average of the fitted

weights in the base estimators and reflect the importance of a factor to differentiate the

categories in the presence and absence of other factors. This eliminates the problems

of collinearity and the linear dependence within our features and allows for a robust

representation of feature importance. Assessing these classifiers showed both false neg-

atives (Additional file 1: Fig. S14C) and positives (Additional file 1: Fig. S14D). False
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negatives were likely due to missing values in the ChIPseq dataset as this group was

much more likely to have a missing value than the inducible group as a whole. False

positives were still mostly above zero, indicating potential enhancer function that fell

just below the fold-change cutoff to be considered in the inducible group (Additional

file 1: Fig. S14D). To rank the different factors in terms of predictive power for a given

group, we computed the average binding energy of a given factor as the fitted weight

for that group times the average occupancy for that factor over all regions in that

group. The difference in binding energies between groups could then be used to iden-

tify features that differentially predict one group over another. For the 10,000 LNCaP-

specific ARBS regions, we computed their occupancy and constructed their 90 input

features as above. The trained classifier was then used to predict the probability of each

of the three categories for each of these regions using their occupancy features as

input.
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