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Abstract

The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (.1 MW
capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse
effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for
biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity
conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and
found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high
conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope
angle (,1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found
over 740,000 ha below the highest slope angle (,5%) – an area that can meet California’s renewable energy goal seven
times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate
impacts from future solar projects, so enhancing public land management may need to be considered among the options
to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher
conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity.
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Introduction

Climate change poses one of the greatest threats to biodiversity

[1,2]. Many species will be challenged to adapt to the magnitude

and pace of the change, especially those already compromised by

habitat loss and degradation [3]. Conservation of biodiversity will

rely on protecting and enhancing the resilience and permeability

of landscapes, to increase the viability of native species and provide

them access to conditions they will need to persist in the future [4].

Efforts to reduce greenhouse gas emissions will also provide

benefits to natural systems by reducing the magnitude of climate

change impacts to which they need to adapt. Indeed, development

of utility-scale (.1 MW) renewable energy generation facilities is

a core element of a multi-faceted strategy to reduce emissions from

the energy sector [5]. Yet, such facilities can have sizable footprints

in terms of land area and water use [6], and so can threaten

natural ecosystems directly through habitat loss and fragmenta-

tion, or indirectly through the displacement of other human land

uses [7]. Therein lies a paradox of utility-scale renewable energy

development: it may be necessary to reduce climate change

impacts and help protect biodiversity worldwide in the future; but

if not carefully planned, it could come at the expense of the

viability of local species today or constrain their ability to adapt to

future conditions by destroying, or creating dispersal barriers to,

areas they will need in the future.

The current pace and scale of efforts to develop renewable

energy sources can make it more difficult to avoid adverse

ecological impacts, especially given the lack of scientific studies

regarding those impacts [8]. Yet, if emissions levels are to be

maintained below what some describe as ‘‘dangerous’’ for both

natural and human systems [9,10], conversion to renewable

sources of energy needs to be rapid worldwide [11]. Interest in

energy security and economic stimulus further fuels demand for

renewable energy development in the United States. Utility-scale

development has become a government priority at the national

and subnational level, with regulatory and financial incentives to

further it (examples include the National Energy Policy Act of

2005, American Reinvestment & Recovery Act of 2008) including

$5.3 B in loan guarantees for three projects in California [12].

This has resulted in a boom market for renewable energy in the

western United States that has overwhelmed state and federal

environmental regulatory processes and permitting agencies. For

example, as of November 2010, there were 22 applications to

develop solar facilities on Bureau of Land Management (BLM)

lands in the California deserts alone, with a cumulative footprint of

nearly 78,000 ha [13].

Regulatory complexity compounds the political and market

pressures. Authority for permitting new renewable energy facilities

is dispersed across multiple jurisdictions depending on the

technology, the size of the facility being proposed, and whether

the proposed location is on public or privately-owned land. A

variety of undesired consequences may result from this high

political pressure and complexity, including protracted and

controversial approval processes, unexpectedly high compensatory
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mitigation costs, and approval of projects prior to a full un-

derstanding of their cumulative environmental impact.

Decision-support tools are needed to efficiently guide projects

toward areas that are commercially attractive for development,

and away from areas important for biodiversity conservation and

other resources. Using such tools in the early phase of project

scoping would allow developers to select areas where they will be

less likely to encounter environmental obstacles in the permitting

process. These ‘‘low-conflict’’ locations could be prioritized for

field investigations and possibly be eligible for expedited permit-

ting or other incentives to promote projects on appropriate lands.

Conservationists also benefit from early identification of areas with

minimal conservation value as it might expedite the attainment of

climate benefits and reduce the risk of their being perceived as

obstructionist.

Avoiding impacts through the selection of appropriate de-

velopment locations and compensating for any residual impacts

are core components of the ‘‘mitigation hierarchy’’, a planning

approach most commonly used to avoid impacts to wetlands

[14,15] (Figure 1). Adherence to this approach can help reduce

adverse impacts of development, by defining resources and areas

to be avoided, and outlining steps to minimize, restore, or offset

unavoidable impacts. The principles of the mitigation hierarchy

can be applied at a landscape scale through spatial analyses that

map constraints and opportunities for both development and

conservation [16–18]. Finding areas that are both suitable for

renewable energy development and of relatively low biodiversity

conservation value represents a possible ‘‘win-win’’ for two

otherwise potentially conflicting objectives [19]. When complete

avoidance of impacts is not possible, this approach can improve

the conservation return of investments in compensatory mitiga-

tion, by directing it to places and efforts that also advance regional

conservation goals [16,20,21].

Here, we illustrate how the mitigation hierarchy can be applied

to characterize the degree of alignment between biodiversity

conservation and electricity generation from utility-scale solar

facilities. Our study focuses on the Mojave Desert, as it is the focus

of intense development pressure: it offers large expanses of public

lands with exceptional solar energy resources in close proximity to

highly populated regions with strong markets for renewable

energy. We integrate conservation values and presumed de-

velopment feasibility across the desert, and illustrate how

compensatory mitigation can contribute to regional conservation

goals. We propose that this regional application of the mitigation

hierarchy can lead to both more efficient development of

renewable energy and better conservation outcomes in the Mojave

Desert, and that this approach can serve as a model for resolving

such conflicts more generally.

Study Area
The Mojave Desert Ecoregion encompasses 13,013,000 ha,

across four southwestern states: California (contains 56% of the

ecoregion), Nevada (31%), Arizona (11%) and Utah (2%). The

ecoregion is notable for its biodiversity as well as for its wilderness

values and associated economic benefits [22]. There are over 400

vertebrate species that inhabit the ecoregion, with extremely high

endemism especially in wetland areas, such as Ash Meadows

National Wildlife Refuge, Nevada where there are 24 endemic

plants and animals [23,24]. Plant diversity in shrub communities is

among the highest in North America, with potential species

diversity in these communities as high as 70 species per hectare in

the eastern Mojave [25]. Currently 29 species and subspecies in

the Mojave Desert are listed as threatened or endangered under

the federal Endangered Species Act [23]. The region has extensive

public and military lands (collectively covering over 85% of the

ecoregion), with 53% of the ecoregion designated for wilderness

and for species habitat – such as critical habitat for the federally

threatened desert tortoise (Gopherus agassizii).

The biodiversity input into this analysis is a characterization of

conservation value across the Mojave Desert Ecoregion, from Randall

et al.’s (2010) Mojave Ecoregional Assessment (hereafter, the

Assessment) [26]. The Assessment analyzed a broad set of

conservation elements, or ‘‘targets’’ (44 vegetation communities

and 521 plant and animal taxa) and used the conservation

planning software Marxan [27] to generate alternative configura-

tions of areas to meet conservation objectives. By integrating

Marxan output of priority areas, aerial photo interpretation (to

assess degree of anthropogenic ground disturbance), and principles

of conservation reserve design, Randall et al. classified the land

into categories of high (i.e., Ecologically Core, Ecologically Intact)

and low (i.e., Moderately Degraded, Highly Converted) conser-

vation value (Figure 2). Here, we used the latter category to

represent areas of lower conservation value. We note that the

approach we present is flexible, and could accommodate other

conservation assessments as the biodiversity input. For example,

other prioritization analyses exist for individual species in the

ecoregion (such as federal endangered species critical habitat units)

or as habitat conservation plans for portions of the ecoregion [28–

29]. We selected the Randall et al. 2010 conservation value

assessment because it is the most recent and consistent character-

ization of the distribution of biodiversity and land use impacts

across the whole of the ecoregion.

The Mojave Desert is also renowned for its extraordinary solar

resources. An analysis of the solar energy production potential of

the southwestern United States suggests that the region could

supply 50% of the country’s electricity demand if fully developed

[30,31]. One of the largest collections of solar electricity facilities

in the world, the Solar Energy Generating Systems (SEGS) is

installed in the Mojave Desert, totaling 354 MW of installed

capacity.

Certain attributes of the desert ecosystem warrant special

attention in planning for industrial land uses such as energy

facilities. The low productivity of the desert leads to a slow pace of

soil development, plant growth, and ecological succession, and

that renders it slow to recover from disturbances [32]. This limits

the application of the mitigation hierarchy, in that restoration of

disturbed areas is often infeasible in ecological timeframes. While

restoration is a critical step for reducing impacts from in-

frastructure development in many ecosystems, the challenges of

successful restoration in desert systems increases the importance of

avoidance and minimization strategies. Mechanical disturbance of

soil crusts leads to erosion and heightened susceptibility to invasion

by non-native grasses and forbs [33]. Those, in turn, can result in

altered fire regimes, and effectively irreversible type conversion of

habitats [34]. Disturbing desert soil may also limit the degree to

which it acts as a carbon sink, an ecological process that is poorly

studied and the magnitude of which has only recently been

characterized [35]. Solar facilities also consume water in their

installation, operation, and or maintenance. Water is very limiting

in the desert, with many species dependent upon either the rare

surface expressions of water or the vegetation communities that

draw upon subsurface flows. Although relationships between

surface and ground water, as well as ground water flows and

recharge rates are poorly understood, it is generally accepted that

these resources are over-allocated [36]. While a full consideration

of the ecological values of desert ecosystems is beyond the scope of

this study (see Lovich and Ennen 2011), the integrity of soils and

the scarcity of water are two key ecological attributes for planning,

Planning for Solar Energy and Biodiversity
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and potential constraints on the ability to align solar energy

development and biodiversity conservation.

Results

Regional Opportunities to Align Energy and
Conservation Goals
We found large areas of the Mojave Desert that are potentially

suitable for the development of solar facilities that are ecologically

degraded with lower regional conservation value (Figure 3). The

amount of lower conservation value land that meets the

development suitability criteria ranges from nearly 200,000 ha

(,1% land surface slope angle) to over 740,000 ha (,5% slope)

(Table 1). The level of potential compatibility between de-

velopment and conservation is much greater if land with higher

slope can be utilized, with nearly four times more lower

conservation value land at the 5% cutoff compared to the 1%.

Privately-owned parcels provide considerably more opportunity

to develop on land with lower conservation value than do public

lands (Figure 4, Table 1). The combined area of lower

conservation value private land is 3.5 times (,1% slope) to 2.5

times (,5% slope) the area of those categories on suitable BLM

land across the ecoregion. The higher degradation on private land

is primarily due to agricultural land use and low density

development in parts of the western Mojave in California and in

the Arizona portion of the ecoregion. However, unlike BLM-

managed lands, private lands are often parcelized and divided into

many ownerships. In California, private lands that meet suitability

criteria, are less than 5% slope and are in the lower conservation

value categories, the average parcel size is 2.4 ha, with a median of

1 ha (Figure 5).

While most of the degraded areas potentially suitable for

development are found on private land, BLM land also provides

large areas of potential opportunity for development, with over

210,000 ha of lower conservation value land less than 5% slope

across the ecoregion (Table 1, Figure 4). About 90% of those lands

are available for solar use since approximately 10% (21,522 ha)

are within designated off highway vehicle (OHV) open areas and

thus likely to be off limits to and inappropriate for development.

Ecoregional Impacts
If the full extent of areas without protective designation (i.e.,

BLM multiple use and private lands) that are potentially suitable

for solar facilities were to be opened and used for solar

development, large areas of Ecologically Core and Intact

(hereafter, ‘‘higher conservation value’’) lands would be lost,

ranging from over 250,000 ha (,1%) to 1.6 million ha (,5%)

(Table 1). This extent of loss would greatly reduce the ability to

Figure 1. The mitigation hierarchy. Under this schema, developers advancing a project choose locations for their project that avoid
environmental impacts. If impacts cannot be completely avoided, they then take steps to minimize impacts. Once impacts are minimized to the
extent possible, restoration opportunities are pursued. Residual impacts not addressed by the previous steps are then offset through compensatory
mitigation, using ratios that result in a net positive impact on biodiversity. Adapted from Convention on Biological Diversity 2008 [54].
doi:10.1371/journal.pone.0038437.g001
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meet ecoregional conservation goals (per Randall et al. 2010) for

many biodiversity targets, especially if higher slopes are eligible for

development (Figure 6). Some targets would face extensive loss

relative to the current distribution, such as mesquite upland scrub,

greasewood flats, blackbrush shrubland, and mixed salt desert

scrub [37] (Figure 6). The extent of desert tortoise suitable habitat

outside tortoise conservation areas in higher conservation value

lands that would be lost varies considerably based on slope angle,

from 90,103 ha (,1%) to over 1 M ha (,5%). The location of

many of the areas at risk are in flat valleys which often connect

existing conservation lands for wide-ranging species like desert

bighorn sheep (Ovis canadensis nelsoni) [38].

In the California and Nevada portion of the Mojave, there are

over 220,000 ha of solar facilities proposed as Right of Way

(ROW) applications on BLM lands, including nearly 130,000 ha

of Ecologically Core and Intact habitats (Table 2). The vast

majority of this area – over 116,000 ha – is occupied by the

ecoregion’s most widespread community, creosotebush-white

bursage desert scrub (Larrea tridentata, Ambrosia dumosa). The second

most extensive impact would be to Mojave mid-elevation mixed

desert scrub [37] (Table 2). The desert tortoise is wide-ranging

across the study area, and would directly lose 103,509 ha of

Ecologically Core and Intact suitable habitat if the footprints of all

current proposals on BLM lands are developed.

Supply Relative to Renewable Energy Goals
California’s 2020 Renewables Portfolio Standard (RPS) goal

can be fully met without developing within the Ecologically Core

or Intact lands in the ecoregion. The lower conservation value

land with slopes of less than 1% (190,928 ha) could supply

107 TWh of electricity, or 180% of the renewable energy that it is

estimated will be needed to meet the California RPS by the

Renewable Energy Transmission Initiative (RETI) [39]. Below 3%

slope, there are 587,145 ha of land, with the potential to generate

555% of the energy required, while the lower conservation value

lands below 5% cutoff (740,699 ha) could supply 700% of the

energy required.

Figure 2. Conservation value in the Mojave Desert Ecoregion. The conservation values categories are depicted on the map as follows: dark
green areas are Ecologically Core, light green are Ecologically Intact, orange are Moderately Degraded, and red are Highly Converted (adapted from
Randall et al. 2010). Subregions of the Mojave Desert are shown in the purple-white outline; labels indicate the 1. Northern, 2. Western, 3. South-
central, 4. Central, 5. Southeastern, and 6. Eastern subregions. Urbanized land is grey and highways are in grey lines. The location of the ecoregion in
the coterminous United States is shown in the inset map.
doi:10.1371/journal.pone.0038437.g002
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Figure 3. Conservation values in potentially suitable lands for solar development below 5% slope angle. Urban areas, water bodies,
and lands outside of private or BLM multiple use ownerships, and areas above 5% slope were removed. Conservation value colors are the same as
Figure 2. Lands in orange and red are classified as lower conservation value lands for which energy production estimates are provided in the results.
doi:10.1371/journal.pone.0038437.g003

Table 1. Area (ha) of land by land ownership, conservation value, and percentage slope angle.

Owner Ecologically Core Ecologically Intact Moderately Degraded Highly Converted Total

Bureau of Land Management (BLM)

,5% slope 389,458 828,371 190,244 21,669 1,429,742

,3% slope 240,370 491,398 130,530 17,762 880,061

,1% slope 73,736 99,196 31,785 10,570 215,288

Private Land

,5% slope 159,693 221,835 400,264 128,522 910,315

,3% slope 128,260 168,127 326,898 111,955 735,239

,1% slope 49,045 34,811 89,886 58,687 232,428

Areas with lower than 7 kwh/m2/day direct normal irradiance (DNI) were excluded from the analysis, as were legally and administratively protected areas, urban areas,
and perennial water bodies. BLM land includes only undesignated land eligible for potential siting. Higher percentage slope categories are inclusive of the lower.
Conservation value categories from Randall et al. 2010.
doi:10.1371/journal.pone.0038437.t001
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Figure 4. Land ownership in potentially suitable lands below 5% slope with Moderately Degraded and Highly Converted
conservation value. Blue areas are private lands and dark red areas are BLM land without designation. Areas outlined in orange are designated
open off-highway vehicle areas on BLM land in California, accounting for 10% of the 211,000 ha in lower conservation value on BLM land and would
not be suitable for development. Conservation values adapted from Randall et al. 2010.
doi:10.1371/journal.pone.0038437.g004

Figure 5. Parcel size class distribution within private lands of California that are of lower conservation value. These are only within
areas that are potentially suitable for solar development below 5% slope. The presence of high rates of parcelization on private land acts as
a disincentive to site large solar projects in more degraded areas.
doi:10.1371/journal.pone.0038437.g005
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Mitigation Scenarios
We calculated a total footprint of 31,994 ha for proposed solar

energy generation facilities under verified Right of Way applica-

tions on BLM lands and on private lands of the western, central

and south-central subregions of the ecoregion. Meeting compen-

satory mitigation needs for these proposed projects would

contribute more to regional conservation goals if mitigation is

not restricted to private lands. For example, if we use the ‘‘future’’

mitigation ratio and restrict mitigation investment to private lands,

there will not be enough higher conservation value private land in

the central Mojave subregion to offset impacts for five conserva-

tion targets, including the desert tortoise, which falls short of the

mitigation need by 38% (23,104 ha) (Figure 7). In contrast, if

public lands are also eligible for investment, mitigation require-

ments under the future ratio could be met for all but two targets

(playa is short by 601 ha and desert pavement is short by 30 ha)

(Figure 7). Moreover, in the private land only scenario, lands

selected for mitigation at both ratio levels are more fragmented

than the mixed ownership scenario (as reflected in higher edge

length of the full selected network, 15% higher for current ratios

and 52% for future ratios). The areas selected in the private land

only, current scenario are slightly more degraded (11%, as

indicated by the average Marxan ‘‘cost’’ per selected assessment

unit) than the mixed ownership solution (Table 3). This difference

in degradation jumps to 60% using the future ratios, which is

largely due to Marxan seeking to meet the mitigation goals for

tortoise, by having to include areas that may be relatively more

impacted.

The ideal arrangement of places for mitigation differs depend-

ing on what lands are available. The percentage overlap of the

mitigation solutions for the mixed ownership and the private land

only scenarios is low: the Jaccard similarity index [40] was 0.29 for

the current mitigation ratio and 0.42 for the future ratio (Figure 7).

A similar comparison of total area needed for both ownership

scenarios could not be performed for the future ratio solutions

Figure 6. Percent of representation goals that would not be attainable if all areas potentially suitable for solar development were
to be developed. The goals refer to a hypothesized amount of each habitat that needs to be managed for conservation to meet long-term viability
needs for representative biodiversity of the ecoregion. Goals are based on Randall et al. 2010.
doi:10.1371/journal.pone.0038437.g006

Table 2. The extent of ecological system targets that occur
within BLM Right of Way applications in California or Nevada
that also occur within Ecologically Core or Ecologically Intact
conservation value categories (from Randall et al. 2010).

Conservation Target
Area Potentially
Impacted (Ha)

Creosotebush-White Bursage Desert Scrub 116,640

Mojave Mid-Elevation Mixed Desert Scrub 7,125

Southern Willow Scrub 1,145

Mixed Salt Desert Scrub 1,082

Cliff and Canyon 1,075

Playa 699

Desert Pavement 578

Dunes 229

Greasewood Flat 165

Chaparral 110

doi:10.1371/journal.pone.0038437.t002
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because mitigation goals could not be met in the private land only,

future scenario (Table 3).

Figure 7. Scenarios of suitable mitigation areas using the future ratios. This map shows the private land-only (pink) and the mixed
ownership (blue) scenarios, with planning units that are shared in both scenarios (teal with outline). The private land-only solution is more dispersed
and was not able to offset impacts for five targets in a subregion (grey outlines, labeled in Figure 2), most notably a deficit of over 23,000 hectares of
suitable desert tortoise habitat in the Central Mojave subregion, north and east of Barstow, CA. Urbanized areas are shown in light grey. The extent of
Ecologically Core (darker green) and Ecologically Intact (light green) is shown for reference (adapted from Randall et al. 2010). Projects used to
calculate impacts and drive mitigation demand are shown in brown.
doi:10.1371/journal.pone.0038437.g007

Table 3. Performance of compensatory mitigation scenarios.

Mitigation Ratios Eligible Land for Mitigation Assessment Unit Cost
# of Assessment
Units

Boundary Length
(m)

Goals Met for All
Targets?

Current Private Core and Intact 158,999 254 1,087,545 No (1 not met)

Current Private or BLM undesignated Core and Intact 141,084 251 717,062 No (1 not met)

Future Private Core and Intact 447,275 457 1,862,370 No (5 not met)

Future Private or BLM undesignated Core and Intact 324,674 531 1,617,374 No (2 not met)

Assessment unit costs are the sum of the ‘‘cost’’ values, a unitless index used in Marxan as a proxy for anthropogenic disturbance. The number of assessment units is the
number selected in the most efficient scenario of 100 model runs. Boundary length is the total edge length of the selected assessment units and is a proxy for the
dispersion of the selected network of areas. Goal attainment refers to whether the mitigation goals for the targets are met in the given scenario. See Supporting
Information S2 for full description of Marxan settings.
doi:10.1371/journal.pone.0038437.t003
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Discussion

We found considerable opportunity for alignment of bio-

diversity conservation and solar energy development objectives in

the Mojave Desert. Assessed at the moderate 3% slope cutoff, over

580,000 ha of lands with lower conservation value yet presumably

suitable for solar energy development currently exist across the

desert, an amount that could supply over five times the energy

needed to meet the projected 2020 California 33% RPS goal.

Steering development to areas of lower conservation value could

help reduce adverse impacts to desert ecosystems, specifically areas

that are more intact and those that contain sensitive resources.

Avoiding those areas will likely improve the adaptive capacity of

desert species in the face of climate change and provide greater

ecological resilience in the future. Prioritizing development in

lower conservation value lands reduces the prospect of conflict

over ecological impacts that can add cost, delay, and controversy

to projects.

One striking finding from this study is the relationship between

land ownership, conservation value, and ‘‘attractiveness for

development.’’ From a conservation perspective, most of the areas

that appear better suited for development are privately held, but

they are often comprised of many parcels that would need to be

consolidated to achieve a minimum area sufficient to support

a project. From a development perspective, that parcelization

creates a disincentive, especially if an alternative exists to have

a more streamlined process working elsewhere with one land

owner, e.g., BLM. Thus, one strategy to enhance protection of the

conservation values of the Mojave Desert would be to develop

policies that incentivize development on degraded private lands.

We note that brownfields and areas formerly in agricultural

production, but retired due to salinity, water limitations, economic

considerations, or other contamination problems may present

ideal locations for solar development, especially for technologies

that use less groundwater than the former land use.

The approach we present can also help direct compensatory

mitigation investments. By accounting for the direct impacts of

a given set of proposed projects and the distribution of lands with

higher conservation value, we illustrate how one can generate

a portfolio of candidate areas for compensatory mitigation that

meet mitigation obligations while contributing to regional

conservation goals. Of course, further field assessment is required

to ensure that candidate sites generated from this type of analysis

are indeed suitable as mitigation. This approach can be

generalized to other land uses, geographies, covered resources,

and mitigation ratios and actions, and explored as a site-selection

problem to optimize various social and ecological goals.

Our analysis of land ownership and conservation value also

revealed a conundrum for mitigation. While the higher degrada-

tion of private lands provides opportunities to avoid or minimize

adverse ecological impacts when siting projects, it also poses

problems if compensatory mitigation can only be conducted on

private lands. The limited supply of private lands with higher

conservation values could in turn limit the amount of energy

development for which impacts can be offset. We note, however,

that there may be considerable opportunity to use mitigation funds

to enhance the conservation management of existing public lands

in the desert, through such actions as eradicating invasive species,

increasing enforcement of off-highway vehicle closures, or in-

stalling tortoise exclusion fencing along roads. The desert tortoise

recovery plan [41], for example, recommends numerous manage-

ment actions to enhance species viability, many of which go

unimplemented due to insufficient funding [42]. We emphasize

that any investment of mitigation resources applied to public lands

would need to result in enduring conservation outcomes and add

to the current level of management activities rather than replace

existing resources and agency obligations. One way to track and

better ensure that investments result in enduring conservation is to

change the designation of lands serving as mitigation from one that

allows multiple uses to one that gives primacy to the conservation

use. Ensuring additionality of mitigation-related enhanced man-

agement funding would likely involve contractual obligations and

require special enforcement mechanisms within agency budgeting

processes.

We underscore the importance of accounting for cumulative

impacts in siting and mitigation decisions, especially in light of the

increased stress that climate change will exert on desert

ecosystems. The impacts of projects should not only be evaluated

comprehensively regarding ecological impacts, but also examined

cumulatively in the context of all of the major stressors in the

desert (including but not limited to the other proposed energy

projects). Because of the large area potentially impacted by long-

term solar energy development (as illustrated in Figure 6), and the

lack of related impact studies, a framework is needed in the near

term to guide decision-making to help reduce the risk of

inadvertently crossing thresholds of ecological viability [8]. The

approach presented here, essentially an application of the

precautionary principle, can provide that initial guidance: develop

first in the least conflict areas and protect the consensus

conservation areas; meanwhile, improve knowledge regarding

the areas in between, so that siting and mitigation decisions in the

future can be better informed as to their environmental trade-off.

Limitations of this analysis are mostly related to data quality and

resolution. We underscore that this study cannot substitute for site-

level assessment, or more detailed assessments of sensitive and rare

species’ conservation needs (e.g., HCPs [Habitat Conservation

Plans], NCCPs [the state of California’s Natural Communities

Conservation Plans], endangered and threatened species recovery

plans). Moreover, the map of the relative conservation value

should not be construed as a development and conservation

blueprint, per se. Randall et al. (2010) caution that because

important occurrences, ecological processes or habitats of targets

may occur within all of the conservation value categories, even the

Highly Converted category, site-level assessment is needed to

confirm suitability for development, and guide project siting,

design, and mitigation. The Assessment is best used to provide

general guidance to planners and industry seeking to assess the

relative likelihood of environmental constraints across a broad

area, in an attempt to minimize adverse permitting problems. As

suitable information becomes available, the approach we present

here can be implemented at a finer spatial scale for a portion of the

ecoregion.

An additional limitation of our analysis is that it does not

explicitly account for some key factors that influence the economic

feasibility of project development. Geographic factors may affect

the economic profitability of a site, such as local influences on solar

radiation or the costs of ongoing maintenance to minimize damage

from airborne sand. One notable factor that was beyond the scope

of our study pertains to transmission. Proximity to transmission

corridors that have additional capacity is an important consider-

ation in siting new generation facilities. The relationship between

transmission and generation will be important to incorporate into

future refinements of this analysis utilizing the expertise of the solar

industry, especially where new transmission is required to service

proposed facilities. Those additional impacts should be incorpo-

rated into the overall application of the mitigation hierarchy.

In sum, we demonstrate how solar energy production goals in

the Mojave Desert can be met with less adverse effect on
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biodiversity. The systematic approach presented here for proac-

tively balancing solar energy production with biodiversity pro-

tection better accounts for, and so can help reduce, trade-offs.

Importantly, it can also provide greater assurances to agencies,

developers and conservationists that their respective goals are

being met. Integrating this sort of analysis with dynamic

information systems for species distributions, ecological condition

and conservation investments, can help agencies and stakeholders

adaptively apply the mitigation hierarchy with increasing effec-

tiveness. This example of multi-objective planning can also be

expanded and tailored to other technologies and geographies, e.g.,

wave energy and marine protected areas. We caution, however,

that if such planning does not incorporate and accommodate all

major interests and stakeholders, it may lead to displacement of

one user by another, and exacerbate rather than resolve conflict.

For example, our analysis did not incorporate some significant

desert values, such as cultural values, recreational uses, military

training, and scenic values. Accounting for this array of interests

will be essential for developing the long-term conservation plan for

the Mojave.

Numerous conservation and energy development planning

efforts are currently underway that will affect the Mojave Desert

(e.g., BLM’s Solar Energy Development Programmatic Environ-

mental Impact Statement). The State of California is currently

developing an NCCP for the state’s deserts that, like this analysis,

will take into account not just those species currently listed but the

full array of natural communities of the California deserts. We are

hopeful that the resulting NCCP will identify areas preferred for

development and conservation, and institutionalize effective

regulatory mechanisms and market-based incentives to implement

that plan. Ideally, those mechanisms will help ensure that siting

and mitigation occur in the places most appropriate for effecting

desert conservation–regardless of the underlying ownership. In the

interim, we propose that a precautionary approach like that

presented here could guide conservation-compatible renewable

energy development in the desert.

Materials and Methods

Solar Energy Development Potential
We estimated solar energy potential across the Mojave Desert

using the direct normal irradiance (DNI) data at 10 km resolution

developed by National Renewable Energy Laboratory (NREL)

and SUNY-Albany [43]. The DNI is the variable commonly used

to assess the potential for concentrating solar power (CSP)

installations, but is strongly correlated with solar insolation values

used to plan solar photovoltaic (PV) facilities.

Development feasibility was characterized based on land

ownership and management, current land use, and land surface

percent slope angle, as well as solar insolation. We filtered the DNI

data to include only those lands with excellent solar resource

potential (annual average value of at least 7 kWh/m2/day ) and

slope angles that bracket the maximum slope that is considered to

be developable for solar energy based on current technologies (less

than 1%, 3% (inclusive), and 5% (inclusive)). We calculated the

slope using elevation data from the Shuttle Radar Topography

Mission (SRTM) resampled from 30 meters to 90 meters

resolution, and smoothed using an averaging filter by a 3 6 3

window to remove anomalies in the data [44]. To remove patches

of land not large enough for utility-scale solar projects, we applied

a minimum mapping unit of 100 hectares and merged all polygons

below this cutoff with adjacent polygons using the ARCGIS

Eliminate tool [45].

To ensure that areas already developed with residential,

industrial or commercial uses were not included as potentially

suitable, we created a composite ‘‘developed’’ land layer. For

Utah, Arizona and Nevada we used data from the Southwest

ReGap program [46] to represent developed land use. For

California, we extracted the ‘‘urban’’ category from the Multi-

source Land Cover data [47] to represent the footprint of areas to

exclude. To minimize adjacency to urban areas, we smoothed the

developed land composite using an averaging filter by a 363

window and removed all areas greater than 10% urbanized after

smoothing. Perennial water bodies and areas that have a legal or

administrative status that prevents energy development were also

removed from the suitable land base. We removed the categories

of land that were identified as consensus exclusion areas in

California’s Renewable Energy Transmission Initiative [48] (see

Supporting Information S1 for a list of these categories). We also

excluded the desert tortoise conservation areas as defined by the

U.S. Fish and Wildlife Service, which include areas designated as

critical habitat for the desert tortoise [49]. Mohave ground squirrel

(Spermophilus mohavensis)) conservation areas [50] were also removed

because they have been proposed for exclusion by the BLM.

Management status data on the location of public and private land

and the relative level of conservation management were from the

U.S. Geological Survey Protected Areas Data version 1.1 [51].

Progress toward California Renewable Energy Goals
A key driver of demand for renewable energy in the Mojave

Desert is the California Renewables Portfolio Standard (RPS),

which mandates that investor- and publicly-owned utilities acquire

33% of their energy from renewable sources by 2020. The net

amount of renewable energy that needs to come online to meet the

2020 goal will change over time and requires assumptions about

the lifespan of current and future projects. We used an estimate

from the California Renewable Energy Transmission Initiative

[39] of 59.7 TWh which is higher than more recent estimates [52].

We calculated the potential energy generation based on the land

area that is developable based on the solar insolation, slope, and

land use and management filters described above, and conserva-

tion value (per Randall et al. 2010) for the whole ecoregion. We

used this potential energy generation to estimate the proportion of

the remaining California’s RPS goal (net short) that could be met

in the Moderately Degraded and Highly Converted (hereafter,

‘‘lower conservation value’’) lands in the ecoregion. We considered

the California RPS as a realistic energy goal for this analysis, and

we assumed that land in other states can have projects to

contribute to the California RPS goal given the close proximity of

many of the areas to California. To convert land area to energy

output, we used the mid-point land area to energy estimate for

solar thermal provided in MacDonald et al. (2009) of 3.8 ha/mw

and assumed a 25% capacity factor [7].

Development Impacts and Mitigation Opportunities
We analyzed opportunities to offset projected impacts from

BLM and private land solar projects by developing mitigation

scenarios that differed in 1) the type of land ownership allowed to

serve as mitigation, and 2) the mitigation offset ratio. The extent of

this analysis included three subregions used in the Assessment: the

Western, Central, and South Central Mojave Desert (Figure 2).

We used only the northern portion of the South Central subregion

(dividing it based on the ecological subsection boundary [53])

because the southern portion is covered by Joshua Tree National

Park and an adjacent Area of Critical Environmental Concern

(ACEC), which are land designations that do not allow for

development.
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To estimate subregional impacts, we used the mapped or

estimated footprints of proposed solar projects on private lands in

Kern, San Bernardino, and Los Angeles counties within the

California Mojave ecoregional boundary and the verified ROW

applications for BLM lands in California [13]. For the BLM

projects, we used the California verified Right of Way solar

projects from a data download from November 8, 2010. For the

private land projects, we used maps or available GIS data from

Kern, Los Angeles and San Bernardino counties. Specifically, for

Kern County projects was a spreadsheet and digital map showing

the location of the facilities, acquired from the county and dated

September 9, 2010. The facilities were digitized based on this map

and a point GIS file was created. The area of the facility was used

from the spreadsheet to buffer the point to a circle with an area the

exact same size as the listed size in the table. The source for San

Bernardino County projects was from April 2010 and included

two pre-application projects. These were digitized based on the

locations and information in a digital map acquired from the

county. We mapped the projects as precisely as possible to get the

approximate acreage and location based on the information

available, though we were not able to map projects more

accurately than the parcel boundary. For Los Angeles County,

projects were mapped based on available assessor parcel numbers

and parcel data acquired in December 2010 from the county. The

three county data layers and the BLM ROW layer were merged

into one file within the extent of the subregional area. Each project

was assigned to a subregion with no projects straddling subregions.

We could not identify a data source for Inyo County in the western

subregion.

To estimate potential ecoregional impacts from ROW applica-

tions, we included both California and Nevada applications. We

assume that the whole area within the ROW would be impacted

by the proposed projects, even though in many cases the area of

the ROW application exceeds the actual development footprint.

We caution that these footprints represent only the direct impacts

associated with the projects, not indirect effects. It is also likely that

not all of these applications will be developed. However, the

purpose of this portion of the study is to characterize the

magnitude of the impact of solar development based on a proposed

set of projects and resultant mitigation it will require in one

portion of the Mojave Desert.

To derive the amount of mitigation needed for species and

vegetation system targets, we calculated the extent for each

vegetation type and habitat for two species of conservation interest

(desert tortoise [49], Mojave ground squirrel [50]) within the

ROW applications and private land projects in the subregional

study area. The calculated impacts for these 45 projects were used

to identify potential areas to meet compensatory mitigation needs

in the most efficient configuration (based on total area, length of

outer boundary of selected hexagons, and conservation suitability

described below) while contributing to regional conservation goals.

We used the same tool for the mitigation scenarios that was used in

the Assessment, Marxan (v. 1.8.10), to identify areas that can meet

mitigation needs. We ensured that potential mitigation areas

would contribute to conservation goals by allowing Marxan to

select only Ecologically Core or Intact areas from the Assessment,

without an existing protective designation, such as Federal

Wilderness areas or Areas of Critical Environmental Concern.

To ensure that the mitigation areas would be ecologically similar

to the impacted resources, we required the offsetting to be within

the same subregion as the impact. Additional parameters and goal

amounts used for Marxan scenarios are shown in Supporting

Information S2.

To assess mitigation needs, we used two sets of mitigation to

impact ratios. The first set was intended to mitigate for the impacts

of existing proposed projects (hereafter ‘‘current’’). Current ratios

were based on available guidance in existing regulations and

recovery plans, although we included all target ecological systems,

not just those for which mitigation is required under existing laws

and regulations. The second set of ratios was intended to be

a proxy for potential future build out of solar projects (hereafter

‘‘future’’). ‘‘Future’’ ratios were defined as double the ‘‘current’’

ratios (Table 4). This simple approach to forecasting mitigation

needs can be used to design programmatic investments, such as

advance mitigation. To assess the influence of land ownership on

the availability of mitigation options, we ran scenarios with two

alternatives: only using private land as suitable sites (hereafter

‘‘private land only’’) and using BLM multiple use land as well as

private land as options (hereafter ‘‘mixed ownership’’). To ensure

that the mitigation areas selected had relatively minimal degra-

dation, we used an index of anthropogenic disturbance (road

density, urban and agricultural land) adapted from Randall et al

(2010) to define conservation suitability as the ‘‘cost’’ layer input

for Marxan. The details of this layer and the input data are shown

in Supporting Information S3. Using this cost layer in the Marxan

mitigation scenarios provided a basis for comparison of the relative

habitat quality available using the two sets of allowable land

ownerships for mitigation.

For desert tortoise habitat distribution, we used the output of the

habitat model developed by Nussear et al. (2009) and selected the

top four scores (.0.6) of the classified output as a conservative

representation of higher quality habitat [49]. For Mohave ground

squirrel, we used the boundaries of the conservation areas as

designated by the BLM in California [50].

Supporting Information

Supporting Information S1 RETI Category 1 Exclusion

Areas.

(PDF)

Supporting Information S2 Marxan settings and target

amounts for compensatory mitigation scenarios.

(PDF)

Supporting Information S3 Process for determining distur-

bance value for cost layer used in mitigation scenarios.

(PDF)

Table 4. Compensation ratios for current and future
mitigation scenarios.

Target Current Ratio Future Ratio

Species 3:1 6:1

Vegetation Systems 2:1 4:1

Unvegetated Systems 1:1 2:1

Mitigation ratios represent the proportional offset needed per unit of impact.
Current Ratio refers to a hypothetical degree of offset to compensate for
impacts to the target species or system based on a set of proposed projects.
Future Ratio refers to a potential amount of mitigation that might be needed
based on future build out of solar projects. Unvegetated systems include dunes,
cliff and canyon, desert pavement, and playas.
doi:10.1371/journal.pone.0038437.t004
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