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Acute renal injury (AKI) is a complex clinical syndrome, involving a series of
pathophysiological processes, in which inflammation plays a key role. Identification and
verification of gene signatures associated with inflammatory onset and progression are
imperative for understanding the molecular mechanisms involved in AKI pathogenesis.
Non-coding RNAs (ncRNAs), involved in epigenetic modifications of inflammatory
responses, are associated with the aberrant expression of inflammation-related genes
in AKI. However, its regulatory role in gene expression involves precise transcriptional
regulation mechanisms which have not been fully elucidated in the complex and volatile
inflammatory response of AKI. In this study, we systematically review current research on
the intrinsic molecular mechanisms of ncRNAs that regulate the inflammatory response in
AKI. We aim to provide potential research directions and strategies for developing ncRNA-
targeted gene therapies as an intervention for the inflammatory damage in AKI.
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INTRODUCTION

According to the guidelines issued by the KDIGO (Kidney Disease: Improving Global Outcome)
organization, acute kidney injury (AKI) is a complex clinical syndrome with systemic effects
characterized by rapid impairment of glomerular filtration function (Hoste et al., 2015). The
condition mainly manifests as an increase in serum creatinine concentration and a decrease in
urine volume, as well as acute complications such as fluid overload, electrolyte disorders, and acid-
base disorders (Ostermann et al., 2020). AKI is an independent predictor of mortality affecting
10–20% of hospitalized patients and more than 50% of critically hospitalized patients (Singbartl and
Kellum, 2012; Liu K. D. et al., 2020). Simultaneously, due to the lack of effective clinical treatment
strategies, the risk of patients with AKI developing chronic kidney disease and end-stage kidney
disease is on the rise. Worldwide, ~1.7 million individuals succumb to AKI every year, while its high
morbidity and mortality have a significant impact on socio-economic health (See et al., 2019; Zhu
et al., 2020).

The etiology of AKI is extraordinarily complex, but it is essentially related to irreversible damage
to the renal parenchyma (Rossaint and Zarbock, 2016). In the clinical setting, infection or sepsis,
ischemia and hypoxia, and drug nephrotoxicity are the main causes of subsequent damage to the
renal organs (Bejoy et al., 2022). Renal ischemia-reperfusion injury (IRI) is the leading cause of AKI
during the peri-operative period (Tang et al., 2019). The IRI-induced mismatch of nutrient and
oxygen supply–and–demand in renal tissue, as well as the accumulation of toxic products and pro-
inflammatory cytokines, can lead to tubular epithelial apoptosis, necrosis, and inflammation (Liu H.
et al., 2019; Han and Lee, 2019). Sepsis is a clinical syndrome with high morbidity and mortality that
can lead to host immune dysfunction and life-threatening organ dysfunction (Miao et al., 2020).
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Sepsis accounts for ~50% of total AKI cases and up to 60% of
patients with sepsis can develop AKI, significantly increasing
their mortality rate (Peerapornratana et al., 2019; Pinheiro et al.,
2019). In addition, the intrinsic nephrotoxicity of drugs as well as
their transport and metabolism through the kidney plays a vital
role in the development of acute tubular injury (Perazella, 2019).
Cisplatin is currently one of the most widely studied nephrotoxic
drugs, as AKI occurs in 20–40% of patients with malignant
tumors that have been treated with cisplatin (Hamroun et al.,
2019; Volarevic et al., 2019).

Pathologically, AKI is related to a variety of biological
processes and usually described as an injury to the renal
tubular epithelium and vascular system which manifests by
multiple forms of programmed cell death, a delayed
proliferation of renal resident cells, and an intense intrarenal
inflammatory response (Mehta et al., 2007; Thomas et al., 2015).
In addition to the injury-promoting mechanisms, some cellular
self-protection mechanisms such as autophagy are also present in
AKI (Kaushal and Shah, 2016). One of the most important
features of AKI is the excessive infiltration of inflammatory
cells and the massive production of inflammatory factors
leading to necrosis and apoptosis of renal tubular epithelial
cells (Lan et al., 2016). However, the mechanisms underlying
the development and regulation of the inflammatory response in
AKI are extremely complex and have not been fully elucidated.

Non-coding RNAs (ncRNAs) account for ~90% of non-
coding sequences transcribed in the human genome, and less
than 2% of transcribed coding genes translate into functional
proteins (Esteller, 2011). Nevertheless, between the steps of gene
expression and protein translation, abnormal expression of
ncRNAs influences the inflammatory response associated with
AKI. Existing studies have shown that ncRNAs may regulate
inflammation in AKI by inhibiting target gene translation and
inducing target gene messenger RNA (mRNA) degradation (Lv
et al., 2020). Therefore, elucidating the specific genetic signatures,
functional roles, and internal molecular regulatory mechanisms
of ncRNAs associated with the inflammatory response can
facilitate the discovery of potential therapeutic targets and
strategies for AKI.

Inflammation in Acute Kidney Injury
AKI is considered an inflammatory disease with systemic effects
(Kher and Kher, 2020). Inflammation is a complex biological
response critical for the elimination of microbial pathogens and
tissue repair after injury (Rosales, 2018). Therefore, an improved
understanding of the cellular and molecular mechanisms behind
the inflammatory response of AKI could unveil effective therapies
for its prevention or amelioration (Wang et al., 2020b). Over the
past decade, increasing research has elucidated the underlying
mechanism of AKI-related inflammation (Glass et al., 2010; Van
Opdenbosch and Lamkanfi, 2019). Excessive infiltration of
inflammatory cells, as well as a massive production of
inflammatory factors leading to necrosis and apoptosis of the
renal tubular epithelial cells, are among the main pathological
features of AKI (Sato et al., 2020). This excessive and
uncontrolled inflammatory response leads to irreversible tissue
damage (Li J. et al., 2021). During AKI, an intense inflammatory

response occurs in the kidneys potentially harming other tissues
and organs by releasing soluble mediators or reintroducing
activated leukocytes into the circulatory system (Godin et al.,
2015; Rabb et al., 2016). Thus, it is clear that the inflammatory
response involved in the pathogenesis of AKI not only affects
kidney function but may also lead to the development of systemic
damage. Based on the cellular and molecular mechanisms
associated with the pathophysiological processes of the
inflammatory response, the development of new therapies for
reducing the initial inflammatory kidney damage and enhancing
subsequent repair and regeneration is one of the most promising
avenues for the treatment of AKI (Figure 1).

Inflammatory Cells
The complex interaction between the renal parenchyma and
the circulatory system is closely related to the pathogenesis of
AKI (Sato and Yanagita, 2018; Giménez-Arnau et al., 2021).
The rapid infiltration of inflammatory cells from the
circulatory system into the renal parenchyma is one of the
main causes of renal inflammatory injury (Baek, 2019). During
the inflammatory response, the injured tubular epithelial cells
increase the permeability of the vascular endothelium by
releasing pro-inflammatory cytokines (Zhang D. et al.,
2020). This is followed by the recruitment of a large
number of circulatory immune effector cells such as
neutrophils, monocytes, and T cells to the injury site. The
recruitment of immune cells further triggers an inflammatory
cascade that aggravates the injury, creating a vicious cycle
(McWilliam et al., 2021).

External stimuli can directly activate pathogen-associated
molecular pattern (PAMP) recognition receptors of the
tubular epithelial cells and innate immune cells residing in
the kidney (Fani et al., 2018). The most common PAMP
receptors include toll-like receptors (TLRs), Nod-like
receptors (NLRs), and the receptor for advanced glycation
end product (RAGE) (Ozkok and Edelstein, 2014; Poston and
Koyner, 2019). Subsequently, these stimuli cause the
production of pro-inflammatory cytokines, chemokines, and
reactive oxygen species (ROS) by activating a series of
signaling events (Zhao M. et al., 2021). In turn, this leads to
cellular necrosis and tissue damage. In ischemic AKI, the
aseptic inflammatory response associated with damage-
associated molecular patterns (DAMPs) is considered one of
the first pathological processes (Hepokoski et al., 2021; Liu
et al., 2021). Renal tubular cell necrosis releases intracellular
molecules such as high mobility group box 1 (HMGB1),
histones, heat kinin, and fibronectin into the extracellular
space and activates recognition receptors on either tissue-
resident cells or recruited leukocytes via the DAMPs (Wang
et al., 2020c; Gao et al., 2021). Cell necrosis then leads to a
massive secretion of pro-inflammatory cytokines and
chemokines, further aggravating the inflammatory cascade
response.

At different stages of AKI injury, quiescent macrophages
undergo phenotypic polarization influenced by the
microenvironment to differentiate into two functional states
with specific roles (Kormann et al., 2020). In the early stages
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of AKI, during the acute inflammatory response, M1
macrophages predominate, releasing pro-inflammatory
mediators that cause damage to the proximal tubules in the
renal cortical layer (Kusmartsev, 2021). As the disease
progresses, macrophages change from pro-inflammatory M1 to
anti-inflammatory M2 macrophages. M2 macrophages then
release inflammatory factors related to tissue repair, such as
transforming growth factor-β (TGF-β), involved in aggregating
and phagocytosing apoptotic cells (He et al., 2017). It can be said
that M1 macrophages are the “culprits” of tubular epithelial cell
apoptosis and tubular injury, while M2macrophages can alleviate
tubular necrosis and initiate the repair process. Notably, however,
macrophages can also promote renal fibrosis, which is a major
driver of progression to end-stage AKI. For instance, recent
studies suggest that the role of M2 macrophages in chronic
kidney disease may be the opposite of that in AKI, and
targeting signal transducer and activator of transcription 6
(STAT6) can inhibit the polarization of M2 macrophages,
thereby protecting renal function (Jiao et al., 2021a; Jiao et al.,
2021b). Elucidating the exact role and timing of M2 activation is
thus imperative to stunt the progression of AKI.

Inflammatory Cytokines
Chemokines and their receptors are crucial in the inflammatory
response and can promote acute neutrophil- and
monocyte–macrophage-dependent inflammatory responses,
which are closely associated with the inflammatory damage in
AKI (Holdsworth and Gan, 2015; Xu et al., 2015). Early into the
immune response of AKI, renal parenchymal cells and dendritic
cells are activated by the DAMPs(Prasada et al., 2020). This leads
to the infiltration of immune cells, such as neutrophils,
monocytes, and lymphocytes, to the injury site that secretes
CCL and CXCL chemokines CCL10, CCL2, CCL5, CXCL1,
and CXCL8 (Kurts et al., 2013). The balance between pro-
inflammatory mediators such as tumor necrosis factor-α
(TNF-α), interferon-γ (IFN-γ), interleukin-1β (IL-1β), IL-6,
IL-17, IL-23, complement 3 (C3), C5a, C5b, and anti-
inflammatory mediators such as IL-4, IL-10, TGF-β, and heme
oxygenase-1 (HO-1) are important determinants mediating both
early injury and later repair (Rabb et al., 2016; Chen et al., 2018;
Deng B. et al., 2021). Therefore, effective inhibition of the
production and secretion of pro-inflammatory factors in the
early stages of AKI may be crucial to preventing its progression.

FIGURE 1 | The most common causes of AKI include sepsis, ischemia-reperfusion, and nephrotoxic drug injury. It is involved in a variety of pathophysiological
processes, of which inflammatory response is one of the most important pathological features. When AKI occurs, the damaged renal tubular epithelial cells increase the
permeability of vascular endothelial cells by releasing pro-inflammatory cytokines, whereas activated renal tubular epithelial cells and dendritic cells secrete chemokines
such as CCL10 and CXCL1, followed by a large number of immune effector cells into circulation. These include neutrophils, monocytes, and T cells, which are
recruited to the site of injury. The resident and recruited immune cells simultaneously secrete pro-inflammatory mediators such as TNF-α, IFN-γ, IL-6, and IL-1β, and the
induced inflammatory cascade further aggravates the damage of renal tubular epithelial cells.Many signal transduction pathways are involved in the regulation of
inflammation-related genes at the transcription level. The most important is the NF-κB pathway. NcRNAs play an important role in regulating the inflammatory response
of AKI, and regulate the acute inflammatory response in the kidneys via a variety of targets as enhancers or inhibitors.
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Monocytes recruited from peripheral blood can differentiate
into tissue-specific macrophages (Pidwill et al., 2020), which can
be classified into two polarized types according to phenotype and
secreted cytokines, i.e., classically activated M1 type and
selectively-activated M2 type. The M1 type macrophages
secrete inducible nitric oxide synthase (iNOS), IL-1β, IL-6, IL-
12, and other chemokines in response to factors such as IFN-γ
and TNF-α, causing inflammatory damage to healthy tissues (Hu
Q. et al., 2021). Macrophages are polarized towards the M2
phenotype by IL-4, IL-10, IL-13, and TGF-β. In contrast, the
M2 macrophages exert anti-inflammatory effects, promoting
wound repair and fibrous degeneration in the later stages of
the inflammatory response (Venkatachalam et al., 2015).

The balance between pro- and anti-inflammatory mediators
affects the tissue repair process after acute inflammatory injury,
whereas an imbalanced inflammatory response can impede
normal tissue repair as well as lead to abnormal remodeling
and dysfunction. Ideally, the balance between pro- and anti-
inflammatory mediators ensures the later repair of the renal tissue
(Song et al., 2021). However, in many cases, sustained secretion of
the inflammation-associated fibrotic cytokines TGF-β and IL-13
trigger epithelial-mesenchymal transition (Wang et al., 2019; Hu
J. et al., 2021). In this abnormal repair process, renal tubular
epithelial cells dedifferentiate into fibroblasts, and large amounts
of extracellular matrix proteins are secreted, leading to renal
fibrosis and the development of chronic renal insufficiency (Sato
and Yanagita, 2018).

Inflammation-Related Signaling Pathways
As a result of the potentially devastating nature of uncontrolled
inflammatory responses, the expression of inflammation-
associated genes is tightly regulated at several different levels
(Zhao et al., 2018). Regulation at the transcriptional level is the
most prominent way to influence the expression of
inflammation-associated genes. The most prominent signaling
pathways involved at this level include the nuclear factor kappa-B
(NF-κB), mitogen-activated protein kinase (MAPK), and STAT
pathways. Activation of these pathways induces nuclear
translocation of transcription regulatory factors, promoting the
transcription and translation of inflammation-associated genes
(Linkermann et al., 2014; Wilflingseder et al., 2020; Zhao H. et al.,
2021). However, the exact regulatory mechanisms, such as how
these factors precisely and timely control the transcription of a
single inflammatory gene in the nucleus, remain unknown.

NF-κB Signal Transduction Pathway
NF-κB is a critical nuclear transcription factor that regulates the
inflammatory response and expression of various inflammation-
related genes, including inflammatory cytokines, chemokines,
and adhesion factors (Lawrence, 2009; Oeckinghaus et al.,
2011). NF-κB is closely associated with cell differentiation,
proliferation, and survival to plays an important role in
inflammatory injury, apoptosis, and tissue regeneration in AKI
(Markó et al., 2016). The NF-κB family consists of five related
protein members, including p50, p52, RelA (p65), RelB, and
c-Rel—which are mainly regulated by IκB and IκB kinase (IΚΚ)
(Andrade-Oliveira et al., 2019). The inactive NF-κB dimer is

inactivated by association with IκB protein. When cells are
stimulated by various factors such as lipopolysaccharide (LPS),
ROS, and the cytokines TNF-α and IL-1β, IκB is phosphorylated
and rapidly degraded. This allows the free NF-κB dimer to
phosphorylate and translocate to the nucleus, thus promoting
the transcription of inflammation-related genes (Lawrence,
2009). Taken together, the induction of NF-κB recruitment
into the nucleus and subsequent transcriptional events are
precisely regulated to ensure the “right” role of target genes.

Notably, TNF-α and IL-1β both form a positive feedback loop
by activating the NF-κB signaling pathway. The TNF receptor
(TNFR) and IL-1 receptor (IL-1R) mediate the activation of the
NF-κB pathway, leading to the transcription of downstream
inflammatory cytokines (Verstrepen et al., 2008). Both of these
signaling pathways are essential components of the inflammatory
cascade in response to AKI.

TLR/NF-κB Signaling Pathway
The detrimental effects of AKI cause upregulation of cytokine and
chemokine expression through TLR activation on the plasma
membrane of renal tubular epithelial cells. In turn, activation of
these cells recruits inflammatory macrophages and natural killer
cells to the site of damage, further amplifying the inflammatory
response and leading to apoptosis of renal tubular epithelial cells
(Zhang et al., 2019). The best-characterized receptor in this
process is TLR4. Its activation recruits myeloid differentiation
factor 88 (MyD88), IL-1R-associated kinase (IRAK), TNFR-
associated 6 (TRAF6), and TGF-beta-activated kinase 1
(TAK1) to form a functional complex for activation of the
NF-κB signaling pathway (Habib, 2021; Zhang et al., 2021).
Interaction between IRAK and TRAF6 activates TAK1 which
triggers proteasomal degradation by phosphorylating IκB kinase,
thus releasing the NF-κB dimers translocated into the nucleus to
mediate the transcription and expression of inflammatory
cytokines (Verstrepen et al., 2008).

SIRT1/NF-κB Signaling Pathway
Silent information regulator transcript 1 (SIRT1; or Sirtuin1) is a
histone deacetylase with various biological functions (Jiao and
Gong, 2020). It has been shown that renal tubular epithelial cells
overexpressing SIRT1 indirectly inhibit inflammatory cytokine
expression by decreasing NF-κB activity, thus ameliorating the
cisplatin-induced inflammatory response and apoptosis (Han
et al., 2021). Mechanistically, SIRT1 inhibits NF-κB activation
by deacetylating the Lys310 residue on the RelA/p65 subunit or
by reducing the activity of the acetyltransferase P300/CBP (Yeung
et al., 2004).

Other Signaling Pathways in Inflammation
Various other signaling pathways also play a prominent role in
inflammation regulation during AKI. Adenosine 5′-
monophosphate (AMP)-dependent protein kinase (AMPK),
the master metabolic regulator (energy sensor) in eukaryotic
cells (Carling, 2017), has been shown to play an anti-
inflammatory role via inhibition of NF-κB activity in LPS-
induced renal tubular epithelial cells (Yeung et al., 2004).
MAPK, also known as p38, is a crucial integrator of multiple
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signaling pathways that induce IκB phosphorylation and thus
degradation, which in turn activates NF-κB to participate in the
inflammatory process during AKI (Wang H. et al., 2021).

Inflammatory vesicles are the primary signaling receivers of
the classical pathway of cell pyroptosis and are composed of
NOD-like receptor protein 3 (NLRP3), apoptosis-associated
speck-like protein containing a CARD (ASC), and caspase-1
precursor (Kim et al., 2019). The two main functions of
activated caspase-1 are to shear gasdermin D (GSDMD) for
cleaving it into a peptide containing the active N-terminal
domain to induce cell perforation and death, and to cleave the
precursors of IL-1β and IL-18 to induce their activation (Xiao
et al., 2020; Deng J. et al., 2021). Thus, a close relationship exists
between cell pyroptosis and the inflammatory response.

Non-Coding RNA Characteristics and
Mechanisms of Action
Less than 2% of the human genome is transcribed into mRNA
with protein-encoding functions (Lin F. et al., 2022). For the rest
of the human genome, more than 80% is transcribed into RNA
without protein-encoding potential (Li T. et al., 2021). Such
functional genomic transcripts are called ncRNAs. NcRNAs
mainly include microRNA (miRNA), long non-coding RNA
(lncRNA), circular RNA (circRNA), small nucleolar RNA
(snoRNA), P-element-inducedwimpy testis (PIWI)-associated
RNAs (piRNAs) and transfer RNA (tRNA) (Liu Z. et al.,
2019). The classification of ncRNAs is summarized in
Figure 2. The different ncRNAs act through specific
mechanisms: miRNAs exert effects mainly by forming an
RNA-induced silencing complex (RISC) to inhibit the
translation of target mRNA and reduce its stability; lncRNAs
participate in RNA transcription and post-transcriptional
regulation through a variety of different mechanisms and
interactions; and circRNAs act as either a sponge for RNA or

a scaffold for transcription factors to regulate gene expression
(Cech and Steitz, 2014; Ren et al., 2019).

MiRNAs
Most miRNAs are generated via the classical pathway. In this
pathway, primary miRNAs (pri-miRNAs) transcribed fromDNA
sequences are cleaved into precursor miRNAs (pre-miRNAs) at
their stem-loop structure by the RNase III enzyme, drosha (Lu
and Rothenberg, 2018). This cleavage is followed by the
translocation of pre-miRNAs from the nucleus to the
cytoplasm, where they are further cleaved by the RNase III
enzyme, dicer, to produce single-stranded mature miRNAs
(Saliminejad et al., 2019). Mature miRNAs are endogenous
non-coding single-stranded small RNA molecules (20–25
nucleotides long). MiRNAs are named based on their
directionality, with the 5p strand coming from the 5′ end of
the pre-miRNA hairpin and the 3p strand from the 3′ end (Jiang
and Zhu, 2020). MiRNAs target the 3′-untranslated region (3′-
UTR) of mRNAs by forming the RISC 3′-UTR, repressing its
expression, and participating in post-transcriptional gene
regulation (Kim et al., 2012).

LncRNAs
LncRNAs are ncRNAs (>200 nucleotides) that lack the complete
open reading frame, thus lacking protein-coding potential (Lodde
et al., 2020). They play an important role in gene transcription
and post-transcriptional regulation. LncRNAs also regulate a
wide range of biological processes such as cell differentiation,
apoptosis, and inflammatory responses (Zhu et al., 2013).
LncRNAs have been linked to the occurrence and
development of many human diseases, and are regarded as
potential new biomarkers to diagnose and predict the
prognosis of diseases (Qian et al., 2019). Similar to protein-
encoding mRNAs, transcription and modification of lncRNAs
are usually performed by RNA polymerase II in the

FIGURE 2 | Less than 2% of the human genome is transcribed into mRNA with protein-encoding functions. For the rest of the human genome, more than 80% is
transcribed into RNA without protein-encoding potential. Such functional genomic transcripts are called ncRNA. NcRNAs mainly include microRNA (miRNA), long non-
coding RNA (lncRNA), circular RNA (circRNA), small nucleolar RNA (snoRNA), PIWI-associated RNAs (piRNAs) and transfer RNA (tRNA).
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nucleus—hence, the presence of the 5′ cap structure and 3′ poly-
A tail in their secondary structure (Yang M. et al., 2022).
LncRNAs exert their biological function mainly through base
pairing in the primary structure, but the functional regions such
as the stem-loop structural domain in the secondary structure are
key to expanding their function. Currently, the recognition of
lncRNA homologs among different species remains challenging
compared with the recognition of protein-encoded transcripts
(Diederichs, 2014; Chen, 2016; Schmitz et al., 2016; Kopp and
Mendell, 2018). In addition, expression patterns of lncRNAs
show a high degree of tissue and cell specificity compared to
the gene that encodes the protein (Zhou et al., 2021b).

LncRNAs play a central role in epigenetic processes and
chromatin regulation. LncRNAs can interact with DNA, other
RNAs, and proteins through nucleotide base pairing or a
domain generated by RNA folding, which endows lncRNAs
with extensive ability to regulate gene transcription and
perform biological functions (Ali and Grote, 2020).
Specifically, lncRNAs mainly interact with the
corresponding effector proteins through the following five
mechanisms to regulate gene expression: 1) lncRNAs are
specifically expressed in certain cells and tissues, where they
are signaled in response to unique stimuli to serve as an
indicator of transcriptional activity; 2) lncRNAs can act as
competitive binding sites for open chromatin, leading to
transcription factor substitution or miRNA segregation,
thereby derepressing target mRNAs; 3) lncRNAs guide the
ribosome-protein complex to a sequence-specific binding site
by binding to a target effector protein, thus mediating the
transcription of specific genes; 4) lncRNAs have a “scaffold”
function, aggregating multiple subunits of effector proteins or
complexes through specific domains to coordinate their
activities and mediate transcriptional activation or
inhibition, and 5) lncRNAs can affect mRNA stability and
modify chromatin structure in a similar mechanism as for
miRNAs (Ferrè et al., 2016; Qian et al., 2019; Zhou et al., 2020;
Bridges et al., 2021). The above mechanisms are not mutually
exclusive; hence, many lncRNAs can function through
multiple mechanisms simultaneously.

CircRNAs
CircRNAs are a type of endogenous ncRNA that possess the
structural characteristics of a covalently closed continuous loop
(Patop et al., 2019). This loop is formed by the cis-element formed
by the reverse complementary pairing sequence of the intron or
by the regulation of the trans-factor consisting of RNA-binding
protein (RBP) during splicing (Chen X.-T. et al., 2021). Unlike
linear RNA with a 5′ cap and a 3′ ploy-A tail, the circRNA
molecule has a closed-loop structure, not affected by RNA
exonuclease (Chen et al., 2019). Therefore, circRNA expression
is more stable and its structure not easily degraded, resulting in a
highly stable cyclized sequence in intra- and extracellular
environments (Yu et al., 2021). CircRNAs are widely expressed
in eukaryotic tissues and organs, regulating various physiological
and pathological processes in the human body (Chen L. et al.,
2021). Furthermore, as a type of miRNA and lncRNA, circRNAs
can also be delivered by exosomes and are readily detectable in

circulation and urine, making circRNAs a potential biomarker for
many diseases (Yu et al., 2021).

The function of most circRNAs remains largely elusive, but its
most apparent mechanism of action is acting as a “sponge” of
miRNAs to regulate gene transcription and expression (Zang
et al., 2020). CircRNA molecules are enriched with miRNA
binding sites, which can derepress miRNAs in the cytoplasm
by competitive binding to target mRNAs(Jin et al., 2020).
However, at the transcript level, the circRNAs in the nucleus
mainly function through interaction with the parental genes
(Kristensen et al., 2019).

Non-coding RNAs and Inflammation in
Acute Kidney Injury
There is growing evidence that ncRNAs play an important role in
AKI. However, the specific mechanisms by which ncRNAs
regulate the expression of inflammation-related genes in AKI
have not been fully elucidated. Clarifying the functional roles of
ncRNAs and their intrinsic molecular mechanisms in regulating
inflammatory responses will provide potential research strategies
for developing targeted ncRNA gene therapies as an intervention
for the inflammation-induced damage during AKI (Figure 3).

Role of miRNAs in Inflammatory Response
of Acute Kidney Injury
The most widely studied type of ncRNAs in AKI is the miRNAs.
Many studies have shown that miRNAs play an essential role in
kidney-related physiological and pathological processes by
regulating the expression of post-transcriptional genes
(Petejova et al., 2020). The results of large-scale high-
throughput sequencing from patients and animals
demonstrated that the miRNA expression profiles were
dramatically changed in different types of AKI (Kumar et al.,
2014; Kirita et al., 2019). The interaction network andmechanism
between miRNAs and mRNAs, as well as their functions and
effects on AKI inflammatory injury, are summarized in Table 1.

MiRNAs Regulate the NF-κB Signaling
Pathway
NF-κB plays a vital role in the expression of inflammation-related
genes and is the central transcriptional regulator of the
inflammatory response in AKI. Various miRNAs have been
implicated in regulating the inflammatory response in AKI via
NF-κB signaling. Yang et al. found that miRNA-125a-5p
indirectly inhibited the TLR4/NF-κB signal transduction by
targeting TRAF6, thus inhibiting the expression of pro-
inflammatory cytokines and reducing LPS-induced kidney
injury (Yang C. et al., 2022). Huang et al. found that up-
regulation of miRNA-129-5p could reduce LPS-induced AKI
by targeting HMGB1 to inhibit the TLR/NF-κB signaling
pathway (Huang et al., 2020). Zhang et al. found that miRNA-
20a could inactivate the NF-κB signaling pathway by targeting
CXCL12, thereby inhibiting LPS-induced HK-2 cell injury
(Zhang L. et al., 2020). Jiang et al. unveiled the therapeutic
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potential of miRNA-500a-3p in cisplatin-induced AKI, which
could inhibit NF-κB-driven necrotic inflammation of renal
epithelial cells (Jiang et al., 2019). A study showed that up-
regulation of miRNA-181d-5p could ameliorate renal
inflammatory injury by indirectly inhibiting NF-κB activity
(Zhang Y. et al., 2020). Furthermore, continuous activation of
NF-κB can promote the maturation of dendritic cells (O’Neill
et al., 2013). In this regard, miRNA-21 plays a role in regulating
inflammation by indirectly inhibiting NF-κB activity to prevent
dendritic cell maturation and reduce IRI-induced kidney injury
(Song et al., 2018).

In addition to playing an anti-inflammatory role, other
miRNAs can also participate in the inflammatory response of
AKI by activating the NF-κB signaling pathway. Lin et al. found
that miRNA-486-5p can promote the cisplatin-induced acute

inflammation response of renal tubular epithelial cells by directly
targeting HAT1 via the TLR4/NF-κB pathway (Lin F. Y. et al.,
2022). A study found that miRNA-494-3p could participate in the
inflammatory response of tubular epithelial cells induced by
hypoxia-reoxygenation via indirect activation of the NF-κB
signaling pathway (Gong et al., 2021). Han et al. found that
miRNA-132-3p indirectly activated the NF-κB pathway by
negatively regulating SIRT1, thereby aggravating cisplatin-
induced inflammatory response and apoptosis in renal tubular
epithelial cells (Han et al., 2021). Guo et al. found that miRNA-
214-5p could indirectly activate the NF-κB pathway by inhibiting
AMPK, which aggravated the inflammatory damage in sepsis-
induced AKI (Guo et al., 2021). In addition, different transcripts
from the same miRNA source may have significantly different
functions. For example, in AKI, miRNA-34b can regulate acute

FIGURE 3 |When cells are exposed to a variety of stimuli (inflammatory factors, bacterial infection, oxidative stress, etc.,). IκB flows through the degradation of the
IKK phosphorylated proteasome, leading to abnormal NF-κB activation and nuclear translocation, thus promoting the transcription and translation of inflammation-
related genes. The acute inflammatory cytokines TNF-α and IL-1β induce the activation of the NF-κB signaling pathway by activating the membrane receptors TNFR-1
and IL-1R, respectively. Activation of TLR4, a receptor on the renal tubular epithelial cell membrane, can form a complex of related factors to activate the NF-κB
signal transduction pathway. SIRT1 reduces NF-κB activity and indirectly inhibits the expression of downstream inflammatory cytokines. Inflammasomes located in the
cytoplasm can activate caspase-1 to release pro-inflammatory factors such as IL-1β and IL-18, and finally produce an inflammatory response. The current research
suggests that ncRNAs play an important role in regulating the inflammatory response of AKI, and they are involved in regulating the NF-KB pathway and cell pyroptosis at
the transcription level, thus regulating the inflammatory response. In the inflammatory response of AKI, ncRNAs usually work in the following ways: 1) miRNA directly
targets the 3′-untranslated region (3′-UTR) of the target mRNA to inhibit transcription; 2) lncRNAs and circRNAs, commonly bind directly to miRNAs through competitive
endogenous RNAs (ceRNAs) that promote up-regulation of target mRNA levels.
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inflammation and apoptosis in sepsis by indirectly affecting the
NF-κB signaling pathway; however, these effects can be both
protective or damaging, respectively, dependent on whether its
3p- or 5p-chain structures are activated (He S. Y. et al., 2020;
Zheng et al., 2021).

The nuclear transcription factor NF-κB can also regulate the
inflammatory response in AKI by affecting the transcription of
miRNAs. Liu et al. found that activation of NF-κB in AKI with
sepsis could inhibit miRNA-376b transcription, indirectly
relieving the targeted inhibition of NFKBIZ (a member of the
IκB family of NF-κB inhibitory proteins) (Liu Z. et al., 2020).
Unlike the classical IκB family, NFKBIZ inhibits the binding of
miRNA-376b to DNA by binding to NF-κB through the carboxy-
terminal anchored protein repeat domain, thereby reducing
mRNA transcriptional activity (Göransson et al., 2009).

Exosomal miRNAs Regulate Inflammatory
Response
Exosomes are vesicles of 30–120 nm in size released into the
extracellular space by the fusion of multivesicular bodies with the
cell membrane (Kalluri and LeBleu, 2020). Their primary
function is to transport substances or information, such as
bioactive cytokines, ncRNAs, and membrane receptors
between cells (Pegtel and Gould, 2019) to regulate the
functional state of target cells (Cao J. et al., 2020). Targeting
tubular epithelial cells with protective exosomal miRNAs is a
potential therapeutic strategy for AKI (Cao et al., 2021). Chen
et al. found that miRNA-93-5p in M2 macrophage-derived
exosomes can indirectly alleviate LPS-induced tubular
epithelial cell pyroptosis by inhibiting the NLRP3/IL-1β axis
(Juan et al., 2021). He et al. found that exosomes containing
miRNA-93-5p secreted by endothelial progenitor cells can
alleviate sepsis-induced AKI by indirectly inhibiting the
expression of TNF-α (He Z. et al., 2020). Zhang et al. found
that human umbilical cord mesenchymal stem cell-derived
exosome treatment indirectly caused the inhibition of NF-κB

activity by up-regulating the level of miRNA-146b in renal
tubular epithelial cells, thereby alleviating sepsis-induced AKI
(Zhang R. et al., 2020).

Role of lncRNAs in Inflammatory Response
of Acute Kidney Injury
The abnormal expression of lncRNAs in AKI during
inflammation is closely related to the inhibition or activation
of inflammatory-related genes and signaling pathways.
Enhancing or inhibiting gene transcription by interacting with
transcription factors is the primary way lncRNAs participate in
regulating inflammatory responses (Simion et al., 2020).
Cytoplasmic-localized lncRNAs promote the upregulation of
target mRNA levels by acting as competitive endogenous
RNAs (ceRNAs) that bind directly to the miRNAs. However,
it should be noted that nuclear lncRNAs can also regulate the
biogenesis, distribution, and degradation of miRNAs at the
transcriptional level to affect their function (Cheng et al.,
2019; Ignarski et al., 2019). The roles and mechanism of
lncRNAs as ceRNAs in AKI-related inflammatory responses
are summarized in Table 2.

Interaction Between the lncRNA/miRNA
Axis and NF-κB Signaling Pathway
Nuclear transcription regulation is an essential function of
lncRNAs, and its influence on the NF-κB pathway is most
important. LncRNAs can affect the expression of
inflammatory factors by acting on the activation of NF-κB
and related signaling pathways. A study on the up-regulation
of SNHG14 in LPS-induced AKI indicated that the SNHG14/
miRNA-495-3p axis promoted the expression of inflammatory
cytokines by activating NF-κB signaling (Yang N. et al., 2021).
The activated membrane receptor IL-1R mediates the

TABLE 1 | Role of miRNAs in inflammatory response of AKI.

MiRNA AKI model Signaling pathways Level

Anti-inflammation
miRNA-125a-5p Sepsis TRAF6/NF-κB ↓
miRNA-129-5p Sepsis HMGB1/TLR2,4/NF-κB ↓
miRNA-20a Sepsis CXCL12/CXCR4/NF-κB ↓
miRNA-34b-3p Sepsis UBL4A/NF-κB ↓
miRNA-146b Sepsis IRAK1/NF-κB ↓
miRNA-93-5p Sepsis TXNIP/NLRP3 -

Sepsis KDM6B/H3K27me3/TNF-α ↓
miRNA-181d-5p IRI KLF6/NF-κB ↓
miRNA-21 IRI PDCD4/NF-κB ↑
miRNA-500a-3p Cisplatin NF-κB ↓
Proinflammation
miRNA-214-5p Sepsis GLP-1R/AMPK/NF-κB ↑
miRNA-376b Sepsis NF-κB/NFKBIZ ↓
miRNA-34b-5p Sepsis AQP2 ↑
miRNA-494-3p IRI HTRA3/NF-κB ↑
miRNA-132-3p Cisplatin SIRT1/NF-κB ↑
miRNA-486-5p Cisplatin TLR4/NF-κB ↑

TABLE 2 | Role of lncRNAs in inflammatory response of AKI.

LncRNA AKI model Signaling Pathways Level

Anti-inflammation
CCAT1 Sepsis miRNA-155/SIRT1/NF-κB ↓
HOXA-AS2 Sepsis miRNA-106b-5p/SIRT1/NF-κB ↓
XIST Sepsis miRNA-155-5p/WWC1 ↓
CASC9 Sepsis miRNA-424-5p/TXNIP ↓
Proinflammation
SNHG14 Sepsis miRNA-93/IRAK4/NF-κB ↑

Sepsis miRNA-495-3p/HIPK1 ↑
IRI miRNA-124-3p/MMP2

KCNQ1OT1 Sepsis miRNA-212-3p/MAPK1/NF-κB ↑
IRI miRNA-204-5p/NLRP3 ↑

DLX6-AS1 Sepsis miRNA-223-3p/NLRP3 ↑
MEG3 Sepsis miRNA-18a-3p/GSDMD ↑
PVT1 Sepsis miRNA-20a-5p/NLRP3 ↑
SNHG5 Sepsis miRNA-374a-3p/TLR4/NF-κB ↑
NEAT1 Sepsis miRNA-22-3p/NF-κB ↑

Sepsis miRNA-93-5p/TXNIP ↑
MALAT1 Sepsis miRNA-135b-5p/NLRP3 ↑
NORAD Sepsis miRNA-577/GOLPH3 ↑
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activation of the NF-κB pathway through IRAK4, leading to
the transcription of downstream inflammatory cytokines
(Verstrepen et al., 2008). IL-6R can activate the nuclear
transcription factor STAT3 and nuclear translocation, thus
promoting the expression of the corresponding effector genes
(Nechemia-Arbely et al., 2008). It has been found that
SNHG14 promotes LPS-induced inflammatory injury in
renal tubular epithelial cells by targeting miRNA-93 to
regulate the IRAK4/NF-κB and IL-6R/STAT3 signaling
pathways (Shi et al., 2021). KCNQ1OT1 can indirectly
activate the MAPK1/NF-κB signaling pathway by
competitively binding miRNA-212-3p, thus aggravating
sepsis-induced AKI (Wang H. et al., 2021). Down-
regulating lncRNA involved in the activation of NF-κB
could reduce the inflammatory damage of AKI. Wang et al.
found that down-regulation of SNHG5 reduced sepsis-induced
AKI via inhibition of the TLR4/NF-κB signaling pathway by
targeting miRNA-374a-3p (Wang M. et al., 2021). Feng et al.
found that knock-down of NEAT1 alleviated sepsis-induced
AKI by enhancing the inhibition of NF-κB via miRNA-22-3p
(Feng et al., 2020).

Some lncRNAs, such as CCAT1 and HOXA-AS2, have
protective effects, as they can reduce the inflammatory
response in AKI by inhibiting the NF-κB signaling pathway.
A study in LPS-induced AKI showed that up-regulation of
CCAT1 could restore the inhibitory effect of SIRT1 on NF-κB
by targeting miRNA-155. This, in turn, reduced the LPS-
induced inflammatory response and apoptosis of renal
tubular epithelial cells (Lu et al., 2020). Another study
showed that HOXA-AS2 has a protective effect in sepsis-
induced AKI, as it reduces the inflammatory damage of
tubular epithelial cells by targeting the inhibition of
miRNA-106b-5p and blocking the activation of the NF-κB
pathway (Wu et al., 2020). Nevertheless, the function of some
lncRNAs in AKI is controversial. For instance, one study
indicated that CRNDE protects renal tubular epithelial cells
from sepsis-induced inflammatory injury by targeting
miRNA-181a-5 (Wang J. et al., 2020). In contrast, another
study showed that knock-down of CRNDE can alleviate sepsis-
induced tubular epithelial cell injury in AKI by inhibiting the
TLR3/NF-κB pathway (Sun et al., 2019).

LncRNA/miRNA Axis Regulates Cellular
Pyroptosis and Inflammatory Responses
When cell pyroptosis occurs, inflammation can be caused by the
release of pro-inflammatory cytokines IL-1β and IL-18. The
active N-terminal of GSDMD is the “molecular switch”
needed to open the cell membrane pores and release
inflammatory factors in the classical cell pyroptosis pathway
(Kim et al., 2019). LncRNAs such as MEG3, DLX6-AS1,
PVT1, KCNQ1OT1, and MALAT1 are related to cell
pyroptosis and its mediated inflammatory response. Up-
regulation of MEG3 promotes the tubular epithelial cell
pyroptosis and inflammatory response in LPS-induced AKI by
relieving the inhibitory effect of miRNA-18a-3p on GSDMD
(Deng J. et al., 2021). Inhibiting the pyroptosis-inducing

lncRNAs can also help to alleviate the inflammatory injury in
AKI. Tan et al. found that knock-down of lncRNA DLX6-AS1
inhibits pyroptosis and inflammatory responses in HK-2 cells in
LPS-induced AKI by restoring the inhibitory effect of miRNA-
223-3p onNLRP3 (Tan et al., 2020). Deng et al. found that knock-
down of lncRNA PVT1 inhibits LPS-induced cell pyroptosis and
inflammatory response by targeting the miRNA-20a-5p/NLRP3
signaling pathway (Deng L.-T. et al., 2021). Wang et al. found that
silencing KCNQ1OT1, a ceRNA that promotes inflammatory
injury in AKI, could indirectly inhibit NLRP3 inflammasomes
through targeted activation of miRNA-204-5p to ameliorate IRI-
induced inflammatory injury in renal tubular epithelial cells
(Wang J. et al., 2021). Huang et al. found in LPS-induced
renal tubular epithelial cells that knock-down of MALAT1, an
inflammatory response regulator and biomarker for patients with
sepsis (Ma T. et al., 2021), indirectly inhibited NLRP3-mediated
pyroptosis and inflammatory response by releasing miRNA-
135b-5p (Huang and Xu, 2021).

Other lncRNA-miRNA Regulatory Axes
he ceRNA network consisting of lncRNAs, miRNAs, and
mRNAs, is involved in the pathogenesis of AKI by altering the
expression pattern of inflammation-related genes (Braga et al.,
2020). For instance, the lncRNA NEAT1 is a novel inflammatory
regulator that can regulate TXNIP expression acting as a sponge
for miRNA-93-5p, thus promoting LPS-induced inflammatory
injury in renal tubular epithelial cells (Yang J. et al., 2021).
Inhibition of lncRNAs with pro-inflammatory properties can
attenuate renal inflammatory injury in AKI. Furthermore, a
study on the upregulation of SNHG14 in ischemic-hypoxic
AKI showed that knock-down of SNHG14 ameliorated
inflammatory injury in renal tubular epithelial cells by
targeting miRNA-124-3p/MMP2(Xue et al., 2021). In addition
to exerting pro-inflammatory effects, the lncRNA-miRNA axis
can also suppress the acute renal inflammatory response. Wang
et al. found that XIST acts as a ceRNA for miRNA-155-5p to
suppress inflammation and apoptosis, thereby attenuating sepsis-
induced AKI(Wang and Cao, 2022). Furthermore, Fan et al.
found that the CASC9 could attenuate LPS-induced acute
renal inflammatory injury via the miRNA-424-5p/TXNIP axis
(Fan et al., 2021). The latest research showed that NORAD
knockdown alleviated kidney injury in mice and decreased the
inflammatory response and apoptosis of LPS-stimulated HK-2
cells via the miRNA-577/GOLPH3 axis (Xie et al., 2022).

Role of circRNAs in the Inflammatory
Response of Acute Kidney Injury
Based on high-throughput sequencing technology and
bioinformatics analyses, many studies have revealed
differential expression profiles of circRNAs in AKI (Li et al.,
2019). Similar to lncRNAs, circRNAs mainly participate in
regulating the inflammatory response of AKI by forming a
circRNA-miRNA-mRNA action network (Jin et al., 2020).
Some circRNAs have been shown to inhibit or promote the
inflammatory response in AKI by targeted inhibition of
miRNAs (Table 3).
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Promoting Inflammatory Response
A study found that the circRNA BNIP3L can promote LPS-
induced apoptosis and the inflammatory response by the
miRNA-370-3p/MyD88 axis in HK-2 cells (Zhou et al., 2021a).
Another study showed that the circRNA TLK1 indirectly enhances
HMGB1 expression by sponging miRNA-106a-5p, thus
aggravating the sepsis-induced inflammatory response in renal
tubular epithelial cells (Xu H.-P. et al., 2021). A study on the up-
regulation of circ_0114427 in sepsis in AKI showed that it
promoted the apoptosis of renal tubular epithelial cells and
inflammatory response by targeting miRNA-495-3p to activate
the TRAF6/NF-κB signaling pathway (Xu et al., 2022).
Additionally, it has been shown that circRNA HIPK3 aggravates
LPS-induced inflammation via the miRNA-338/FOXA1 axis (Lu
et al., 2022). CircRNA can also play a pro-inflammatory role in
non-infectious AKI. A study has shown that circ_0023404 can
participate in hypoxia-reoxygenation-induced inflammatory injury
in HK-2 cells by spongingmiRNA-136 and activating IL-6R (Xu Y.
et al., 2021). The latest study suggested that circ_0000943 regulated
the expression of EGR2 by sponging miRNA-377-3p to aggravate
inflammation in renal IRI (Huang et al., 2022).

Inhibition of Inflammatory Response
Two different studies have shown that the circRNA VMA21 can
simultaneously serve as a sponge for miRNA-9-3p and miRNA-7-5p.
Furthermore, up-regulation of circRNA VMA21 can alleviate sepsis-
related AKI by inhibiting the expression of these two miRNAs (Shi
et al., 2020;Wang et al., 2022). Another study on the down-regulation
of circRNA TTC3 in sepsis-related AKI showed that up-regulation of
circRNA TTC3 can alleviate the sepsis-induced inflammatory
response in renal tubular epithelial cells by targeted inhibition of
miRNA-148a (Ma X. et al., 2021). Moreover, the pro-inflammatory
property of cisplatin is potentially destructive (McSweeney et al.,
2021). Discovering effective circRNA and studying their intrinsic
molecular regulation pathways to reduce kidney inflammation is
one of the most promising methods to determine the target of
early intervention with cisplatin-induced AKI (Holditch et al.,
2019). A recent study found that circRNA 0114427 could release
the inhibition of miRNA-494 on ATF3 by acting as a miRNA sponge,
while ATF3 could block the activation of NF-κB to reduce the
cisplatin-induced inflammatory response in AKI (Cao Y. et al., 2020).

Our current understanding of the function and role of
circRNAs is still in its infancy, and further research is needed
to clarify the specific regulatory mechanism of circRNAs in the
inflammation of AKI. However, the study of circRNAs as a
therapeutic target for AKI will undoubtedly be a hot topic in
the future.

The Challenge of Studying
Understanding the role of ncRNAs in AKI inflammation can
provide potential research directions and strategies for the
development of ncRNA-targeted gene therapy as an
intervention for AKI inflammation injury. However, studies
into the regulation of inflammation by ncRNAs have mainly
been conducted in animal experiments, with a huge gap to fill
before clinical trials. Therefore, extensive research is needed to
further explore the clinical value of ncRNAs. In addition,
identifying homologous ncRNAs between experimental
animals and humans is a tremendous work in itself (Kulkarni
et al., 2021). Most ncRNAs are not limited to a certain cell type or
tissue but ubiquitously expressed (Matsui and Corey, 2017).
Therefore, regulation of specific ncRNAs may lead to so-called
“off-target” effects in distant organs. This dilemma is reflected in
the fact that only a few ongoing clinical studies involve miRNA
therapy (Winkle et al., 2021). Elucidation of the role of specific
ncRNAs is thus a prerequisite for RNA-based targeted therapy for
specific diseases. Tissue/cell specificity can also be achieved by
coupling ncRNAs to tissue-specific antibodies and/or peptides,
thereby reducing the effects of off-targeting (Winkle et al., 2021).
Besides, ncRNAs are also involved in various pathological
processes of AKI, in addition to inflammatory reactions, and
uncertainty remains as to whether ncRNAs can affect the overall
function of the kidney by regulating a specific reaction. Despite
recent studies reporting promising therapeutic effects of ncRNAs,
their therapeutic application in targeting molecules in AKI is still
a long way off.

CONCLUSION AND PROSPECTS

Inflammation is an extremely important part of the development of
AKI, and ncRNAs involved in the regulation of gene expression play
an important role in this process. At present, research into the role of
ncRNAs in regulating the inflammatory response in AKI has mainly
focused on miRNAs and lncRNAs, though elucidating the
mechanism of circRNAs has been in full swing. The mechanistic
role of ncRNAs in the inflammatory response of AKI is gradually
being uncovered, with multi-target inhibition or overexpression
shown to be effective at reducing AKI-related inflammation in
animal or cell models. Inhibition or rescue of these dysregulated
ncRNAs in vivo represents a fascinating new dimension in
therapeutic regulation of the inflammatory response in AKI.
Technically, in vivo anti-sense oligonucleotide therapy for
targeted regulation of ncRNAs is feasible. However, many
challenges must be overcome from an experimental research
perspective before clinical translation, including careful evaluation
of potential off-target effects caused by low ncRNA specificity.
Future work is needed to address the shortcomings of the

TABLE 3 | Role of circRNAs in inflammatory response of AKI.

CircRNA AKI model Signaling Pathways Level

Anti-inflammation
VMA21 Sepsis miRNA-9-3p/SMG1/NF-κB ↓

Sepsis miRNA-7-5p/PPARA ↓
TTC3 Sepsis miRNA-148a/RCAN2 ↓
0,114,427 Cisplatin miRNA-494/ATF3/NF-κB ↑
Proinflammation
BNIP3L Sepsis miRNA-370-3p/MyD88/NF-κB ↑
TLK1 Sepsis miRNA-106a-5p/HMGB1/NF-κB ↑
0,114,427 Sepsis miRNA-495-3p/TRAF6/NF-κB ↑
HIPK3 Sepsis miRNA-338/FOXA1 ↑
0,023,404 IRI miRNA-136/IL-6R ↑
0,000,943 IRI miRNA-377-3p/EGR2 ↑
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current research and increase our understanding of the regulatory
mechanism of ncRNAs in AKI. A better understanding of the
mechanisms behind ncRNAs will potentially result in its safe and
effective use as a precise treatment for patients with AKI.
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