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Abstract: An extensive understanding of the interactions between host cellular and viral proteins
provides clues for studying novel antiviral strategies. Porcine circovirus type 3 (PCV3) and type 4
(PCV4) have recently been identified as viruses that can potentially damage the swine industry.
Herein, 401 putative PCV3 Cap-binding and 484 putative PCV4 Cap-binding proteins were character-
ized using co-immunoprecipitation and liquid chromatography-mass spectrometry. Both PCV3 and
PCV4 Caps shared 278 identical interacting proteins, but some putative interacting proteins (123 for
PCV3 Cap and 206 for PCV4 Cap) differed. A protein–protein interaction network was constructed,
and according to gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) database analyses, both PCV3 Cap- and PCV4 Cap-binding proteins participated mainly in
ribosome biogenesis, nucleic acid binding, and ATP-dependent RNA helicase activities. Verification
assays of eight putative interacting proteins indicated that nucleophosmin-1, nucleolin, DEAD-box
RNA helicase 21, heterogeneous nuclear ribonucleoprotein A2/B1, YTH N6-methyladenosine RNA
binding protein 1, and Y-box binding protein 1 bound directly to both PCV3 and PCV4 Caps, but
ring finger protein 2 and signal transducer and activator of transcription 6 did not. Therefore, the
interaction network provided helpful information to support further research into the underlying
mechanisms of PCV3 and PCV4 infection.

Keywords: porcine circovirus type 3 and 4; viral capsid; protein interaction network; bioinformatics
approach; GO and KEGG analyses

1. Introduction

Porcine circoviruses (PCVs) are non-enveloped viruses containing single-stranded cir-
cular DNA genomes (~1.7–2.0 kb) within the Circovirus genus in the family Circoviridae [1].
Four genotypes of circoviruses have been detected in pigs [2–4]. PCV1 is non-pathogenic,
whereas PCV2 is the predominant pathogen responsible for porcine circovirus-associated
diseases (PCVADs) [5,6]. PCV3 was firstly found in America using metagenomic sequenc-
ing in 2015, and it is linked to different clinical symptoms, such as porcine dermatitis
and nephropathy syndrome (PDNS), respiratory disease, reproductive failure, and diar-
rhea [7–9]. PCV4 was at first detected in pig farms of Hunan province, China, in 2019,
and it is considered to induce serious clinical conditions, such as respiratory distress and
PDNS [2]. Subsequently, PCV4 has been detected in other provinces in China [10–13],
indicating that it is probably prevailing in Chinese pig farms. In addition, PCV4 has been
detected in South Korea [14]. Thus, PCVs have emerged as important pathogens causing
severe damage to the pig industry worldwide.
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The PCV genome contains 11 predicted open reading frames (ORFs) [15–17]. At
present, six viral proteins have been characterized. ORF1-encoded Rep and Rep’, which are
replicase proteins, are required for the rolling-circle replication of the PCV genome [18–20].
ORF2-encoded Cap is required for virion packaging and virus propagation by binding
to Rep, which is also a viral immunogen that serves as a vital controller of virus replica-
tion [21–25]. The PCV4 Cap consists of 228 amino acids (aa), and the PCV3 Cap contains
214 aa, while the amino acid identity between PCV3 and PCV4 Caps is below 24.5% [2]. The
four other viral proteins are relevant to PCV infection but not replication [26–29]. Due to
the lack of autonomous DNA polymerases, circoviruses depend on cellular replication ma-
chinery for their multiplication [30]. Thus, a comprehensive knowledge of the functions of
the PCV Cap protein and its binding with host proteins would broaden our understanding
of the pathogenesis of PCV infections.

As obligate parasites, viruses depend on host–pathogen protein–protein interactions
to control cellular biological processes for virus propagation [31]. On the one hand, in-
teractions between the virus and host play a crucial role in the cellular antiviral innate
immune system to eliminate the invading extracellular pathogen. On the other hand, the
interactions have reshaped the virus to manipulate the host defense system for its own
propagation. They both all experience co-evolutionary processes [32]. Several reports
have highlighted interactions between cellular proteins and PCV1 or PCV2 Cap with bac-
terial or yeast two-hybrid or co-immunoprecipitation assays [24,25,33–38]. However, the
interactome profile of PCV3 or PCV4 Cap proteins with cellular proteins is still unclear.
Furthermore, an advanced high-throughput proteomic approach has not been utilized to
identify substantial PCV3 or PCV4 Cap-binding host proteins.

In the current research study, co-immunoprecipitation (Co-IP) combined with liquid
chromatography-mass spectrometry (LC-MS) was employed to map the interactome profile
of PCV3 or PCV4 Cap proteins. This process identified 401 and 484 putative host cellular
proteins binding to PCV3 or PCV4 Cap in the transfected cells, respectively, which were
used to construct a protein–protein interaction (PPI) network. Gene ontology annotation
and pathway enrichment analyses demonstrated that PCV3 and PCV4 Cap-binding pro-
teins are involved in various cellular pathways, such as RNA binding, DNA binding,
ribonucleoprotein complex binding, and ATP-dependent RNA helicase activity. Eight puta-
tive interacting proteins were randomly selected for verification, and it was confirmed that
both PCV3 and PCV4 Cap could interact directly with six proteins in vitro, NPM1, NCL,
DDX21, hnRNPA2/B1, YTHDF1, and YBX1, albeit they exhibited varied binding capacities.
Hence, the present research would be helpful in finding new antiviral therapeutic strategies
against PCV3 or PCV4 infections.

2. Materials and Methods
2.1. Cells and Cell Culture

PK-15 cells were maintained in minimal essential medium (MEM) (Gibco, Carlsbad,
CA, USA) supplemented with 10% fetal bovine serum (FBS) (LONSERA, Shanghai Shuan-
gru Biology Science & Technology Co., Ltd.). HEK293T cells (CRL-11268; ATCC, Manassas,
VA, USA) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supple-
mented with 10% fetal bovine serum (FBS) (Gibco) as described elsewhere [39,40].

2.2. Antibodies and Reagents

Mouse monoclonal antibodies (mAbs) against β-actin (M1210-2) and GST (M0807-1),
and rabbit polyclonal antibodies (pAbs) against Myc (R1208-1), FLAG (0912-1), and GFP
(SR48-02) were purchased from Huaan Biological Technology (Hangzhou, China). Anti-
FLAG affinity resin (A2220) for immunoprecipitation was acquired from Sigma-Aldrich.
Mouse anti-Myc (05-419) and anti-FLAG (F1804) mAbs were obtained from Sigma-Aldrich
(St. Louis, MO, USA). NP-40 cell lysis buffer (50 mM Tris (pH 7.4), 150 mM NaCl, and 1%
NP-40) was acquired from Beyotime (P0013F; Shanghai, China). Horseradish peroxidase
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(HRP)-labeled goat anti-mouse and anti-rabbit IgG antibodies were obtained from KPL
(Milford, MA, USA).

2.3. Plasmid Construction and Transfection

Full-length PCV3 and PCV4 Cap DNA fragments were amplified by polymerase chain
reaction (PCR) from synthetic genomic DNAs of PCV3 [8] (accession no. KT869077.1)
and PCV4 [2] (accession no. MK986820.1) and inserted into the multiple cloning sites
of vectors pCMV-Myc-N (Clontech, Palo Alto, CA, USA) or pCMV-Flag-N (Clontech) to
obtain plasmids Myc-PCV3-Cap, FLAG-PCV3-Cap, Myc-PCV4-Cap, and FLAG-PCV4-
Cap. The full-length cDNA sequences of NPM1 (accession no. XM_013990662.2), NCL
(accession no. XM_021074959.1), DDX21 (accession no. KX396051.1), hnRNPA2/B1 (ac-
cession no. XM_021078978.1), YTHDF1 (accession no. MN606020.1), YBX1 (accession
no. XM_021096922.1), RNF2 (accession no. XM_021102630.1), and STAT6 (accession no.
HM135386.1) were amplified from PK-15 cells using specific primers, and they were sub-
cloned separately into vector pCMV-Flag-N (Clontech). The resultant plasmids were FLAG-
NPM1, FLAG-NCL, FLAG-DDX21, FLAG-hnRNPA2/B1, FLAG-YTHDF1, FLAG-YBX1,
FLAG-RNF2, and FLAG-STAT6. The primers used are listed in Table 1. PK-15 or HEK293T
cells were grown on plates to 70% to 90% confluency for transfection or co-transfection. The
jetPRIME transfection reagent (Polyplus Transfection, New York, NY, USA) was utilized
for PK-15 cell transfection, while the ExFect transfection reagent (T101-01/02; Vazyme
Biotechnology, Nanjing, China) was utilized for HEK293T cell transfection, according to
the manufacturer’s protocols.

Table 1. List of primers used for cloning in the study.

Gene Product Sense Primer (5′ to 3′) Antisense Primer (5′ to 3′)

PCV3 Cap ATGAGACACAGAGCTATATTC TTAGAGAACGGACTTGTAACGAATC
PCV4 Cap ATGCCAATCAGATCTAGGTACA TTATCCCTGTTTGGGGTAGTTAACA
NPM1 ATGGAAGATTCGATGGATAT TTAAAGAGACTTCCTCCACT
NCL ATGGTAAAGCTCGCAAAGGCC CTATTCAAACTTGGTCTTCTTTCCT
DDX21 ATGCCGGGGAAACTTCGTAGT TTACTGTCCAAACGCTTTGCT
hnRNPA2/B1 ATGGAGAAAACTTTAGAAACTGT TCAATATCGGCTTCTCCCTCCAT
YTHDF1 ATGTCGGCCACCAGCGTGGACC TTATTGTTTGTTTCGATTCTGCCGT
YBX1 ATGAGCAGCGAGGCCGAGA TTACTCAGCCCCGCCCTGCTCA
RNF2 ATGTCTCAGGCTGTGCAGACAAAT TCATTTGTGCTCCTTTGTGGGT
STAT6 ATGTCTCTGTGGGGTCTGGTCTCCAAAAT TCACCAACTGGGGTTAGCCCTTAGGT

2.4. SDS-PAGE and Western Blotting

Cell lysates extracted in NP-40 cell lysis buffer (50 mM Tris [pH 7.4], 150 mM NaCl,
and 1% NP-40) after transfection or co-transfection were separated using sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to nitrocellulose
membranes (GE Healthcare, Chicago, IL, USA), and blocked in phosphate-buffered saline
(PBS) containing 5% skimmed milk powder and 0.05% Tween 20. The membranes were
then incubated with primary antibodies overnight at 4 ◦C, followed by incubation with the
corresponding HRP-labeled secondary antibodies at room temperature for 1.0 h. The mem-
branes were then incubated with an enhanced chemiluminescence reagent (34096; Thermo
Scientific, Waltham, MA, USA), and the immunoreactive protein bands were visualized
using AI800 Images (GE Healthcare).

2.5. Expression and Purification of Recombinant Proteins

Escherichia coli BL21 (pLysS) cells harboring pGEX-4T-1, pGEX-4T-1-NCL, pGEX-4T-
1-hnRNPA2/B1, and pGEX-4T-1-YBX1 plasmids were cultured separately in 200 mL of
Luria Bertani (LB) medium and induced with 1.0 mM isopropyl β-D-thiogalactopyranoside
(IPTG) at 16 ◦C overnight. Cell pellets were lysed by sonication in binding buffer (1 mM
PMSF, 50 mM Tris-HCl, and 150 mM NaCl pH 8.0). After centrifugation, the supernatant
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was incubated separately with Pierce glutathione agarose beads (21516; Thermo, Rockford,
IL, USA) for 2.0 h at 4 ◦C and then purified. GST, GST-NCL, GST-hnRNPA2/B1, and GST-
YBX1 proteins were eluted in eluting buffer containing 2.0 mg/mL of reduced glutathione,
respectively.

2.6. Co-Immunoprecipitation (Co-IP) and Glutathione S-Transferase (GST) Pull-Down Assays

For the Co-IP assays, HEK293T cells transfected with the indicated plasmids for 48 h
were lysed in NP-40 cell lysis buffer and centrifuged at 12,000× g for 10 min. The super-
natants were treated with protein A/G plus agarose (sc-2002; Santa Cruz Biotechnology,
CA, USA) for 1.0 h at 4 ◦C and immunoprecipitated using anti-FLAG beads. The beads
were washed with NP-40 buffer and resolved using standard SDS-PAGE. For the GST
pull-down assays, FLAG-PCV3-Cap or FLAG-PCV4-Cap was used as the prey protein.
Equal amounts of purified GST, GST-NCL, GST-hnRNPA2/B1, and GST-YBX1 proteins,
which were immobilized on glutathione agarose beads, were incubated with the corre-
sponding prey proteins at 4 ◦C for 4.0 h. The precipitated proteins were washed with PBS
and subjected to SDS-PAGE and Western blotting using mouse monoclonal antibodies
against GST or FLAG. The Co-IP and GST pull-down assays were conducted as previously
described [41].

2.7. Liquid Chromatography-Mass Spectrometry (LC-MS)

Coomassie blue staining gels from Co-IP experiments were mixed and subjected
to protein identification via LC-MS analysis in APTBio (Shanghai, China). The pep-
tides were concentrated and desalted on an EASY column (2 cm × 100 µm × 5 µm-C18;
75 µm × 100 mm × 3 µm-C18; Thermo Finnigan, San Jose, CA, USA) and eluted online
on an analytical RP column (0.18 × 150 mm BioBasic-18, Thermo Electron, Waltham, MA,
USA). A 60 min gradient was performed as follows: 4–50% B (solvent A: 0.1% v/v formic
acid; solvent B: 0.1% v/v formic acid, 84% v/v ACN) 0–50 min, 50–100% B for 50–54 min,
and 100% B for 54–60 min. Protein searches were performed using Mascot 2.2 software.
Proteins found in the respective negative control samples were eliminated from the dataset
to eliminate non-specifically bound interactions. Proteins represented by at least one
unique peptide were used for further analyses. The LC-MS procedures were conducted as
described elsewhere [25].

2.8. Construction and Analysis of a Protein-Protein Interaction Network

The experimentally derived data sets were used to plot a PCV3 and PCV4 Cap-host
protein interaction network using Cytoscape software (version 3.7.1). The STRING database
was used to analyze the interactions among host proteins. Only interactions confirmed
via direct physical binding were considered when plotting the protein–protein interaction
map. The topological parameters and central measures of the network were calculated
using the network analyzer tool in Cytoscape version 3.7.1. Pig protein–protein interaction
analysis was also performed using the STRING database. To reach a consensus in protein
accession, we used NCBI gene names to represent proteins all throughout the study. The
corresponding NCBI gene names are listed separately (Supplementary Table S2). The
procedures in evaluating PPIs were performed as previously described [25].

2.9. GO and KEGG Pathway Analyses

Gene ontology (GO) analysis was performed using Cytoscape software (version 3.7.1)
with the plugin GOclue to annotate the genes in terms of cellular component (CC), biological
process (BP), and molecular function (MF) based on the GO database (Supplementary Table S4).
The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was con-
ducted to predict the pathways based on the KEGG database (Supplementary Table S5).
The GO and KEGG pathways with a corrected p-value < 0.05 were chosen to be significantly
enriched. GO and KEGG pathway analyses were completed by APTBio (Shanghai, China)
and performed as described previously [25].
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3. Results
3.1. Characterization of Cap-Host Protein Interactions via Liquid
Chromatography-Mass Spectrometry

To map host protein interactions with PCV3 or PCV4 Cap in transfected PK-15 cells,
we conducted Co-IP assays coupled with LC-MS/MS with or without PCV3 or PCV4
Cap expression. Whole-cell lysates were co-immunoprecipitated with anti-FLAG beads at
48 h post-transfection (hpt), and Coomassie blue staining was performed to visualize host
proteins binding to PCV3 or PCV4 Cap (Figure 1A). As a negative control, empty vector-
transfected PK-15 cell lysates were adopted to remove non-specifically bound proteins.
Differential bands were visualized compared to the negative control. LC-MS was used
to elucidate the cellular proteins bound to PCV3 or PCV4 Cap. In total, 401 PCV3 Cap-
and 484 PCV4 Cap-specifically expressed and bound cellular protein candidates were
characterized in transfected PK-15 cells (Figure 1B and Supplementary Table S1). Among
them were 123 putative PCV3 Cap- and 206 putative PCV4 Cap-specific interacting proteins
and 278 common host proteins, which might result in differences in porcine circovirus
replication and pathogenesis. Hence, these proteins were subjected to further analyses
(Figure 1B and Supplementary Tables S2 and S3).
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Figure 1. Characterization of PCV3 or PCV4 Cap-interacting cellular proteins. (A) Empty vector,
PCV3, or PCV4 Cap-transfected PK-15 cells were harvested at 48 hpt, and a co-immunoprecipitation
assay was performed using anti-FLAG beads. PCV3 or PCV4 Cap-interacting host proteins were
eluted and analyzed via SDS-PAGE followed by Coomassie blue staining. Lane 1, protein molecular
weight ladder; lane 2, empty vector-transfected; lane 3, PCV3 Cap-transfected; lane 4, PCV4 Cap-
transfected. (B) Venn diagram of the identified protein candidates interacting with PCV3 or PCV4
Cap from the empty vector-transfected, PCV3 Cap-transfected, and PCV4 Cap-transfected cells,
respectively. Blue, orange, and gray colors indicate proteins from the empty vector-transfected, PCV3
Cap-transfected, and PCV4 Cap-transfected cells, respectively. Common proteins within the data sets
are indicated in the colored intersections. Proteins were represented as their respective NCBI gene
names (Supplementary Table S1).

3.2. Construction of a Protein–Protein Interaction Network

Verifying protein–protein interactions (PPIs) is a critical aspect of molecular biol-
ogy because of the incontestable role of cellular factors. Herein, we plotted an interac-
tion network of identical PCV3 and PCV4 Cap-binding cellular host proteins with the
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STRING database and used it for network structure and functional analyses (Figure 2
and Supplementary Table S2). Together with the verified protein interactions, those ac-
quired from gene fusion, co-expression, homology, and text mining were used for the
construction of network as well. The host proteins in the interaction network were pre-
dominantly divided into ribosome biogenesis modulation, cellular amide metabolism, and
cytoskeletal reshape. There are three large and distinct clusters. Cluster 1 proteins are
mainly mitochondrial ribosomal proteins (MRPs) and classified into two main categories:
MRPL, components of the large subunit; MRPS, components of the small subunit. Cluster 2
proteins are mainly ribosomal proteins (RPs) and are classified into two main categories:
RPL, components of the large subunit; RPS, components of the small subunit. Cluster 3
proteins are mainly DEAD-box RNA helicases. The number of edges for the network (1280)
was notably higher than the expected number (361) for a constant number of nodes (262),
indicating that there were more interactions than expected and that the data showed more
interactions than expected for a random set of proteins. The results demonstrated that the
proteins were partially divided into several roles, mostly in replication or transcription.Viruses 2022, 14, x FOR PEER REVIEW 8 of 18 
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Figure 2. Construction and analysis of the protein-protein interaction network using the STRING
database. Each edge color indicates a different method of protein–protein interaction prediction, as
indicated below the figure. A map of the interaction of 278 identical bound host proteins shared
amongst PCV3 and PCV4 Caps with the other proteins in our data was constructed and plotted
using the network analyzer tool of the Cytoscape software, version 3.7.1. The corresponding symbols
indicating the different protein classes are shown. Proteins are represented by their respective NCBI
gene names (Supplementary Table S2).
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3.3. Gene Ontology Annotation

To identify cellular pathways in the PCV3 or PCV4 Cap-host protein interaction
network, we conducted gene ontology annotation of the proteins common to PCV3 or
PCV4 Cap-transfected PK-15 cells (Supplementary Table S2) to forecast their molecular
functions. GO annotation was performed for the following three categories: biological
processes, molecular functions, and cellular components. Many biological processes,
such as gene expression, organonitrogen compound biosynthesis, peptide metabolism,
cellular amide metabolism, and ribonucleoprotein complex biogenesis, were enriched. In
addition, nucleic acid binding, RNA binding, ribonucleoprotein complex binding, and ATP-
dependent RNA helicase activity were enriched within the category of molecular function,
while intracellular non-membrane-bounded organelles, intracellular organelle lumen, and
nuclear lumen were enriched under the category of cellular components (Figure 3A,B and
Supplementary Table S4). In summary, GO annotation of common proteins suggested that
PCV3 or PCV4 Cap might disturb some processes such as ribosome biogenesis, nucleic
acid binding, and ATP-dependent RNA helicase activity.
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3.4. KEGG Pathway Enrichment

To further establish the host signal transduction pathways associated with Cap-
interacting host proteins targeted by PCV3 and PCV4 (Supplementary Table S2), we per-
formed KEGG pathway enrichment, and the top 20 enriched pathways with the highest
representation of each term are obtained. Remarkably, most of the potential proteins were
involved in the ribosomes, spliceosomes, RNA transport, Herpes simplex infection, mRNA
surveillance, RNA degradation, and the cGMP-PKG signaling pathway. KEGG enrichment
indicated that pathways involving ribosomes, RNA transport and degradation, and in-
fluenza A infection were preferentially enriched (Figure 4A,B and Supplementary Table S5).
In addition, KEGG enrichment demonstrated that these proteins may play a crucial role
in the regulation of distinct processes, such as endocytosis, Huntington’s disease, and
Epstein–Barr virus infection.

3.5. Validation of the Interactions between Host Proteins and PCV3 or PCV4 Capsid Proteins

To further verify protein interactions from mass spectrometry, we performed in vitro
Co-IP assays. Eight host proteins from PCV3 or PCV4 Cap-transfected samples were
randomly selected to validate mass spectrometry data. HEK293T cells were co-transfected
with Myc-PCV3-Cap or Myc-PCV4-Cap and empty vectors; FLAG-NPM1, NCL, DDX21,
hnRNPA2/B1, YTHDF1, YBX1, RNF2, or STAT6 expression constructs; and then subjected
to immunoprecipitation with FLAG beads or anti-Myc purified monoclonal antibody
(mAb). The results indicated that PCV3 or PCV4 Cap bound specifically to NPM1, NCL,
DDX21, hnRNPA2/B1, YTHDF1, and YBX1, while no signal was observed with the empty
vector, RNF2, and STAT6 constructs, although they exhibited distinct binding capacities
(Figure 5A,B). To confirm whether Cap interacts directly with six cellular proteins, we



Viruses 2022, 14, 939 9 of 15

conducted glutathione S-transferase (GST) pull-down experiments. Lysates of FLAG-PCV3-
Cap-, FLAG-PCV4-Cap-, GST, GST-NCL-, GST-hnRNPA2/B1-, and GST-YBX1-transfected
cells were subjected to GST pull-down and immunoblotting assays, respectively. As shown
in Figure 5C, GST-NCL, GST-hnRNPA2/B1, and GST-YBX1 pulled down FLAG-PCV3-Cap
or FLAG-PCV4-Cap. In summary, the results demonstrated that PCV3 or PCV4 Cap binds
directly to NCL, hnRNPA2/B1, and YBX1. Hence, the results acquired from Co-IP and GST
pull-down assays verified the data from the LC-MS-based proteomic analyses. Next, we
plotted another interaction network of the experimentally validated cellular protein-PCV3
or PCV4 Cap interactions and the host partners of the PCV3 and PCV4 Cap-binding cellular
proteins in silico with Cytoscape software version 3.7.1 (Figure 5D and Supplementary
Table S6), which may be useful for studying the underlying role of PCV3 or PCV4 Cap in
the viral lifecycle.

Viruses 2022, 14, 939 9 of 16 
 

 

 
Figure 4. KEGG pathway enrichment analysis. (A,B) Graphs showing the enriched pathways tar-
geted by the PCV3 and PCV4 Cap-interacting proteins, as analyzed via KEGG functional annotation 
(Supplementary Table S5) using the GOclue plugin in Cytoscape software, version 3.7.1. 

3.5. Validation of the Interactions between Host Proteins and PCV3 or PCV4 Capsid Proteins 
To further verify protein interactions from mass spectrometry, we performed in vitro 

Co-IP assays. Eight host proteins from PCV3 or PCV4 Cap-transfected samples were ran-
domly selected to validate mass spectrometry data. HEK293T cells were co-transfected 
with Myc-PCV3-Cap or Myc-PCV4-Cap and empty vectors; FLAG-NPM1, NCL, DDX21, 
hnRNPA2/B1, YTHDF1, YBX1, RNF2, or STAT6 expression constructs; and then subjected 
to immunoprecipitation with FLAG beads or anti-Myc purified monoclonal antibody 
(mAb). The results indicated that PCV3 or PCV4 Cap bound specifically to NPM1, NCL, 
DDX21, hnRNPA2/B1, YTHDF1, and YBX1, while no signal was observed with the empty 
vector, RNF2, and STAT6 constructs, although they exhibited distinct binding capacities 

Figure 4. KEGG pathway enrichment analysis. (A,B) Graphs showing the enriched pathways targeted
by the PCV3 and PCV4 Cap-interacting proteins, as analyzed via KEGG functional annotation
(Supplementary Table S5) using the GOclue plugin in Cytoscape software, version 3.7.1.



Viruses 2022, 14, 939 10 of 15Viruses 2022, 14, 939 11 of 16 
 

 

 
Figure 5. Validation of Cap-host protein interactions. (A,B) HEK293T cells were co-transfected with 
plasmids expressing FLAG-NPM1, FLAG-NCL, FLAG-DDX21, FLAG-hnRNPA2/B1, FLAG-
YTHDF1, FLAG-YBX1, FLAG-RNF2, or FLAG-STAT6 and plasmids expressing Myc-PCV3-Cap (A), 
or Myc-PCV4-Cap (B), respectively. Among them, Myc-PCV3-Cap (A), Myc-PCV4-Cap (B), or 
FLAG-NPM1 (A,B) co-transfected with an empty vector served as negative controls, while Myc-
PCV3-Cap (A) or Myc-PCV4-Cap (B) co-transfected with FLAG-NPM1 served as positive controls. 

Figure 5. Validation of Cap-host protein interactions. (A,B) HEK293T cells were co-transfected with
plasmids expressing FLAG-NPM1, FLAG-NCL, FLAG-DDX21, FLAG-hnRNPA2/B1, FLAG-YTHDF1,
FLAG-YBX1, FLAG-RNF2, or FLAG-STAT6 and plasmids expressing Myc-PCV3-Cap (A), or Myc-
PCV4-Cap (B), respectively. Among them, Myc-PCV3-Cap (A), Myc-PCV4-Cap (B), or FLAG-NPM1



Viruses 2022, 14, 939 11 of 15

(A,B) co-transfected with an empty vector served as negative controls, while Myc-PCV3-Cap (A) or
Myc-PCV4-Cap (B) co-transfected with FLAG-NPM1 served as positive controls. Cell lysates were
immunoprecipitated with FLAG beads or anti-Myc mAbs, separated via SDS-PAGE, and then subject
to Western blotting with the corresponding primary and secondary antibodies. β-actin served as
the internal loading control. (C) Whole-cell lysates of PCV3 or PCV4 Cap were separately added to
the GST, GST-NCL, GST-hnRNPA2/B1, or GST-YBX1 proteins; subjected to GST pull-down assays;
and then immunoblotted with the corresponding primary and secondary antibodies. (D) The PCV3
and PCV4 Cap-host interaction network. The interaction map of PCV3 and PCV4-Cap and the
corresponding host proteins was constructed using Cytoscape software, version 3.7.1. Proteins were
classified based on their protein class. The corresponding symbols indicating different protein classes
are mentioned in the figure (Supplementary Table S6).

4. Discussion

Virus–host interactions interplay between pathogenicity and immunity, leading to
either the activation of the host immune defense system to eliminate the virus or the
utilization of cellular immune mechanisms to promote virus proliferation. Virus–host
interaction plays an important role in the viral lifecycle, initiating the cascade between
pathogenesis and host immunity. The circovirus Cap protein is a key controller of virus
replication along with the Rep protein and is required for viral propagation [24,33]. Thus,
it is speculated that the Cap and Rep proteins of PCV3 or PCV4 might form a replicase
complex by binding to many cellular proteins and that this multiprotein complex might
play a critical role in virus uncoating, assembly, nuclear entry, and egress. However, it
remains unclear whether the PCV3 or PCV4 Cap protein subverts or utilizes the host
machinery for virus replication. In addition, the domains of the Cap protein essential for
the interaction with cellular proteins have been identified.

Previous research has reported the interactions of PCV1 and PCV2 Cap with cel-
lular proteins [24,25,33–38]. In this study, we characterized 401 and 484 putative host
proteins binding to PCV3 or PCV4 Cap, respectively, via Co-IP and LC-MS (Figure 1). Even
though the interacting cellular proteins cannot exhibit fold changes in expression levels
under PCV3 or PCV4 infection, they can also be used for further study. We previously
identified 222 putative PCV2 Cap-binding cellular proteins [25]. In the present study,
278 identical interacting cellular proteins and 123 putative PCV3 Cap- or 206 putative
PCV4 Cap-unique binding host proteins were identified, which might play crucial roles
in porcine circovirus pathogenesis, highlighting the characteristic differences between
PCV3 and PCV4. For example, the Rho or Rab family GTPases Cdc42 and Rab35, which
specifically interact with PCV3 Cap, are key moderators of cellular actin dynamics. The
specific Cdc42/Rab35-inhibiting agents provide unprecedented ability to investigate their
roles in various signaling pathways [42,43]. Cellular protein high-mobility group box 1
(HMGB1), which binds to PCV4 Cap, is a multifunctional protein with various roles in
different cellular compartments. It acts as a chromosome guardian and DNA chaperone in-
volved in DNA replication, gene transcription, DNA repair, nucleosome stability, telomere
homeostasis, and PCV2 replication [44–46]. Since the amino acid identity between PCV3
and PCV4 Caps is below 24.5%, we chose to explore only the host proteins shared amongst
PCV3 Cap and PCV4 Caps for better evaluating the similar cellular protein functions and
pathways that are related to both PCV3 and PCV4 Caps. However, we will conduct the
GO and KEGG analyses of the unique host cellular proteins to make it more objective,
comprehensive, and informative in the future. Thus, we recommend that future studies
utilize all information to select potential proteins essential for PCV infection.

After that, a PPI network was constructed (Figure 2). Gene ontology (GO) and the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the
binding host proteins participate in diverse biological processes, such as gene expression,
cellular amide metabolic process, nucleic acid binding, ribonucleoprotein complex binding,
and ATP-dependent RNA helicase activity (Figures 3 and 4). We also verified the interac-
tions of PCV3 or PCV4 Cap with potential cellular proteins, such as NPM1, NCL, DDX21,



Viruses 2022, 14, 939 12 of 15

hnRNPA2/B1, YTHDF1, and YBX1 in vitro using Co-IP and GST pull-down experiments
(Figure 5). To date, our current study was the first study that used modern proteomic
tools such as LC-MS to identify the host proteins interacting with PCV3 or PCV4 Cap.
Bioinformatics analyses of available datasets will be helpful for understanding the roles
of cellular proteins in biological pathways better. Advances in tools for data acquisition,
processing, integration, and computation could provide more rapid and precise strategies
for the development of therapies for infectious diseases [47–49]. Therefore, we speculated
that cellular proteins binding to PCV3 or PCV4 Cap might constitute a differential replicase
complex that plays a significant role in the replication and pathogenesis of PCV3 or PCV4.

Several biological processes, such as ribosome biogenesis, nucleic acid binding, and
ATP-dependent RNA helicase activity, are important during PCV3 or PCV4 infection and
require special attention in future studies. In this study, although we have characterized
some proteins associated with these pathways, their exact roles are still unclear; thus,
further studies are essential. An apparent feature of virus–host interactions is their ability
to manipulate the innate immune response to favor virus multiplication. It is hypothesized
that PCV3 or PCV4 might manipulate the innate immune response pathways. To support
this hypothesis, our GO annotation and KEGG enrichment analyses demonstrated that
proteins related to these pathways were enriched (Figures 3 and 4). In addition, our results
indicated the enrichment of the spliceosome pathway. Different heterogeneous nuclear
ribonucleoproteins such as hnRNPA2B1, hnRNPC, and hnRNPU were confirmed to bind
to PCV3 or PCV4 Cap (Figure 5). Spliceosomal complex proteins are required to generate
stable RNA structures, and ribonucleoproteins play a role in RNA stability [50]. Previous
reports have demonstrated that proteins hnRNPA2B1 and hnRNPC are associated with
influenza A virus (IAV) [51,52], human immunodeficiency virus type 1 (HIV-1) [53], herpes
simplex virus 1 (HSV-1) [54,55], hepatitis delta virus (HDV) [56], dengue virus (DENV) [57],
and Japanese encephalitis virus (JEV) infections [58], while hnRNPU acts as a nuclear
sensor for viral RNA [59].

In the current study, Cap-cellular protein interactions were identified for the first time
in PCV3 or PCV4 Cap-transfected PK-15 cells. A protein–protein interaction network was
plotted, and the potential functions of the characterized cellular proteins were predicted
via GO and KEGG enrichment analyses. Six of the eight randomly selected proteins could
interact with PCV3 or PCV4 Cap, as observed from the results of the Co-IP and GST
pull-down assays. The interactions of PCV3 or PCV4 Cap with cellular proteins and the
interpretation of the virus–host interaction network would be useful to better understand
the putative mechanisms through which PCV3 or PCV4 exert their pathogenic effects.
Moreover, the results also suggest that the replication mechanism and pathogenesis of PCV3
and PCV4 are complex phenomena and require further research. Increased knowledge
about the cellular proteins targeted and the pathways perturbed by PCV3 or PCV4 Cap
might contribute to the extensive knowledge of virus–host interactions and provide new
insights for identifying novel targets. Ultimately, this information would help design better
therapeutic strategies against PCVAD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/v14050939/s1, Table S1: The PCV3 or PCV4 Cap-interacting
cellular proteins in the PCV3 or PCV4 Cap or empty vector transfected PK-15 cells, respectively;
Table S2: The common PCV3 or PCV4 Cap binding host proteins (278); Table S3: The unique PCV3
Cap (123) or PCV4 Cap binding cellular proteins (206); Table S4: The GO annotation analyses of
PCV3 or PCV4 Cap-interacting cellular proteins; Table S5: The KEGG enrichment analyses of PCV3
or PCV4 Cap-interacting host proteins; Table S6: The interactions network of the confirmed host
protein-PCV3 or PCV4 Cap interaction and the cellular partners of the Cap-interacting host proteins.
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