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Abstract

Background: Improving feed efficiency is one of the important breeding targets for poultry industry. The aim of
current study was to investigate the breast muscle transcriptome data of native chickens divergent for feed
efficiency. Residual feed intake (RFI) value was calculated for 1008 closely related chickens. The 5 most efficient
(LRFI) and 5 least efficient (HRFI) birds were selected for further analysis. Transcriptomic data were generated from
breast muscle collected post-slaughter.

Results: The differently expressed genes (DEGs) analysis showed that 24 and 325 known genes were significantly
up- and down-regulated in LRFI birds. An enrichment analysis of DEGs showed that the genes and pathways
related to inflammatory response and immune response were up-regulated in HRFI chickens. Moreover, Gene Set
Enrichment Analysis (GSEA) was also employed, which indicated that LRFI chickens increased expression of genes
related to mitochondrial function. Furthermore, protein network interaction and function analyses revealed ND2,
ND4, CYTB, RAC2, VCAM1, CTSS and TLR4 were key genes for feed efficiency. And the ‘phagosome’, ‘cell adhesion
molecules (CAMs)', ‘citrate cycle (TCA cycle)' and ‘oxidative phosphorylation” were key pathways contributing to the
difference in feed efficiency.

Conclusions: In summary, a series of key genes and pathways were identified via bioinformatics analysis. These key
genes may influence feed efficiency through deep involvement in ROS production and inflammatory response. Our
results suggested that LRFI chickens may synthesize ATP more efficiently and control reactive oxygen species (ROS)
production more strictly by enhancing the mitochondrial function in skeletal muscle compared with HRFI chickens.
These findings provide some clues for understanding the molecular mechanism of feed efficiency in birds and will

be a useful reference data for native chicken breeding.
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Background

Feed cost, account for 60-70% of the total cost of the
modern poultry industry, has become one of the most
important factors restricting the development of the
poultry industry. A strategy to improve feed efficiency is
a high priority for the poultry industry to reduce feed
costs and nitrogen excretion [1]. Residual feed intake
(RFI) has become a sensitive and accurate indicator of
feed efficiency. RF], first proposed by Koch et al. [2], is
defined as the feed consumption above or below what is
predicted for growth and maintenance. Herein, birds
with low level RFI means consume less feed than pre-
dicted and are identified as efficient birds. For the last
decades, RFI is being used to measure feed efficiency
traits, which has successfully applied to the artificial se-
lection of feed efficiency in mammal [3] and poultry [4].
Besides, RFI is a trait independent of other production
traits, and the heritability of RFI is between 0.23 and
0.49 in chickens, these characteristics of RFI make it can
be easily incorporated into the multi-trait selection in-
dexes of commercial breeding companies [5]. From pri-
mary breeders to commercial growers, the selection of
feed efficiency needs to be specifically considered by all
industry practitioners to maximize returns. However, in
fact, RFI is indeed rare in commercial production sys-
tems, mainly because of the complexity of RFI measure-
ment [6]. In order to further expand the application
prospect of RFI, it is urgent to study and explore the
biological basis of chicken RFIL.

RFI is a complex quantitative trait that is known to be
associated with many biological factors. High throughput
sequencing technology including RNA sequencing
(RNA-seq) has become a mature and efficient tool for
deeper understanding the underlying molecular mechan-
ism of complex trait such as RFI [7]. An earlier duodenal
transcriptomic analysis in chickens showed that the dif-
ference in RFI may be related to digestibility, metabolism
and biosynthesis processes as well as energy homeostasis
[8]. Moreover, A previous high throughput sequencing
analysis indicates that mitochondrial energy metabolism
in skeletal muscle plays a key role in the regulation
of feed efficiency [9, 10]. Skeletal muscle plays a par-
ticularly important role in the utilization and storage
of carbohydrates and lipids from feed [11]. In chick-
ens, the breast muscle is the main skeletal muscle.
Many studies have reported that feed efficiency is as-
sociated with mitochondria function, breast muscle
growth, and some physiological changes of breast
muscle tissue in chickens [10, 12, 13].

Statistically, RNA-seq has been widely used for in-
deep analysis and a better understanding of the molecu-
lar basis of feed efficiency in chickens. To further inter-
pret RNA-seq data, functional enrichment analysis is
extensively used to derive biological insight.
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Traditionally, differentially expressed genes (DEGs) from
transcriptome data were first identified, and then the
biological interpretation of DEGs was assisted by com-
putational functional analysis based on accumulated bio-
logical knowledge. Finally, the biological function
analysis of DEGs is based on a list of preselected ‘inter-
esting’ genes [14]. However, traditional practices in tran-
scriptomic data analysis can only account for DEGs
selected by arbitrary cutoffs, and this method may also
be limiting insight by prioritizing highly differentially
expressed and ‘interesting’ genes over those genes that
undergo moderate fold-changes [15]. Gene Set Enrich-
ment Analysis (GSEA) is a computational method used
to determine whether a particular gene expression pat-
tern is significantly different between two groups of sam-
ples [16]. GSEA is reviewed as a cutoff-free strategy,
which ranks all expressed genes according to the
strength of expression difference. Compared with bio-
logical function analysis of DEGs, GSEA method avoids
choosing arbitrary cutoffs and can accumulate subtle ex-
pression changes in the same group of gene set for
studying functional enrichment between two biological
groups [17]. In the current study, transcriptome data
were analyzed with DEGs function analysis and GSEA
method in order to obtain comprehensive biological
insight of differences between RFI groups.

Wannan Yellow chicken was selected as experiment
material. It is a famous native chicken breed and popular
in the southeast of China for its delicious meat and
unique flavor. There is considerable variation in feed ef-
ficiency between commercial broilers and native chick-
ens. In addition to extrinsic factors such as diet,
microbiota, and housing environment, it can be specu-
lated that there are some internal molecular mechanism
enabling the differential allocation of resources for vari-
ous physiological processes [18]. The transcriptome data
from commercial broilers may not be appropriate as a
reference for native chicken breeding. To date, however,
a large number of sequencing analyses have been per-
formed on commercial broilers [12, 19], but only a few
reports have focused on native chickens [20]. Therefore,
the objective of this study was to identify a series of key
genes and pathways affecting feed efficiency through
analysis of the breast muscle transcriptome between na-
tive chickens divergent with extreme RFI. Our findings
will contribute to a better understanding of the under-
lying molecular mechanism of feed efficiency and pro-
vide important reference information for native chicken

breeding.

Results

Performance and feed efficiency

The difference in feed intake, growth performance, and
feed efficiency traits are showed in Table 1. The average
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Table 1 Characterization of performance and feed efficiency
traits (Least square means and SEM)

Traits® HRFI group, n=30 LRFI group, n=30 P-value
BW56, g 460.70 + 6.54 46040 + 4.06 0813
BWIS, g 956.08 + 15.91 990.36 + 1048 0.071
ADFI, g/d 4155 + 0.59 3819 + 050 <0001
ADG, g/d 11.82 + 032 1256 +0.17 0.058
MBW®7 g 137.56 + 138 14000 + 1.03 0.143
FCR 9/g 371 007 299 + 002 <0001
RFI, g 1.94 + 0.09 —-229+0.16 <0001

@ BW56 initial body weight, BW98 final body weight, ADFI average daily feed
intake, ADG average daily body weight gain, MBW’”> metabolic body weight,
FCR feed conversion ratio, RFl residual feed intake

daily feed intake (ADFI) of HRFI birds was significantly
higher than that of LRFI birds (P <0.05), and the HRFI
group consumed 8.8% more feed than the LRFI group.
As expected, the FCR and RFI of LRFI group were sig-
nificantly lower than those of HRFI group (P < 0.05). the
LRFI birds had the RFI value of —2.29 + 0.16 compared
with 1.94 + 0.09 for the HRFI birds during 42 days (day
56-98) of the experiment. In addition, there was no sig-
nificant difference in the initial body weight (BW56) and
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final body weight (BW98) between RFI groups (P > 0.05).
Moreover, metabolic body weight (MBW®7®) and aver-
age daily body weight gain (ADG) also showed no sig-
nificant difference between the two groups (P > 0.05).

Gene expression profile

All breast muscle samples (n =5 per RFI group) were
collected for RNA-seq. The number of raw reads, high
quality raw reads, trimmed reads, and mapped reads for
each sample are presented in (Additional file 1: Table
S1). After filter, the overall Q30 percentage of high qual-
ity clean data was above 95%. An average of 68.1 million
trimmed reads per sample were mapped to the reference
with a mean of 83.05% mapping efficiency. To analyze
the transcriptional variations occurring between the
HRFI and LRFI groups, differential gene expression ana-
lysis was used in the current study. Among all the genes
annotated in the chicken genome, after multiple tests
and corrections, a total of 354 gens were identified as
being DEGs (Fig. 1). 5 DEGs were detected within the
unannotated parts of the chicken genome, which could
be considered as novel genes. Of the 349 known DEGs,
24 DEGs were up-regulated in the LRFI groups while
325 were down-regulated compared with the HRFI
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Fig. 1 Volcano plot of differently expressed genes (DEGs). The volcano plots illustrate the size and significance of the differentially expressed
genes (DEGs) between HRFI and LRFI groups. Red dots are up-regulated genes and green dots are down-regulated genes in LRFI chickens
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groups. Of the up-regulated known genes, 19 DEGs had
a fold change between 2 and 4, and 5 DEGs had a fold
change >4. Of the down-regulated known genes, 263
DEGs had a fold change between -2 and -4, and 62
DEGs had a fold change < —4. The list of the top 10
known up- and down-regulated DEGs in the breast
muscle of LRFI group, ranked by log2 (fold change)
(log2FC), are showed in Table 2. The most altered genes
in LRFI group were C24HI1orf34 (up-regulated,
log2FC =10.09, false discovery rate (FDR)=0.033) and
RHNOI (down-regulated, log2FC = - 7.57, FDR = 0.017).
Moreover, a complete list of DEGs is presented in
(Additional file 2: Table S2).

Functional enrichment of DEGs

A functional enrichment analysis was performed to re-
veal the potential functional categories of DEGs. Ana-
lysis of Gene Ontology (GO) enrichment for the DEGs
indicated that 212 biological processes terms were sig-
nificantly enriched, which were mainly associated with
‘immune system processes’ and ‘response to stimulus’.
Moreover, the significantly enriched GO terms also in-
cluding 17 cellular component terms and 12 molecular
function terms, which involved in ‘plasma membrane
part’ and ‘carbohydrate derivative binding’. All enriched
GO terms of DEGs are provided in (Additional file 3:
Table S3).
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Enrichment of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways was performed to further
reveal the biological functions of DEGs [21]. Interest-
ingly, genes of ‘oxidative phosphorylation’ were up-
regulated in LRFI group (Fig. 2), while genes of other
enriched pathways were down-regulated in LRFI group
(Table 3). Other enriched pathways of interest including
‘cytokine-cytokine receptor interaction’ and ‘Jak-STAT
signaling pathway’, which were involved in muscle myo-
genesis and regulation of immune response. The
remaining significant enriched signaling pathways, such
as ‘phagosome’, ‘cell adhesion molecules (CAMs)’, and
‘toll-like receptor signaling’, were mainly involved in in-
flammation, immune response, and innate immune
response.

Identification of hub genes and pathways through
protein-protein interaction (PPI) network analysis of DEG
The PPI network analysis was employed to further
analyze and reveal the interaction information of DEGs.
The PPI network of DEGs, including 245 nodes and 942
edge, was constructed in the STRING database and visu-
alized using Cytoscape software (Fig. 3). The cutoff cri-
terion was set as degree >10. Base on the STRING
database, the top 10 genes of DEGs evaluated in the PPI
network using four centrality methods (Table 4). More-

over, we observed the intersections of these four

Table 2 Top 10 known up- and down-regulated differently expressed genes (DEGs) in LRFI group

Gene symbol Log2FC P-value FDR® Description HRFI vs LRFI
C24H110rf34 10.09 5.26E-04 0.033 Chromosome 24 C11orf34 homolog up
FCGBP 577 2.85E-05 0.010 Fc fragment of IgG binding protein up
GUCA2B 527 740E-04 0.035 Guanylate cyclase activator 2B up
MUC2 443 1.59E-04 0.019 Mucin 2, oligomeric ucus/gel-forming up
CDHR2 403 1.16E-03 0.042 Cadherin related family member 2 up
BFSP1 1.87 2A45E-04 0.024 Beaded filament structural protein 1 up
ND2 1.78 4.23E-05 0012 NADH dehydrogenase subunit 2 up
CYTB 1.76 1.22E-05 0.007 Cytochrome b up
ND4 1.68 2.95E-05 0.010 NADH dehydrogenase subunit 4 up
LOC101748207 1.68 7.03E-04 0.034 Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D-like up
AICDA —-5.05 1.44E-04 0.018 Activation induced cytidine deaminase down
LOC107049096 -5.09 1.42E-05 0.007 GTPase IMAP family member 8-like down
TLX2 -5.25 243E-04 0.024 T-cell leukemia homeobox 2 down
LOCT12531272 —543 1.02E-05 0.006 Osteoclast-associated immunoglobulin-like receptor down
LOC107050476 -5.83 8.96E-06 0.006 Uncharacterized LOC107050476 down
TMEM150B -6.27 141E-03 0.045 Transmembrane protein 1508 down
LECT2 —6.64 9.11E-04 0.038 Leukocyte cell derived chemotaxin 2 down
LOC429329 —6.88 1.11E-03 0.041 Solute carrier family 30 member 2 down
SLC30A2 —6.88 1.27E-03 0.043 T-cell-interacting, activating receptor on myeloid cells protein 1-like down
RHNO1 —7.57 1.29E-04 0.017 RAD9-HUS1-RAD1 interacting nuclear orphan 1 down

? FDR false discovery rate
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Fig. 2 Oxidative phosphorylation signaling enriched of differentially expressed genes (DEGs). The DEGs of oxidative phosphorylation signaling
were mainly enriched in complex |, complex Ill, complex IV, and complex V. The scheme shows oxidative phosphorylation signaling and was

visualized by ScienceSlides tool (http://www.visiscience.com/scienceslides). The DEGs of oxidative phosphorylation signaling are shown in the
green box, and the gene symbol in red indicates that the gene is up-regulated in the LRFI group

Table 3 All enriched KEGG pathway-based sets of differentially expressed genes (DEGs) in between RFI groups

Signaling pathways Count B-HP-  Genes®
value
Phagosome 17 0.0001  TLR4, TUBB6, BF2, NCF4, BLBT, CYBB, TLR2B, THBS1, BLB2, ACTB, CTSS, ITGB2, DMB2, TAP1, TAP2,
LOC100859737, YF5
Cell adhesion molecules (CAMs) 15 0.0003  BF2, BLBI, ICOS, BLB2, CD8BP, [TGAS8, [TGB2, PTPRC, NLGN1, DMB2, YF5, [TGA4, VCAMI, PDCDI1LG2
Intestinal immune network for 8 0.0003  BLBI, ICOS, AICDA, BLB2, TNFSF13B, DMB2, ITGA4
IgA production
Cytokine-cytokine receptor 18 0.0003  TNFRSFI18, FASLG, XCRI1, EDA2R, IL18R1, CSF2RA, TNFSF13B, CCLI1, CCR2, IL4R, TNFRSF8, IL18, TNFRSF4,
interaction ILT17RA, IL22RA2, ILTRAP, TNFRSF25, TNFSF4
Oxidative phosphorylation 11 0.0065 ND1, ND2, ND3, ND4, ND4L, ND5, CYTB, COX1, COX2, COX3, ATP6
Toll-like receptor signaling 9 0.0140  TLR4, TLR2B, SPP1, TRAF3, PIK3CB, STATI, PIK3R5, PIK3CD, TLR1B
pathway
Jak-STAT signaling pathway 11 0.0353  CSF2RA, SOCS3, JAK3, PIM1, PIK3CB, STATI, IL4R, PIK3RS5, PIK3CD, IL22RA2, PTPN6
Regulation of actin cytoskeleton 13 0.0412  TMSB4X, ARPCS, RAC2, ITGA8, ACTB, PIK3CB, IQGAP2, ITGB2, ARPCI1B, PIK3R5, PIK3CD, CYFIP2, ITGA4

? Up-regulated genes in LRFI birds are highlighted in bold and down-regulated genes in normal typeface
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Table 4 Top 10 genes evaluated in the protein-protein
interaction (PPIl) network

algorithms and generated a Venn plot (Fig. 4) to identify
significant hub genes using an online website (http://bio
informatics.psb.ugent.be/webtools/Venn/). Finally, the
four hub genes, including RAC2 (Ras-related C3 botu-

Gene Degree Gene EPC Gene  EcCentricity Gene  MNC  linum toxin substrate 2), VCAMI (Vascular cell adhe-
PTPRC 56 L16 134471 TLR4 0141497  PTPRC 56 sion molecule 1), CTSS (Cathepsin S), and TLR4 (Toll
RAC? 50 TIR4 134471 STAT] 0141497  RAC? 50 like receptor 4), were identified. Among these genes,
MYOIF 42 PTPNG 134471 PTPN6 0141497  MYOIF 42 RAC2 showed the ‘hlgheS‘f node degree, whlgh was 50.
The hub genes derived using these four algorithms may
ITGB2 39 CTss 134471 CISS  0.141497 SPIT 39 . sl s . .
represent key candidate genes with important biological
SPi1 39 RAC2 134471 RAC2  0.141497 [TGB2 38 regulatory functions.
VCAMT 38 VCAMT 134471 VCAMT 0141497 (TS5 37 The three significant modules, including module 1
crss 37 ITGB2 134471 ACTB 0141497  VCAMI 37 (MCODE score = 22.33), module 2 (MCODE score = 11),
ACTE 36 ACTB 134471 TAGAP 0141497  IKZF1 35 and module 3 (MCODE score = 5.67), were constructed
HRe 35 D30 134471 FYN 0141497  TiRd 34 from the PPI network of the DEGs by MCODE (Fig. 5)
And then, genes of each module were performed by bio-
IKZF1 - 35 GPR65 134471 LYN 0.141497 MYOIG 33

logical functional enrichment analysis, respectively
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_EcCentricity

Fig. 4 Venn plot to identify significant hub genes generated by four centrality methods. The four methods were Degree, EPC, EcCentricity, and
MNC. Areas with different colors correspond to different algorithms. The cross areas indicate the commonly accumulated differentially expressed
genes (DEGS). The elements in concurrent areas are the 4 hub genes (RAC2, VCAM1, CTSS, and TLR4)

A

(Table 5). Module 1 (Fig. 5a), including 25 nodes and
268 edges, were significantly enriched in ‘immune sys-
tem process’, ‘phagosome’, and ‘cell adhesion molecules
(CAMs)’. Moreover, module 2 (Fig. 5b), including 11
nodes and 55 edges, were markedly enriched in ‘ATP
synthesis coupled electron transport, ‘ATP metabolic
process’, and ‘oxidative phosphorylation’. Furthermore,
module 3 (Fig. 5¢) contains 7 nodes and 17 edges that
are mainly involved in ‘regulation of actin filament
length’, ‘salmonella infection’, and ‘regulation of actin
cytoskeleton’. In addition, a complete result of enrich-
ment analysis of genes in each module are shown in
(Additional file 4: Table S4).

GSEA

We further investigated the difference of gene expres-
sion levels between HRFI and LRFI groups by GSEA.
GSEA was performed using a GO-based list, including
9996 gene sets, and a KEGG-based list, including 186
gene sets. Moreover, the results of GSEA analysis are
presented in Additional file 5: Table S5. Totally, 20 gene
sets, including 14 GO-based gene sets and 6 KEGG-
based gene sets, were identified as significantly enriched
(Table 6) (FDR < 0.05). Positive and negative NES indi-
cate higher and lower expression in LRFI, respectively.
From the GO-based list, interestingly, all higher expres-
sion gene sets in LRFI group were mainly related to
mitochondrial ~ function, such as ‘mitochondrial

membrane part’ (Fig. 6a) and ‘electron transport chain’
(Fig. 6b). On the other hand, the lower expression gene
sets in LRFI group were involved in inflammatory re-
sponse, response to stimulus, molecular transport, and
metabolic process, such as ‘negative regulation of
cytokine-mediated signaling pathway’ (Fig. 6c) and
‘negative regulation of response to cytokine stimulus’
(Fig. 6d). From the KEGG-based list, the higher expres-
sion gene sets in LRFI group were ‘citrate cycle (TCA
cycle)’ and ‘cardiac muscle contraction’. And the higher
expression gene sets in HRFI group were ‘intestinal
immune network for IgA production’, ‘N-Glycan biosyn-
thesis’, ‘apoptosis’, and ‘glycosaminoglycan biosynthesis-
chondroitin sulfate/dermatan sulfate’.

Validation of RNA-seq results

To validate RNA-seq expression profiles, six genes were
selected randomly from all differential expression genes.
These genes are PEPD (peptidase D), SERBPI1 (SER-
PINE1 mRNA binding protein 1), TAP2 (transporter 2,
ATP-binding cassette, sub-family B), LECT2 (leukocyte
cell derived chemotaxin 2), SEC23B (Sec23 homolog B,
coat complex II component), and KLHLI8 (kelch like
family member 18). The samples of qPCR were same as
samples utilized for RNA-seq. The qPCR analysis con-
firmed that the selected genes were differently expressed
between the RFI groups, indicating that RNA-seq results
were accurate and reproducible (Fig. 7).
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Module 1 (25 genes, 268 interaction)

Module 2 (11 genes, 55 interaction)

Cc

Node Fill Color Node Size Node Shape

. Up-regulated gene o O Clustered node of Module

. Down-regulated gene : Seed node of Module
T llog2 (fold change)| —11-

Module 3 (7 genes, 17 interaction)

Fig. 5 The three protein-protein interaction (PPl) hub network modules. The three significant modules, including (a) module 1 (MCODE score =
22.33), b module 2 (MCODE score = 11), and ¢ module 3 (MCODE score = 5.67), were constructed from PPl network of DEGs using MCODE. The
red node represents the up-regulated gene, while the green node represents the down-regulated gene. The seed node of each module was

shaped as diamond and highlight the blue gene symbol. Node size indicated the fold change of each gene

Discussion

In this study, the breast muscle transcriptome data were
obtained from two groups of native chickens with ex-
treme opposing RFI using high-throughput RNA-seq
technology. The gene expression profile was decon-
structed and understood by an integrated bioinformatics
analysis. Firstly, the DEGs were identified from tran-
scriptome data and analyzed by functional annotation.
Secondly, an in-depth analysis of DEGs was performed
by the integration of PPI network and module analysis.
Meanwhile, the hub genes were identified through the
analysis of key nodes in the PPI network. Finally, all
expressed genes were ranked according to the strength
of expression difference, and then a GSEA method was
employed for functional enrichment between RFI
groups. All bioinformatics analyses investigated the dif-
ferences, associations, and enrichment of expressed
genes from the above three different perspectives in

order to further gain a comprehensive biological insight
into the feed efficiency of native chickens.

Functional annotation and biological interpretation of
DEGs

Typical differential expression analysis of transcriptome
data produces a list of hundreds of DEGs, requiring fur-
ther analysis to construct a high-level overview of
changes between the different compared groups [22]. In
this study, a total of 349 known DEGs (24 up-regulated
and 325 down-regulated) were identified from sequen-
cing data. Ontology annotation of DEGs revealed several
biological events related to immune system process, re-
sponse to stimulus and T cell activation. immune sys-
tem process’ was the most significantly enriched GO
term in the LRFI birds relative to the HRFI birds. All
genes of this term were down-regulated in LRFI group.
Moreover, a range of GO terms related to immune



Yang et al. BMC Genomics (2020) 21:292

Page 9 of 18

Table 5 The biological function enrichment analysis of the three protein-protein interaction (PPI) hub network modules

Module Database GO term / pathway B-H P- Genes®
value
Module GO Cell activation 3.13E-06  PTPRC, SPI1, IKZF1, RAC2, DOCK2, PTPN6, PLEK, DOCKS, TLR4, ITGB2
! Immune system process 5.23E-06  PTPRC, SPI1, IKZF1, BLK, RAC2, CCR2, DOCK2, PTPN6, PLEK, IL16,
DOCKS, TLR4, ITGB2
Leukocyte activation 7.68E-06  PTPRC, SPI1, IKZF1, RAC2, DOCK2, PTPN6, DOCKS, TLR4, [TGB2
KEGG Phagosome 0.024684  (CTSS, TLR4, ITGB2
Cell adhesion molecules (CAMs) 0.024684  PTPRC, VCAM1, ITGB2
Module GO Cellular respiration 1.35E-09  ND4L, ND4, ND5, ND1, COX3, CYTB
2 ATP synthesis coupled electron transport 1.63E-09  ND4L, ND4, ND5, COX3, CYTB
ATP metabolic process 270E-09  ATP6, ND4L, ND4, ND5, COX3, CYTB
KEGG Oxidative phosphorylation 1.85E-08  ATP6, ND3, ND4L, ND4, ND1
Metabolic pathways 0.001906 ATP6, ND3, ND4L, ND4, ND1
Module GO Regulation of actin filament length 735E-10  DSTN, WDR1, ARPC5, GMFB, ARPC1B, ACTR3
3 Regulation of actin polymerization or 7.35E-10  DSTN, WDR1, ARPC5, GMFB, ARPCI1B, ACTR3
depolymerization
Actin polymerization or depolymerization 9.09E-10  DSTN, WDR1, ARPC5, GMFB, ARPC1B, ACTR3
KEGG Salmonella infection 0.002892  ARPC5, ARPCI1B
Regulation of actin cytoskeleton 0.010779  ARPC5, ARPCIB

@ Up-regulated genes in LRFI birds are highlighted in bold and down-regulated genes in normal typeface

Table 6 Gene set enrichment analysis (GSEA) between HRFI and LRFI birds

Gene set NES? FDRP Higher expression in HRFI or LRFI

GO-based list (C5, CC, C5.BP, C5.MP)
GO:0044455  Mitochondrial membrane part 2.60 <0.001 LRFI
GO:0022900  Electron transport chain 2.09 0.011 LRFI
GO:0010822 Positive regulation of mitochondrion organization 1.80 0.027 LRFI
GO:0005740  Mitochondrial envelope 1.82 0.029 LRFI
GO:0009205 Purine ribonucleoside triphosphate metabolic process 1.85 0.031 LRFI
GO:0009144 Purine nucleoside triphosphate metabolic process 1.91 0.034 LRFI
GO:0046034  ATP metabolic process 1.85 0.039 LRFI
GO:0001960 Negative regulation of cytokine-mediated signaling pathway -1.77 0.010 HRFI
GO:0060761 Negative regulation of response to cytokine stimulus -1.76 0.011 HRFI
GO:0070588  Calcium ion transmembrane transport -1.74 0012 HRFI
GO:1903169 Regulation of calcium ion transmembrane transport -173 0.015 HRFI
GO:0042439 Ethanolamine-containing compound metabolic process -1.71 0.019 HRFI
GO:0001776  Leukocyte homeostasis -1.70 0.022 HRFI
GO:0008625 Extrinsic apoptotic signaling pathway via death domain receptors -1.70 0.023 HRFI

KEGG-based list (C2.CP:KEGG)
KO00020 Citrate cycle (TCA cycle) 228 0.005 LRFI
KO04260 Cardiac muscle contraction 1.70 0.031 LRFI
KO04672 Intestinal immune network for IgA production —-1.60 0.020 HRFI
KO00510 N-Glycan biosynthesis —-1.57 0.022 HRFI
KO04210 Apoptosis -1.57 0.025 HRFI
KO00532 Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate  —1.52 0.040 HRFI

@ NES normalized enriched score
® FDR false discovery rate
Positive and negative NES indicate higher and lower expression in LRFI, respectively
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Fig. 6 Gene set enrichment analysis (GSEA). GSEA was performed in the HRFI and LRFI groups. The GSEA algorithm calculates an enrichment
score reflecting the degree of overrepresentation at the top or bottom of the ranked list of the genes included in a gene set in a ranked list of all
genes present in the RNA-seq dataset. A positive enrichment score (ES) indicates gene set enrichment at the top of the ranked list; a negative ES
indicates gene set enrichment at the bottom of the ranked list. The analysis demonstrates that known (a) Mitochondrial membrane part and (b)
Electron transport chain, are enriched in LRFI groups, while (c) Negative regulation of cytokine-mediated signaling pathway and (d) Negative
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response, including ‘regulation of immune system
process’, ‘regulation of immune response’, and ‘activation
of immune response’, were found significantly enriched
in LRFI groups. It was widely considered that immune
response may increase maintenance requirements, and
are prioritized overgrowth in terms of nutrient allocation

[23]. Nutrients shifted away from growth toward the
immune-related processes may reduce feed efficiency in
animals during the immune response [24]. Moreover, a
range of GO terms involved with the response to stimu-
lus, such as ‘regulation of response to stimulus’, ‘re-
sponse to stimulus’, and ‘positive regulation of immune
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Fig. 7 Validation of the differential expression genes in the breast muscle of the native chickens. RNA-Seq RNA Sequencing, gPCR quantitative
real-time polymerase chain reaction, PEPD peptidase D, SERBP1 SERPINET mRNA binding protein 1, TAP2 transporter 2, ATP-binding cassette, sub-
family B (MDR/TAP), LECT2 leukocyte cell derived chemotaxin 2, SEC23B Sec23 homolog B, coat complex Il component, KLHL18 kelch like family
member 18, GAPDH glyceraldehyde-3-phosphate dehydrogenase

response’, were found enriched in the LRFI group com-
pared to the HRFI group in breast muscle. Similar to the
genes of GO terms related to immune response, almost
all genes of these GO terms were down-regulated in
LRFI group. A previous study indicated that LRFI heifers
respond differently to hepatic proinflammatory stimulus
and may expend less energy toward combating systemic
inflammation and redirecting nutrients toward growth
and protein accretion [25]. Our finding indicated that
genes related to immune response and response to
stimulus may be important factors contributing to the
difference in feed efficiency. In agreement, it was well
documented that pigs with high feed efficiency showed
lower susceptibility to oxidative stress during production
compared to pigs with low feed efficiency, resulting in
lower inflammatory responses and lower growth impair-
ment [26]. Moreover, a previous study in pigs indicated
that genetic selection for low RFI (high feed efficiency)
resulted in less stress responsiveness [27].

We further analyzed the KEGG pathways of DEGs, in-
cluding 8 significantly enriched pathways. These
enriched pathways focus on immune response, response
to cytokine, energy metabolism, and inflammatory re-
sponse. Among these, the top 3 pathways, including
‘phagosome’, ‘cell adhesion molecules (CAMs)’ and ‘in-
testinal immune network for IgA production’, are associ-
ated with immune response and inflammatory response.
2 pathways, including ‘cytokine-cytokine receptor inter-
action’ and ‘Jak-STAT signaling pathway’, were involved
in the response to cytokine. Cytokines are a group of

proteins that are soluble in water and secreted by vari-
ous cells primarily in response to stimulus and respon-
sible for transmitting messages between cells. It was well
documented that the over-production of pro-
inflammatory cytokines may lead to damage to intestinal
integrity and epithelial function and subsequently re-
duced feed efficiency [28]. These results indicated that
pathways related to immune response and inflammatory
response are associated with feed efficiency. Consistent
with previous studies, it is well established that LRFI pigs
have an up regulated basal colonic inflammatory state
and a heightened response to a lipopolysaccharide (LPS)
challenge compared with the HRFI pigs [29]. A similar
finding suggested that compared with low feed efficiency
pigs, the high feed efficiency pigs could induce a quicker
and more effective hepatic response to inflammatory
stimuli [24].

Interestingly, we found only genes (NDI, ND2, ND3,
ND4, ND4L, ND5, CYTB, COX1, COX2, COX3, and
ATP6) of ‘oxidative phosphorylation’ were up-regulated
in LRFI group, while genes of other enriched pathways
were down-regulated in LRFI group. Based on the figure
of oxidative phosphorylation pathway (Fig. 2), the up-
regulated genes of this pathway appear in major mito-
chondrial complexes, including complex I, complex III,
complex IV, as well as ATP synthase (complex V). These
mitochondrial complexes form the electron transport
chain [30], which coupled the oxidative phosphorylation
to produce energy in mitochondria [31]. Among these,
ND1, ND2, ND3, ND4, ND4L, and NDS5 are the core



Yang et al. BMC Genomics (2020) 21:292

subunits of the mitochondrial membrane respiratory
chain NADH dehydrogenase (complex I), which is the
largest mitochondrial complex and has the entry site of
the NADH electron transfer chain [32]. Notably, ND2,
ND4, and CYTB were top 10 up-regulated DEGs in the
breast muscle of LRFI group compared to HRFI group
(Table 2). ND2 plays a key role in controlling the pro-
duction of the mitochondrial reactive oxygen species
(ROS), which can contribute to oxidative damage to
mitochondrial structure and functions. It was reported
that the missense substitution in the ND2 was signifi-
cantly associated with the production of ROS in Tibet
chicken [33]. ND4 protein is a hydrophobic inner mem-
brane subunit of mitochondrial complex I and is thought
to be involved in the proton translocation function of
complex I [34]. Previous research indicated that the ex-
pression of ND4 and COX 2 was lower in the low feed
efficiency broilers compared with high feed efficiency
broilers [35]. CYTB is one of the 11 subunits of mito-
chondrial complex III, and is the key to maintain the
function of complex III [36]. Mutations in CYTB might
result in the functional failure of complex III, which
could have a negative impact on complex I function
[37]. Moreover, A previous study suggested that the
presence of mtDNA polymorphisms, including ND4,
CYTB, and COX3, affecting respiratory chain complexes
I, III and IV, and were associated with altered ROS level
[38]. The aforementioned results confirmed that LRFI
chickens may have tighter control over ROS production
compared with HRFI chickens through enhancing the
expression of genes related to mitochondrial function.
Coincidentally, it was established that low feed efficiency
broilers produced higher amounts of ROS compared
with high feed efficiency broilers [39]. Moreover, a previ-
ous study suggested that using poor hygiene conditions
to activate mature fat cells isolated from different RFI
pigs could lead to higher ROS production in HRFI pigs
[26]. Hence, it can be inferred that ND2, ND4, and
CYTB were key candidate genes affecting feed efficiency
in native chickens.

Integration of PPl network and module analysis

The alignment and mapping of PPI networks provide
opportunities to further investigate the intrinsic relation-
ship between DEGs through conserved pathways and
protein complexes [40]. Analyzing PPI network is an im-
portant prerequisite for understanding the molecular
basis for complex traits. In our study, the PPI network
was constructed with DEGs, and then the top centrality
hub genes were obtained using four centrality methods.
Finally, we identified 4 hub genes, including RAC2,
VCAMI, CTSS, and TLR4. RAC2 was identified as one
of the hub genes with the highest degree of connectivity.
RAC2 is a key signal transduction factor in inflammatory
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cells and plays a key role in the activation of the various
NADPH oxidases (NOXes) family members, which play
important role in the production of ROS through re-
sponse to receptor agonists such as growth factors or in-
flammatory cytokines [41]. Moreover, a previous study
suggested that RAC2 deficiency inhibits the action of
pro-inflammatory cytokines and chemokines [42]. In
chickens, RAC2 is involved in the production of ROS in
phagosomes of chicken heterophils to kill pathogens
[43]. VCAMI encode vascular cell adhesion molecule-1
and mainly expressed in endothelial cells during inflam-
mation [44]. Dysfunctional endothelial cells express ad-
hesion molecules and release VCAMI, thereby causing
vascular inflammation [45], and this event appears to be
mediated by increased ROS production [46]. CTSS, en-
coding for cathepsin S protein, is implicated in body
weight regulation and the development of obesity [47]. It
was reported that CTSS expression and cathepsin S in
adipose tissue were induced by pro-inflammatory fac-
tors, such as TNF-a and IL-P [48]. TLR4 is a member of
toll-like receptors (TLRs) family, which recognize mainly
microbial membrane components [49]. TLR4 is also the
only known member of the TLR family that engages all
four toll-interleukin receptor (TIR) domains-containing
adaptor proteins to participate in signaling inflammatory
response [50]. A previous study indicated the elevated
TLR4 expression in skeletal muscle expression may lead
to augmented inflammation and chronic disease risk ob-
served with increased adiposity [51].

It is worth signaling that, the four hub genes were
mainly expressed in inflammatory cells. Under normal
circumstances, skeletal muscle is responsible for most
insulin-stimulated glucose processing throughout the
body. Existing evidence suggested that skeletal muscle
myocytes can secrete large amounts of cytokines and
other molecules and may become inflamed in obesity
[52]. Moreover, skeletal muscle myocytes can express
and secrete numerous cytokines such as IL-6, IL-15, and
other molecules such as irisin and myonectin, whereas
most adipokines are pro-inflammatory, regulated by
obesity [53]. Furthermore, a previous study indicated
that immune cells can also cause myocyte inflammation
by secreting pro-inflammatory molecules for adverse
regulatory effects on myocyte metabolism [54]. In sum-
mary, the four hub genes obtained from the PPI network
were up-regulated in skeletal muscle of HRFI chickens
and deeply involved in the production of ROS and in-
flammatory response. In this study, the four hub genes
up-regulated in HRFI chickens, which indicated the
HRFI chickens increased ROS production and inflamma-
tory response. In agreement, a number of studies have
suggested that low feed efficiency pigs showed higher in-
flammatory responses, growth impairment, and ROS
production [26, 29]. Similarly, in the above DEGs
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enrichment analysis, our results indicated that the birds
in the HRFI group up-regulated inflammation-related
pathways, such as ‘phagosome’, ‘cell adhesion molecules
(CAMs), and ‘cytokine-cytokine receptor interaction’,
and down-regulated genes related to mitochondrial
function.

In this study, the HRFI group consumed 8.8% more
feed than the LRFI group. The overconsumption of food
of HRFI chickens may lead to metabolic disorders and
overload of the electron transport chain, which increased
the production of ROS and resulting in cellular oxidative
stress [55]. A previous study indicated that the gener-
ation of ROS level lead to numerous downstream effects,
including triggering inflammatory cascades and increas-
ing production of ROS [56]. In chickens, the blunted in-
flammatory response may reduce feed demand and
stimulate faster muscle growth [57]. Hence, according to
the aforementioned results, it could be hypothesized that
overconsumption of food may increase the risk of over-
load of electron transport chain, which in turn leads to
cellular oxidative stress and inflammatory response,
resulting in increased feed demand and reduced feed ef-
ficiency in HRFI chickens.

To further analyzed the PPI network, we constructed
three significant modules (Fig. 5). In the current study,
the genes of module 1 were up-regulated in HRFI group
and enriched in ‘phagosome’ and ‘cell adhesion mole-
cules (CAMs)" pathway. The seed node of module 1 is
IL16, which is a polypeptide pro-inflammatory cytokine
that plays a key role in most immune and inflammatory
responses [58]. This result further confirmed the above
surmise that HRFI chickens increased inflammatory re-
sponse. Genes of module 2 were up-regulated in LRFI
chickens and enriched in ‘oxidative phosphorylation’ and
‘metabolic pathways’. The seed node of module 2 is
ATP6, which plays a crucial role in the proton channel
of ATP synthase (complex V). A previous study indi-
cated that the mutation of ATP6 gene may make Ti-
betan chickens easier to convert energy and metabolize
than Chinese native chickens [59]. This finding is con-
sistent with the above results that LRFI chickens en-
hanced expression of genes related to mitochondrial
function. Genes of module 3 are involved actin cytoskel-
eton, which implicated in the regulation of cell motility
[60]. Thus, it can be speculated that the ‘phagosome’
and ‘cell adhesion molecules (CAMs), and ‘oxidative
phosphorylation’ were key pathways affecting feed effi-
ciency in native chickens.

Gene set enrichment analysis

In the current study, we used GSEA method to convert
the RNA-seq count data into biological interpretations.
In this way, we do not rely on any arbitrarily predefined
threshold to select ‘interesting’ genes or pathways for
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function analysis. And GSEA can accurately and reliably
detect gene sets with biological meaningful [17]. In this
study, based on the GO-based list, all higher expressed
gene sets in LRFI group were mainly related to mito-
chondrial function. Among these, the ‘mitochondrial
membrane part’ and ‘electron transport chain’ were sig-
nificantly enriched gene sets (Fig. 6). These results indi-
cated that LRFI chickens increased mitochondrial
function, especially in function of electron transport
chain. The results were consistent with the former func-
tion analysis of DEGs that LRFI chickens enhanced the
expression of genes related to mitochondrial complexes,
which form the electron transport chain (Fig. 2). ‘Nega-
tive regulation of cytokine-mediated signaling pathway’
and ‘negative regulation of response to cytokine stimu-
lus” were higher expressed in HRFI chickens. This result
indicated that the aforementioned two pathways related
to cytokine, including ‘cytokine-cytokine receptor inter-
action’ and ‘Jak-STAT signaling pathway’, should deserve
more attention in further research.

Base on the KEGG-based list, we found that ‘citrate
cycle (TCA cycle) was the most significantly enriched
gene set, with higher expression in LRFI group com-
pared with HRFI group. It was well known that the TCA
cycle is the major common pathway for oxidation of car-
bohydrates, lipids, and some amino acids, and finally re-
sults in the production of large amounts of adenosine
triphosphate (ATP) via oxidative phosphorylation [61].
This result indicated that LRFI chickens increased the
expression of genes of the ‘citrate cycle (TCA cycle)
pathway in skeletal muscle. It was well documented that
mitochondria are involved in ATP synthesis through the
TCA cycle and oxidative phosphorylation [62]. Based on
the above analysis, we speculated that compared with
the HRFI chickens, LRFI chickens may synthesize ATP
more effectively by enhancing TCA cycle and oxidative
phosphorylation in skeletal muscle. In agreement, a re-
cent study suggested that high feed efficiency broilers
enhanced expression of the energy production in breast
muscle [63]. Moreover, a recent study in pigs suggested
that compared with HRFI pigs, LRFI pigs might be more
efficient in energy utilization during skeletal muscle
growth [64]. Furthermore, a previous study indicated
that high feed efficiency pigs can use nutrients more ef-
fectively to promote growth than low feed efficiency pigs
[24]. Collectively, our results of GSEA indicated that
LRFI chickens had higher expression of genes related to
mitochondrial function compared with HRFI chickens,
and the ‘citrate cycle (TCA cycle)’ may be a key pathway
to influence the feed efficiency of native chickens.

Conclusions
In summary, we performed RNA-seq analysis on breast
muscle derived from native chickens with extreme
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opposing RFI. Enrichment and interaction analysis of
DEGs and GSEA method were employed for further
analysis to construct a high-level overview of changes
between the different RFI groups. Our results indicated
that ND2, ND4, CYTB, RAC2, VCAM1, CTSS and TLR4
were key genes affecting feed efficiency of native chick-
ens, and they may influence feed efficiency through deep
involvement in ROS production and inflammatory re-
sponse. Function analysis of DEGs and GSEA analysis
suggested that genes related to immune response, mito-
chondrial function, response to stimulus, and inflamma-
tory response are associated with feed efficiency.
Moreover, the ‘phagosome’, ‘cell adhesion molecules
(CAMs)), ‘citrate cycle (TCA cycle)’ and ‘oxidative phos-
phorylation” were key pathways contributing to the dif-
ference in feed efficiency. Among these, Genes and
pathways related to inflammatory response and immune
response were up-regulated in HRFI chickens, while
genes and pathways related to mitochondrial function
were up-regulated in LRFI chickens. Our study indicated
that HRFI chickens may face more oxidative stress and
the consequent increased inflammatory response, while
LRFI chickens may synthesize ATP more efficiently and
control ROS production more strictly by enhancing the
mitochondrial function in skeletal muscle. The inter-
action between inflammatory response and mitochon-
drial function in skeletal muscle needs further
investigation to understanding the underlying molecular
mechanisms affecting the feed efficiency of native
chickens.

Methods

Birds and RFI calculation

A pedigreed chicken population was established from a
random breed population, 200 males mated with 1000
females obtain 4500 chickens in one hatch. All birds
used in the current study were provided by Qingyang
Pingyun Poultry Conservation and Breeding, Co. Ltd.
After hatch, a total of 2500 male Wannan Yellow
chicken were selected and raised as experimental popu-
lations. At 56 day of age, a total of 1008 chickens with
similar body weight were selected and transferred to in-
dividual cage, each cage measuring 45 cm x 35 cm x 50
cm. All chickens had access to water ad libitum. All
chickens were fed the same diet throughout the experi-
ment period, which provided by Qingyang Pingyun
Poultry Conservation and Breeding, Co. Ltd.

The feed intake and ADFI were measured at 56-98 d
of age. The BW56 and BW98 were recorded to calculate
the MBW®”°, BWG, and ADG. FCR was calculated by
FI and BWG, RFI is calculated as difference between the
actual and expected FI using the model as follows [20]:

RFI = ADFI — (bg + b;ADG + byMBW*7),
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where ADFI, ADG, and MBW®7” are the average daily
feed intake, average daily body weight gain, and meta-
bolic body weight, respectively. Additionally, b, is the re-
gression intercept, b; is the partial regression coefficient
of ADFI on ADG, and b, is the partial regression coeffi-
cient of ADFI on metabolic weight. The RFI values were
calculated using the regression procedure of SAS (ver-
sion 9.4, SAS Inst. Inc.,, Cary, NC). After excluding out-
lier data (total 1.5%), all chickens were ranked according
to the RFI value. 30 highest RFI (HRFI) chickens and 30
lowest RFI (LRFI) chickens were selected as HRFI and
LRFI group.

All animal performance data showed in the table are
expressed as least square means + standard error of the
mean (SEM). Student’s ¢-test was used to analyze the
feed efficiency difference between HRFI and LRFI
groups. The probability value was P <0.05, indicating
statistical significance.

RNA extraction and sequencing
At the age of 98 days, 5 birds were randomly selected
from HRFI group and LRFI group, respectively. All birds
were manually killed by cervical dislocation. The pector-
alis major was immediately collected and stored in liquid
nitrogen and subsequently transferred to the laboratory
and stored at — 80 °C for further use (RNA sequencing).
Total RNA was extracted from the pectoralis major
(100 mg) using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) based on the manufacturer’s instructions.
RNA quality was determined by measuring the absorb-
ance at 260, 280 and 230nm using NanoDrop 2000
(Thermo Fisher Scientific). The reference 260/280 ratio
and 260/230 ratio for the RNA sample were 1.8 to 2.0
and 1.8 to 2.2, respectively. The integrity number was
tested by Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA, 2009). Only RNA integrity number equal to
or higher than 7.0 was RNA used for the next analysis.
After total RNA was extracted and checked, all sam-
ples were sent to Genedenovo Biotechnology Co., Ltd.
(Guangzhou, China) for cDNA library construction. All
samples were sequenced using the Illumina HiSeq 4000
platform (Illumina, San Diego, California, USA).

RNA-seq data analysis
Before read alignment, the quality control of raw se-
quence reads was performed using the FastQC program
(version 11.5, http://www.bioinformatics.babraham.ac.
uk/projects/fastqc/) and nucleotide calls with a quality
score of 30 or higher were considered high quality clean
reads. Adapters and low-quality reads were trimmed
using the Cutadapt (1.14) such that the average base
quality was greater than 20.

After trimming, the processed reads were then aligned
to the chicken reference genome GRCgba (GCA_
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000002315.5) using the alignment program Tophat2
(version 2.1.1, http://ccb.jhu.edu/software/tophat/index.
shtml). The reference genome and annotated file were
obtained from the Ensembl database (http://asia.
ensembl.org/Gallus_gallus/Info/Index). ~ After aligned
with the reference genome, unmapped reads were then
re-aligned with Bowtie2, the enriched unmapped reads
were split into smaller segments which were then used
to find potential splice sites. Then, a reference
annotation-based transcript assembly for each sample
was performed using the Cufflinks (version 2,2,1). The
fragments per kilobase of exon per million reads (FPKM)
value was used to quantify the gene expression levels. In
addition, all assembled transcripts of all samples were
merged to improve the overall quality of assembly by
merging new and mapped transcripts into a single as-
sembly and deleting artificial structures.

Identification of differently expressed genes (DEGs) and
function annotation analysis

DEGs were identified using Cuffdiff (version 2.2.1), here,
only identified transcripts with a fold change > 2 or < 0.5,
and a false discovery rate (FDR)<0.05 were used for
subsequent analysis.

To identify the biological function related to the
DEGs, the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways and Gene Ontology (GO) terms (CC,
Cellular Component, MF, Molecular Function, BP,
Biological Process) were investigated using the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) (version 6.8, https://david.ncifcrf.gov/) [65].
The GO terms and KEGG pathways with Benjamini-
Hochberg (B-H) P value < 0.5 were considered to be sta-
tistically significant enrichment.

Protein-protein interaction (PPI) network construction and
modules selection

The Search Tool for the Retrieval of Interacting Genes
(STRING) database was used to obtain PPI data. Map-
ping DEGs to STRING to evaluate the interactive rela-
tionship, with a confidence score>0.9 defined as
significant. PPI network of DEGs was visualized by
Cytoscape (http://cytoscape.org/), which is an open
source software for visualizing complex networks and in-
tegrating them with any type of attribute data. The Cyto-
Hubba application in Cytoscape was performed to
analyze the hub genes through four centrality methods,
including Degree, EPC, EcCentricity, and MNC [66].
The Molecular Complex Detection (MCODE) [67] appli-
cation in Cytoscape was used to screen the modules of
the PPI network. The criteria setting of MCODE is: de-
gree cutoff = 2, node score cutoff = 0.2, k-core = 2, max-
imum depth = 100. Moreover, the function and pathway
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enrichment analysis was performed for genes in the
modules.

Gene set enrichment analysis (GSEA)

All expressed genes, regardless of whether they were dif-
ferentially expressed in either case, were used for GSEA
analysis. Gene set analysis was analyzed by GSEA software
(http://software.broadinstitute.org/gsea/index.jsp)  based
on C5, CC, C5.BP, C5.MP, and C2.CP:KEGG gene set col-
lections (MSigDB v7.0, broad institute, Cambridge, MA,
USA) [68]. GSEA first ranked all expressed genes accord-
ing to the significance of differential gene expression be-
tween the HRFI and LRFI groups. The enrichment score
for each gene set is then calculated using the entire ranked
list, which reflects how the genes for each set are distrib-
uted in the ranked list. Normalized enriched score (NES)
was determined for each gene set. The significant enrich-
ment of gene set was selected based on the absolute values
of NES > 1, nominal P-value of NES < 0.05, and false dis-
covery rate (FDR) < 0.05 [69].

Validation of RNA-seq through quantitative real-time PCR
(qPCR)

Following ¢cDNA synthesis from 1 pg of total RNA and
in presence of random primers (Promega, Mannheim,
Germany), these primers were designed using Primer 5.0
software and synthesized by the Nanjing Tsingke bio-
logical technology Co. Ltd. (Nanjing, China). The primer
sequences are provided in (Additional file 6: Table S6).
First-strand complementary DNA  (cDNA) was
synthesized using one-step gDNA Removal and cDNA
Synthesis SuperMix (TransGen Biotech Co., Ltd,
Beijing, China) according to the manufacturer’s instruc-
tions. qPCR was carried out on a 7500 Real-Time PCR
apparatus (Applied Biosystems, Warrington, UK) using
the SYBR Green Master Mix (Biomiga, San Diego, CA,
USA). The efficiency of the quantitative PCR reaction
was verified by creating a standard curve from fivefold
serial dilutions of cDNA. PCR reactions were carried out
in a final volume of 20.0 uL, which contained 1.0 uL of
1000 ng cDNA, 1.0 pL of 10 uM forward and reverse pri-
mer mix, 10.0 uL 2 x SYBR green Master Mix, 8.0 uL
RNase-free ddH,O. Samples were run in triplicate. The
quantitative PCR program was at 95.0°C for 5 min,
40 cycles of 95.0°C for 15s and 60.0°C for 1.0 min,
followed by a melting curve program was 1 cycle of
95.0°C for 155, 60.0°C for 1.0 min, 95.0°C for 15s,
60.0°C for 15s. The qPCR results were detected
using a dissociation curve analysis and gel electro-
phoresis. CT-method was utilized to quantify the
changes in the gene expression, whereas GAPDH
served as a housekeeping for normalization. Relative
gene expression was calculated using 2°**“"T method
according to a previous study [70].
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