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Abstract: The VAP proteins are integral adaptor proteins of the endoplasmic reticulum (ER) mem-
brane that recruit a myriad of interacting partners to the ER surface. Through these interactions, the
VAPs mediate a large number of processes, notably the generation of membrane contact sites between
the ER and essentially all other cellular membranes. In 2004, it was discovered that a mutation
(p.P56S) in the VAPB paralogue causes a rare form of dominantly inherited familial amyotrophic
lateral sclerosis (ALS8). The mutant protein is aggregation-prone, non-functional and unstable,
and its expression from a single allele appears to be insufficient to support toxic gain-of-function
effects within motor neurons. Instead, loss-of-function of the single wild-type allele is required for
pathological effects, and VAPB haploinsufficiency may be the main driver of the disease. In this
article, we review the studies on the effects of VAPB deficit in cellular and animal models. Several
basic cell physiological processes are affected by downregulation or complete depletion of VAPB,
impinging on phosphoinositide homeostasis, Ca2+ signalling, ion transport, neurite extension, and
ER stress. In the future, the distinction between the roles of the two VAP paralogues (A and B), as
well as studies on motor neurons generated from induced pluripotent stem cells (iPSC) of ALS8
patients will further elucidate the pathogenic basis of p.P56S familial ALS, as well as of other more
common forms of the disease.

Keywords: endoplasmic reticulum; FFAT motif; membrane contact sites; motor neurons; neurode-
generation; phosphoinositides; VAP proteins

1. Introduction

Amyotrophic lateral sclerosis (ALS) is an adult-onset incurable disease, with an inci-
dence of about 1/50,000 per year, defined by the degeneration of both upper and lower
motor neurons (MN). MN degeneration is followed by muscle denervation and atrophy;
death, due to respiratory failure, usually occurs within three years from the initial diagnosis.
Most cases of ALS arise in individuals without a family history of the disease and are thus
referred to as sporadic ALS (sALS); in contrast, ~10% of cases, termed familial ALS (fALS),
are transmitted within families [1].

Although fALS is far less common than sALS, much effort has been devoted to
identifying its genetic causes and to characterising the underlying cellular pathways.
Indeed, because of the similarity of the clinical pictures of the sporadic and familial forms,
and because a genetic component is implicated also in sALS [2–4], it is thought that
unravelling the mechanisms of fALS pathogenesis will eventually also translate to a better
understanding of sALS.

Since the discovery of the first fALS-linked gene—the one coding for Cu/Zn superox-
ide dismutase (SOD1- [5])—nearly 30 monogenic disease genes plus additional genetic risk
factors have been discovered [4,6]. Currently, the identified loci account for approximately
70% and 10% of fALS and sALS cases, respectively [6]; thus, at nearly thirty years from the
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recognition of the causal link between SOD1 and fALS, the search for additional genes is
still on.

The numerous disease genes discovered so far have been broadly classified into a
limited number of functional categories, comprising RNA metabolism, DNA damage re-
sponse, mitochondrial functionality, protein homeostasis (proteostasis), protein trafficking,
cytoskeletal and axonal dynamics [7–9]. Even so, the numerosity and diversity of the
disease genes suggest multiple mechanisms of ALS pathogenesis: the disease is likely to be
triggered by perturbations of different processes that all converge on to final, ALS-defining,
MN death programmes. An in depth understanding of the different events upstream to
the death pathways may lead to the recognition of different sALS subtypes, with prospects
for the development of targeted therapeutic strategies.

In 2004, a missense mutation in the VAPB gene (p.P56S) was discovered to be the
cause of a dominantly inherited slowly progressing form of fALS (known as ALS8), as
well as of typical rapidly progressing fALS and spinomuscular atrophy, in a large cohort
of Brazilian families of Portuguese origin [10]. VAPB and its paralogue VAPA are integral
membrane proteins of the endoplasmic reticulum (ER), which, because of their prominent
role in tethering the ER to the cytosolic surface of all other organelles, are key players in
interorganellar communication ([11,12]—see Section 2).

The mutation in all the affected Brazilian families was inherited from a single founder
living in the mid-15th century in Portugal, from where the mutation was brought to
Brazil during the colonial period [13]. Subsequently, the same VAPB p.P56S mutation was
discovered in unrelated subjects in North America [14], Germany [15], and China [16].
Other fALS-linked VAPB mutations have since been discovered [17–19] but have been less
investigated than p.P56S.

From the time of its identification as disease gene, the role of VAPB in ALS pathogenesis
has been intensively investigated, in parallel with explosive developments in the under-
standing of the multiple roles of the VAP proteins in cellular physiology (reviews: [20–22]).
These developments have provided a unique basis to unravel at the molecular level the
link between VAPB and ALS pathogenesis, as will be discussed in this review article. The
interest is heightened by the observation that VAP levels are decreased in sALS patients’
cells, as well as in a mouse model of fALS caused by a gene unrelated to VAPB [23–26].
Hence, although d mutations are rare, understanding the role of the encoded protein in
fALS8 is expected to yield insights into the more common sporadic forms of the disease.

2. The VAP Proteins: Structure and Function

The VAMPs-associated proteins (VAPs), so named because of their capacity to associate
with vesicle associated membrane protein (VAMP) [27], are tail-anchored proteins of the
endoplasmic reticulum, which function as adaptors, recruiting a large variety of proteins
to the cytosolic surface of the ER (reviews: [20–22]). At the N-terminus, the VAPs present
an immunoglobulin-like seven-stranded β sandwich known as the major sperm protein
(MSP) domain [28–30], which is crucial to VAP functions; this is followed by a predicted
coiled-coil region, and, at the C-terminus, a hydrophobic sequence, which anchors the
VAPs to the ER bilayer (Figure 1A). Vertebrates express two VAP paralogues, VAPA and B,
which share a large part of their sequence, especially in the MSP domain (82% identity).
The VAP proteins can form homodimers as well as VAPA-B dimers, thanks to interactions
between their transmembrane (TM) helices and predicted coiled-coil regions [31–33].
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Figure 1. Structure and interactions of the VAP proteins. (A) Domain organisation and membrane topology of the VAPs. 
Interactions between FFAT motifs and the MSP domain, as well as those involving the TM helix, are indicated. (B) Sche-
matic representation of four sites of action of the VAPs, involving processes that are perturbed by the deficit of the VAPB 
paralogue. Each of the four processes, and how they are affected by VAPB deficit, are discussed in Sections 4.1–4.4. 1: ER-

Figure 1. Structure and interactions of the VAP proteins. (A) Domain organisation and membrane topology of the VAPs.
Interactions between FFAT motifs and the MSP domain, as well as those involving the TM helix, are indicated. (B) Schematic
representation of four sites of action of the VAPs, involving processes that are perturbed by the deficit of the VAPB paralogue.
Each of the four processes, and how they are affected by VAPB deficit, are discussed in Sections 4.1–4.4. 1: ER-mitochondria
contact sites; 2: ER-Golgi contact sites; 3: regulation of HCN channels; 4: UPR and PQC. (C) Zoom-up images of sites 1–4 of
panel (B), illustrating the underlying VAP interactions. For each site, the interacting proteins (or portions thereof) are shown
in red. VAP is in yellow. Interactions between the MSP and FFAT motifs are indicated by complementary surfaces, which
are purposely not drawn in cases where an FFAT motif is not involved in the interaction. VAP and PTPIP51 are redrawn
from Ref. [34] and the FAF1 interactions (panel 4) are adapted from [35] (Creative Commons license). Phospholipid bilayers,
UPR sensors, and the proteasome are adapted from Biorender (https://biorender.com/).

https://biorender.com/
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The VAPs function by recruiting protein ligands from the cytosol to the surface of the
ER, but can also associate with some protein partners within the ER bilayer, via interactions
between the TM domains (Figure 1A). The association of many (but not all) of the cytosolic
partners is mediated by the so-called FFAT motif (two phenylalanines in an acidic tract—
consensus sequence: EFFDAXE) within the ligand [36], which binds to an electropositive
region running transversely across four of the seven β strands of the MSP, flanked by
two hydrophobic pockets [28–30]. Studies aimed at defining the full complement of VAP
interactors have revealed that significant deviations from the initially defined consensus are
tolerated [21,37–39]. The complexity of the VAP interactome (VAPome) is further increased
by the discovery that some motifs that deviate from the initially defined consensus are
regulated by phosphorylation (phospho-FFAT motifs [40–42]). The uniquely large number
of interactions of the VAP proteins underlies the very many functions that they carry out,
as summarised in Table 1.

An important subset of VAP interactors serve as bridges that connect the ER to essen-
tially every other organelle in the cell, leading to the close apposition (~5–30 nm) of regions
of the ER and tethered organelle membranes, to form structures known as membrane
contact sites (MCS). These structures, whose importance has been recognised relatively
recently, allow communication between organelles in the absence of fusion between the
bounding membranes, and are, notably, sites of lipid and Ca2+ exchange [11,12,43,44].

In summarising VAP functions (Table 1), we have made no distinction between the
two VAP paralogues, because the degree of overlap between VAPA and B functions is
as yet unclear. Indeed, systematic investigations of the VAP interactome have failed to
reveal any important differences between the two paralogues (e.g., [38]). Furthermore, to
our knowledge, there is no one function that has been clearly demonstrated to be carried
out exclusively, or preferentially, by VAPB. Elucidation of the division of labour between
the two VAPs would represent an important step towards understanding the pathogenic
mechanism of VAPB mutations. To be noted, invertebrates have only one VAP orthologue,
which presumably carries out all the essential functions of the two vertebrate VAPs.

Table 1. Interactions of the VAP proteins and their functional roles *.

VAP Interacting Protein Functions References

Interactions at Contact Sites

ER-Golgi complex

OSBP #

Lipid Transport Protein (LTP) that regulates
phosphatidylinositol-4-phosphate (PI4P) and
cholesterol levels at Golgi membranes, by
transferring cholesterol from the ER to the Golgi
with back transfer of PI4P from the Golgi to
the ER.

[45]

CERT
LTP that transfers ceramide (precursor of
glycosphingolipids and sphingomyelin) from the
ER to the Golgi

[46,47]

FAPP2

LTP that mediates glucosylceramide transfer to
the trans Golgi. The lipid-transfer activity of
FAPP2 is required for its role in
membrane trafficking.

[39,48]

FAPP1

In addition to interacting with VAP, it binds the
ER phosphoinositide phosphatase SAC1,
allowing it to hydrolyse PI4P in trans at
the Golgi.

[49]

NIR2 Transport of PI from the ER to the Golgi, where it
is phosphorylated to generate PI4P. [50]
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Table 1. Cont.

VAP Interacting Protein Functions References

ER-Plasma
Membrane (PM)

NIR2/3

Transfer of phosphatidylinositol (PI) from the ER
to the PM and delivery of phosphatidic acid
from the PM to the ER. Maintenance of PM lipid
composition and identity.

[51]

Kv2.1 Potassium
channels §

Creation of dynamic membrane microdomains
for potassium channels clustering at PM.
VAP-Kv2 interaction facilitates recruitment to the
PM of Nir2/3 PI transfer proteins, thus
contributing to phosphoinositide homeostasis.

[40,52]

ORP3 §

Regulation of PI4P homeostasis and Ca++

dynamics by activating Protein Kinase C.
Interacts with the small GTPase R-Ras,
regulating cell adhesion, spreading and
migration. Involved in the formation of
membrane protrusions and in the regulation of
actin cytoskeleton

[53,54]

ER-Endosomes/Lysosomes

StARD3, StARD3NL Cholesterol sensing and regulation of endosome
morphology, positioning and dynamics [55]

OSBP-related Protein
ORP1L

Cholesterol sensing; regulates cholesterol egress
from the endo-lysosomal system; negatively
regulates dynein association with Late
Endosomes (LEs)

[56,57]

OSBP PI4P transport from endosomes to the ER [58]

VPS 13C Non vesicular lipid transfer [59]

Retromer SNX2 subunit SNX2 tethers ER to endosomes through VAP at
sites of actin- regulated budding [58]

ER-Mitochondria

PTPIP51 Calcium homeostasis and regulation of
mitochondrial energy metabolism; Autophagy [60–62]

VPS13 A and D §
Non vesicular lipid transport through
hydrophobic channel; Regulation of
mitochondria size, shape and clearance

[42,59,63]

α-synuclein

Overexpression of wild-type and familial
Parkinson’s disease mutant α -synuclein
disrupts the VAPB-PTPIP51 tethers and
loosens ER–mitochondria associations

[64]

MIGA-2 §

Outer mitochondrial membrane protein that
mediates a three-way contact between the ER,
mitochondria and LDs. Coordination of
mitochondrial metabolism with triglyceride
production in the ER, facilitating lipid storage in
LDs and promoting adipocyte differentiation

[65,66]

ER-lipid droplets VPS13A
VPS13C Non vesicular lipid transfer [59]

ER-Peroxisomes
VPS13D Non vesicular lipid transfer. Regulation of

peroxisomal biogenesis [67]

ACBD5 Regulation of peroxisome motility and growth [68,69]

ER-Isolation Membrane
FIP200
ULK1
WIPI2

Interaction with these autophagy proteins
modulates autophagosome biogenesis. [70]
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Table 1. Cont.

VAP Interacting Protein Functions References

Interactions within the ER

Protrudin

VAP -protrudin interaction is required for
protrudin’s function at Late Endosome (LE)–ER
contacts. Protrudin transfers kinesin-1 from the
ER to LEs thereby promoting
microtubule-dependent translocation of LEs to
the cell periphery and neurite elongation

[71,72]

YIF1A

ER-Golgi trafficking protein regulated by VAP.
The interaction is mediated by VAP’s TM
domain and is important for both axon and
dendrite extension

[73]

SAC1

This phosphoinositide phosphatase
hydrolyses PI4P to PI in the ER, thus
maintaining a PI4P chemical gradient between
the Golgi and the ER, which drives
OSBP-mediated cholesterol/PI4P exchange at
Golgi-ER contact sites. The interaction with
VAPB recruits SAC1 to these contact sites.

[49,74]

ATF6 The interaction with VAP may attenuate ATF6’s
transcriptional activity, thus regulating ER stress. [75]

HCN Channels

Hyperpolarisation-activated cyclic
nucleotide-gated channels that play a key role in
the regulation of cardiac and neuronal
pacemaker depolarisation. VAPB favours
channel expression on the cell surface. The
interaction is mediated by the TM domains.

[76]

Nuclear Envelope

Emerin

Inner nuclear membrane protein involved in
nuclear envelope assembly. Loss of VAPB causes
delocalisation of emerin to a cytoplasmic
compartment.

[77,78]

ELYS Nucleporin required for nuclear pore assembly [78,79]

Other Interactions

CALCOCO1 CALCOCO1 is an ER-phagy receptor [80]

Rab3 GTPase activating
protein 1(Rab3GAP1) Implicated in nuclear envelope formation [81]

Secernin 1 (SCRN1) Modulation of Ca++ dynamics and synaptic
vesicle cycling at presynaptic sites [82]

FAF1

Ubiquitin-binding adaptor for the AAA ATPase
p97/VCP, involved in retrotraslocation of
proteins from the ER to the cytosol in the
ER-associated Degradation Pathway (ERAD)

[83]

AKAP 220 and 110 Recruitment to the ER of PKA [39]
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Table 1. Cont.

VAP Interacting Protein Functions References

Viral Proteins

Hepatitis C virus (HCV)
NS5A and NS5B

non-structural proteins

Interaction of these viral nonstructural proteins
with the VAPs is required for viral replication.
The VAPs contribute to anchoring, assembly and
functioning of the viral replication machinery in
close contact with the host cell ER membrane. In
particular, recruitment of host cell
VAP-interacting proteins (such as
OSBP/PI4P/SAC1) results in the formation of
membrane contact sites (MCS) between the ER
and viral replication organelles (RO) and transfer
of lipids (cholesterol) to the RO membrane
(reviewed in [84,85])

[86–89]

NS3-4A HCV non-structural
protease complex [90]

Norovirus non-structural
proteins NS1/2 [91]

Aichi Virus non
structural proteins [92]

Bacterial Proteins

IncV Chlamydia inclusion
membrane protein

IncV promotes the formation of membrane
contact sites between the host ER and the
pathogen-containing vacuole in a
VAP-dependent manner.

[93]

* The table reports only the results obtained in mammalian cells and is limited to interactions whose functional significance is supported
experimentally. # Proteins indicated in red interact with VAPs through a FFAT or FFAT-like motif, while proteins whose interactions are not
mediated by the FFAT motif are indicated in blue. § Phospho-FFAT motif.

We highlight here three additional points, which are relevant to the understanding of
the link of the VAPB gene with fALS8:

(1) In most analysed tissues, including spinal cord, as well as in cell lines, VAPA is
expressed at higher levels than VAPB, both at the mRNA and at the protein level
(www.genecards.org; www.ebi.ac.uk/gxa; www.gtexportal.org [38]). For instance, in
a murine model MN cell line (NSC34) VAPA was found to be ~5 fold more abundant
than the B paralogue [94]), and an even higher excess was reported for HeLa cells [95].

(2) In mice, VAPA knockout is embryonic lethal [91], whereas deletion of VAPB is compat-
ible with survival into adulthood [96]. The difference in the tolerance of the animals
to knockout of each of the paralogues could be due to the higher abundance of VAPA,
so that its absence results in a larger reduction of the total VAP pool than does VAPB
deletion; alternatively, or in addition, the different sensitivity could be due to the
existence of an essential function of VAPA that VAPB cannot carry out.

(3) Given the very many functions that the VAPs are involved in (Table 1), it is impossible
to assign the VAPB gene a priori to any of the functional categories in which ALS-
linked genes have been classified (Section 1). Indeed, it fits into many of them.

3. The p.P56S Mutation: Loss or Gain of Function?

The proline residue, which is substituted with serine as a consequence of the p.P56S
mutation, is in a conserved position of the MSP domain of VAPB (see Section 2), adjacent
to the FFAT binding site. The substitution of Pro with Ser at this position causes the
protein to become aggregation-prone [30,33,97], and indeed large P56S-VAPB aggregates
are readily observed in transfected cells [10,23,32,98–101] and in tissues of transgenic
animals [102–110]. Aggregation results in a profound restructuring of the portion of the ER
where the mutant protein is concentrated, as revealed by ultrastructural analyses [100,101].
Indeed, the P56S-VAPB inclusions consist in stacks of a small number of undulating ER
cisternae (generally two or three) separated by an electron-dense layer of cytosol. Within
these inclusions, the mutant protein is unable to interact, or interacts poorly, with FFAT-
containing ligands [23,33,99,105,111].

Despite the dramatic phenotype induced by overexpressed P56S-VAPB, the inclusions
it forms are easily cleared by the proteasome [101,112] and thus are unlikely to accumulate

www.genecards.org
www.ebi.ac.uk/gxa
www.gtexportal.org
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significantly in patients’ cells, in which the mutant protein is expressed from a single allele.
In agreement, P56S-VAPB inclusions have not so far been detected in MNs generated
from ALS8 patients’ induced pluripotent stem cells (iPSC) [113] or in patients’ cultured
fibroblasts [14].

Because of the dominant inheritance of ALS8, and because of the role that protein
aggregates play in many neurodegenerative diseases, including ALS [114], many stud-
ies following the discovery of the p.P56S mutation addressed the effects of the mutant
protein overexpressed in cells and in animals. Depending on the system investigated,
the aggregates were observed to sequester an ion channel, preventing its transport to the
cell surface [76], and to trap proteins involved, for instance, in membrane traffic [73], in
proteostasis [104–106,109], in the generation of MCS [60,69]—but see also [111]), in phos-
phoinositide metabolism [110]. These observations were consistent with the idea that the
P56S-VAPB inclusions could be harmful to MNs by a toxic gain-of-function mechanism. In
addition, and importantly, many studies found that the inclusions can sequester the prod-
uct of the wild-type VAPB allele, both in transfected cells [23,32,33,99] and in transgenic
animals [107–109], supporting a dominant negative loss-of-function pathogenic mecha-
nism of the mutant. The significance of all these studies is, however, limited by the high
levels of overexpression of the mutant protein, not consistent with those obtained when
expression is from a single allele, as in ALS8 patients’ cells. Contrasting the hypothesis
of a pathogenic action of P56S-VAPB aggregates, a critical survey of the animal studies
leads to the conclusion that the expression of the mutant protein is, by itself, insufficient to
cause MN disease, as discussed in more detail in a recent review article [115]. The main
arguments supporting this conclusion are summarised in the next paragraphs.

Of the four transgenic mouse lines that have been generated [102–105], only one, in
which the mutant protein was highly overexpressed, developed motor symptoms [104],
despite the presence of VAPB aggregates in the MNs in all four of them. Similarly, in
Drosophila, a model organism that has been extensively used to model ALS8 [116,117],
most studies have been carried out under conditions of overexpression; when moderate
and similar levels of the mutant protein and wild-type protein were co-expressed, no
pathology nor reduced survival were observed [118]. In stark contrast, a knock-in mouse,
in which the mutant gene replaces the wild-type one, did develop motor symptoms and
partial denervation of lower MNs [106]. Importantly, such symptoms developed also in
heterozygote mice, which, similar to ALS8 patients, bear one copy of the wild-type and
one copy of the mutant allele. These results, in comparison with those obtained with the
transgenic models described above, argue strongly in favour of the idea that loss of one
functional VAPB allele is necessary for the development of MN disease, by a mechanism of
haploinsufficiency. It remains to be demonstrated, however, that haploinsufficiency alone
is sufficient for the development of the full-blown disease. Analysis of VAPB-knockout
mice (generated and analysed in a laboratory different from the one that generated the
knock-in model) revealed very mild motor impairment in the homozygote and none in
the heterozygote [96], however, a direct comparison between the knockout and knock-in
mouse lines has not been carried out.

Despite the absence of observable P56S-VAPB aggregates in patients’ iPSC-derived
MNs and fibroblasts [14,113], it is possible that some aggregates do accumulate in ageing
MNs, and that the dominant negative effect or toxic gain-of-function of these aggravates the
situation caused by VAPB haploinsufficiency. To be noted, although it was initially reported
that VAPB inclusions sequester VAPA in primary hippocampal neurons [23], this seques-
tration was weak in comparison with the one of VAPB, and others have failed to confirm
this observation [99,103,111]. Thus, the aggregates, if present in ALS8 patients’ MNs could
be interfering with wld-type VAPB function, but VAPA is predicted to be undisturbed.

From the above discussion, we argue that the understanding of the mechanistic basis
of the pathogenicity of the p.P56S mutation involves determining which of the many VAP
functions is lost upon the exclusive depletion of VAPB, in the face of unaltered VAPA levels.
The remaining part of this review will discuss studies that have been carried out with just
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that aim, and will focus on four functions reported to be impaired as a consequence of VAPB
deletion, all of which have important implications for neurodegeneration (Figure 1B,C).
We will not, instead, discuss the studies involving the overexpression of mutant VAPB, nor
those reporting the effects of combined depletion of the two VAP paralogues in mammals
or the depletion of the unique invertebrate orthologue. Whilst these studies have yielded
important insights into VAP function in general, they are less directly relevant to the
pathogenic effects of VAPB mutation in MNs. We also will not be discussing the important
work on non-cell-autonomous effects in ALS pathogenesis, including the extracellular
functions of a secreted form of VAP [109].

4. Effects of VAPB Depletion in Cellular and Animal Models
4.1. ER-Mitochondria Contacts (Figure 1C-Box 1)

Although sites of contact between the ER and mitochondria in fixed tissue were
observed in early EM studies (e.g., [119] and references therein), the first functional role
of these contacts was demonstrated by Vance in 1990 [120]. In this work, a subcellular
fraction of mitochondria-associated ER membranes (MAMs) was shown to be enriched
in a subclass of ER-localised lipid synthesising enzymes, consistent with their role in
supporting a collaborative effort of the two compartments (ER and mitochondria) in
phospholipid homeostasis. Indeed, most lipids are synthesised in the ER and from there
must be delivered to other organelles. Within the exo-endocytic pathway, this can be in
part effected by transport vesicles, however, because mitochondria do not participate in
vesicular traffic but do depend on the ER for most of their lipids [121], other transport
mechanisms must be at play. The work of Vance opened the way for further study of the
ER-mitochondria contact sites where this lipid transport occurs [122].

Following the studies on lipid transfer, a second key role of ER-mitochondria contacts,
the facilitation of mitochondrial Ca2+ uptake, was demonstrated [123]. Because of the
low affinity for Ca2+ of the mitochondrial calcium uniporter (MCU) [124], the average
cytosolic [Ca2+] reached even after its stimulated release from ER stores is a poor driver
of transport of this cation into mitochondria [125]. However, Ca2+ release at contact sites
exposes mitochondria to a higher [Ca2+], which matches the MCU’s low affinity and allows
for rapid Ca2+ transfer from the ER to the mitochondrial matrix. Subsequent studies indeed
demonstrated that the inositol-3-phosphate responsive Ca2+ release channel of the ER
(IP3 receptor) and the outer mitochondrial membrane channel, which permits the passage
of Ca2+ ions into the intermembrane space (VDAC, voltage-dependent anion selective
channel), are physically coupled via the cytosolic chaperone protein grp75 [126]. The rapid
uptake of Ca2+ by mitochondria from ER stores is crucial for the stimulation of rate-limiting
enzymes of the Krebs cycle and consequent ATP production in response to agonists [127],
as well as for the rapid buffering of cytosolic Ca2+.

The elucidation of the roles of ER-mitochondria contacts in lipid transport and Ca2+

regulation was followed by the discovery of additional functions of these contacts [128], and
the identification of proteins that link the two organelles. In yeast, an elegant genetic screen
led to the discovery of the ERMES complex (ER-mitochondrial encounter structure) [129].
This structure is not present in higher eukaryotes, but intensive research has uncovered
many other tethering complexes, which may have specific roles in the different processes
governed by ER-mitochondria contacts (reviews: [11,128]). Of the numerous complexes
identified so far, four contain the VAPs linked to different FFAT-containing proteins on the
mitochondrial surface, specifically: protein tyrosine phosphatase-interacting protein 51
(PTPIP51) [60], vacuolar protein sorting (VPS) 13A/ D [42,59,130], and mitoguardin 2
(MIGA2) [65,66] (see Table 1).

The interaction of VAPB with outer mitochondrial membrane protein PTPIP51 [also
known as FAM82A2, human cerebral protein-10 and regulator of microtubule dynamics
protein-3 (RMD-3)] was discovered in a two-hybrid screen designed to retrieve VAPB
partners [60] and confirmed in subsequent proteomic screens [38,131]. The molecular basis
of its interaction with VAP has not been fully elucidated so far: a FFAT-like motif is present
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in the central part of the sequence [39,111], and mutation of VAPB’s FFAT binding site
abrogates the interaction [38], however the VAPB MSP by itself is not sufficient to pull
down PTPIP51, suggesting that VAP regions outside of the FFAT binding site contribute to
the binding [61].

Quite remarkably, silencing of either VAPB or PTPIP51 in a model motorneuronal cell
line (NSC34) led to a ~40% reduction in the extension of ER-mitochondria contacts [61].
This effect may be cell-specific, as it was not observed in HeLa cells [95]. Considering
the multiplicity of proteins that act as tethers between the two organelles [11,128], a
~40% reduction is an impressive effect. Depletion of VAPB or PTPIP51 had similar effects,
and PTPIP51 silencing reduced the amount of VAPB recovered in a mitochondria plus
MAM subcellular fraction, suggesting that PTPIP51 is VAPB’s major partner on the outer
mitochondrial membrane of MNs [60,61].

The basis for the large effect of VAPB depletion on ER-mitochondria contacts is
currently incompletely understood, given that PTPIP51 interacts also with VAPA [38,131],
as well as with three other ER-localised MSP domain-containing proteins (the motile sperm
protein domain (MOSPD)-containing proteins [38,95]). In NSC34 cells, VAPA is present
in 5-fold excess over VAPB [94], indicating that, despite its higher abundance and its
ability to interact with PTPIP51, it cannot compensate for the lack of VAPB. It is possible
that PTPIP51 has a higher affinity for VAPB than for the A paralogue, as suggested by
co-immunoprecipitation experiments [38]. Another possibility is that the tethering process
is mediated by VAP heterocomplexes, of which VAPB is an essential component.

An important consequence of the loosening of ER-mitochondria contacts caused
by VAPB depletion is the delayed and reduced uptake of Ca2+ into mitochondria after
stimulated release of the cation from ER stores [60]. In agreement with the role of the
VAPB-PTPIP51 tether in mitochondrial Ca2+ uptake, overexpression of either of the two
proteins increases the IP3 Receptor-VDAC interaction [62].

Stimulated by the findings on VAPB-PTPIP51-mediated ER-mitochondria contacts and
on the role of Ca2+ in mitochondrial energy metabolism [127,132], we recently investigated
whether the chronic depletion of VAPB in MN-like NSC34 cells affects mitochondrial
function. In published work, we have extensively characterised this cell line, and reported
alterations in phosphoinositide homeostasis and neurite elongation [94], as described in
the following subsection of this review. As illustrated in Figure 2, we observed a decrease
in uptake of the mitochondrial membrane potential sensor tetramethylrhodamine methyl
ester perchlorate (TMRM) into the mitochondria of the VAPB-depleted cells, suggestive of
reduced oxidative phosphorylation. This observation is in agreement with the reported
reduced ATP production by oxidative phosphorylation in neuronal cell lines or primary
cortical neurons under conditions in which ER-mitochondria contacts are loosened [64,133].
The relevance of these findings to ALS is strengthened by computational models that
predict that even small decreases in ATP availability may disrupt neuronal ion homeostasis
and functionality [134]. Importantly, VAPB-PTPIP51-mediated contacts are present in
nerve terminals, and VAPB or PTPIP51 silencing in primary hippocampal neuron cultures
reduces ER-mitochondria contacts concomitantly with synaptic activity [135].

Another observed consequence of VAPB or PTPIP51 depletion is an increase in au-
tophagic flux. Conversely, overexpression of either of the two proteins decreased au-
tophagosome formation [62]. The effect of VAPB and PTPIP51 depletion on autophagic flux
was directly ascribed to the loosening of ER-mitochondria contacts and to the consequent
decreased ER to mitochondria Ca2+ transfer: indeed, expression of an artificial tether
rescued the autophagic phenotype, while interference with Ca2+ release from the ER or
uptake into mitochondria abrogated the inhibitory effect of the tether [62]. These findings
have implications for the pathogenic mechanism underlying ALS8, as perturbed regulation
of autophagy is a common feature of neurodegenerative diseases [136,137].
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Figure 2. VAPB knockdown decrease mitochondrial membrane potential in the MN-like cell line
NSC34. (A) Representative images comparing staining with the membrane potential-sensitive and
insensitive mitochondrial dyes TMRM (green) and Mitotracker (red), respectively, in control or
VAPB-silenced cells (details on the cell lines are in [94]). NSC34 cells were incubated for 30 min with
TMRM and Deep Red-Mitotracker (both fromThermoFisher), each at 100 nM concentration, and
then imaged alive, using the LSM800 confocal system equipped with an on-stage incubator (37 ◦C,
5% CO2) and a PlanApo 63 × 1.4 N.A. objective. The lack of bleedthrough between the red and far
red signals was checked in singly labelled specimens. The images show single confocal sections, with
the merged signal from the two channels. The prevalence of the green pseudocolour in the image
of the control versus the silenced cells indicates a higher TMRM to Mitotracker ratio. Acquisition
parameters and subsequent adjustment with Adobe Photoshop software were kept identical for the
two illustrated images. Scale bar, 10 µM. (B) Quantification of TMRM to Mitotracker fluorescence
in control and VAPB-silenced cells. The analysis was carried out on stacks of 5–7 sections of cells,
imaged as in panel (A), keeping the illumination conditions so as to avoid any saturation of the
signal. A mask of the Mitotracker signal was created using ImageJ software, and the integrated
intensity of the Mitotracker and TMRM signals determined within the mask on each section, and then
summed over the entire stack. The ratios of the summed integrated intensities for each individual
stack (acquired in seven independent experiments), together with the medians and interquartile
range are shown. * p = 0.025 by Student’s two-tailed t-test.

Beyond ALS8, VAPB-mediated ER-mitochondria contact sites may be relevant to ALS
in general, as suggested by the effect of two ALS-linked gene products, Tar-DNA binding
protein 43 (TDP43 or TARDBP) and fused in sarcoma (FUS), on the VAPB-PTPIP51 tether.
Both are DNA and RNA-binding proteins, involved in DNA repair and RNA transcription
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and processing. Although mainly localised to the nucleus of healthy cells, they are often
found in pathological cytosolic aggregates in sALS, fALS, and frontotemporal dementia
patients’ cells [138,139]. TDP43 aggregates, in particular, which contain ubiquitinated,
hyperphosphorylated, and cleaved forms of the protein, are present in a majority of
ALS cases [139] and considered a hallmark of the disease. In addition, mutations of
both TARDPBP and of FUS are linked to a subset of fALS cases [140–142], providing a
link between sALS and fALS pathogenesis. Very interestingly, expression of wild-type
or disease-associated mutants of TARDBP and FUS cause a decrease in VAPB-PTPIP51
interaction and a concomitant decrease in the extension of ER-mitochondria contacts in
NSC34 cells and transgenic mice, in parallel with perturbation in Ca2+ handling [61,133].
In both cases, activation of glycogen synthase kinase 3β was linked to the disruption of the
VAPB-PTPIP51 tether.

Disruption of ER-mitochondria contacts as a common theme in neurodegenerative dis-
ease, including ALS, is attracting increasing interest and could represent a point of conver-
gence of pathological events triggered by different initial insults to neurons [34,64,143–146].
This fascinating subject is discussed in greater detail in another review of this special
issue [147].

4.2. Regulation of Phosphatidylinositol-4-Phosphate (PI4P) (Figure 1C-Box 2)

PI4P is one of the two most abundant phosphoinositides, a family of signalling lipids
that are generated by phosphorylation of the inositol headgroup of phosphatidylinositol
(PI) and that act by recruiting specific proteins to the cytosolic surface of membranes.
Because of the restricted distribution of the kinases, which generate them, the phosphatases,
which consume them, and lipid transport proteins (LTPs) which transport them, each
phosphoinositide is specifically distributed to single compartments or subsets thereof,
thereby contributing to the definition of organelle identity (reviewed in [148]). PI4P, in
particular, is considered the signature phosphoinositide of the Golgi complex, but is also
present in lysosomes/late endosomes (LE) and at the plasma membrane [149]; in these
locations, it is involved in a myriad of essential processes, including lipid homeostasis,
membrane trafficking, autophagy, signalling at the plasma membrane, and actin dynamics
(reviews: [150,151]).

In the Golgi complex, PI4P levels critically depend on the VAPs and on the contact
sites between the ER and the trans-Golgi that they mediate. Initially visualised by EM
cytochemistry [152] and then by high resolution tomography [153], these contacts have
been recently characterised at the molecular level with a novel Förster energy transfer
(FRET)-based technique [154]. This approach has identified the VAPs in conjunction with
members of the oxysterol binding protein (OSBP)–related protein (ORP) family (see below)
as required for contact formation. Since ORPs are LTPs, the VAP-ORP connection has the
dual role of establishing a physical connection between the ER and the trans-Golgi, and
mediating lipid transport at these sites.

LTPs are proteins that effect non-vesicular lipid transport between membranes, thanks
to a hydrophobic cavity within their structure that allows them to shield the transported
lipid from the surrounding aqueous environment [155]. There are many known LTP classes;
of these, OSBP and related ORPs are unique in their ability to transport PI4P and to ex-
change this phosphoinositide for another lipid [156]. This ability is due to the lipid-binding
OSBP-related domain (ORD) in the C-terminal part of the polypeptide, which can accom-
modate either one PI4P or another lipid molecule (cholesterol or phosphatidylserine) [157].

In addition to the ORD, OSBP and all ORPs, except two, contain, in the middle of their
sequence, an FFAT motif for VAP binding and, towards the N-terminus, a PI4P-specific
pleckstrin homology (PH) domain (with the exception of ORP2 and alternatively spliced
forms of some other ORPs). The PH domain mediates ORP binding to the membrane on
the non-ER side of the contact site, a binding which usually occurs by coincidence detection
of PI4P in conjunction with a membrane-associated protein, e.g., the small GTPase Arf1 in
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the case of the OSBP-Golgi connection. Thus, ORPs use PI4P for membrane recognition by
the PH domain and transport this phosphoinositide via the ORD (reviewed in [157]).

The role of the founding member of the ORP family, OSBP, in cholesterol and PI4P
transport at ER-Golgi contact sites has been investigated in detail. The low concentration
of PI4P in the ER favours binding of cholesterol (produced in the ER) to OSBP’s ORD. On
the Golgi side, the higher concentration of PI4P allows binding of the phosphoinositide in
exchange for cholesterol; back in the ER, PI4P is released, and the cycle is repeated. The
low concentration of PI4P in the ER is maintained by the ER resident phosphoinositide 4-
phosphatase SAC1, which removes the 4-phosphate group from PI4P to generate PI [activity
in cis [158]]. PI is then returned to the Golgi by PI transport proteins (Nir2, see Table 1) and
serves as substrate for PI4 kinases to regenerate PI4P. Thus, the transport of cholesterol out
of the ER against its concentration gradient is fuelled by the ATP required to regenerate
PI4P and to maintain the Golgi-ER gradient of this phosphoinositide [45,157,159].

In the OSBP cycle, the VAPs have a dual function: first, they provide the anchoring
site for OSBP, second, VAPA modulates SAC1 activity. In Drosophila [110] and in mam-
mals [49,74], a direct interaction between VAP and SAC1 has been demonstrated. SAC1
lacks an FFAT motif, and differing conclusions on the protein region(s) involved in the
interaction have been reported: in Drosophila, they were mapped to the TM domains of
both SAC1 and VAPA [110]; in mammalian cells, instead, Venditti et al. [49] found that
an N-terminal, cytosol-exposed fragment of SAC1 is sufficient for the interaction, and
that both the catalytic and the TM domain are dispensable. The VAP-SAC1 interaction
presumably enhances SAC1 efficacy by concentrating the enzyme at ER-Golgi contacts,
where it encounters high concentrations of PI4P back-transported to the ER.

Under certain conditions, SAC1 can act on the Golgi pool of PI4P, thereby decreasing
the Golgi/ER concentration gradient. Indeed, under starvation, SAC1 is transported to
the Golgi, where it reduces PI4P content in situ [160,161]. In addition, the recruitment
of SAC1 to particular contact sites, established by the FFAT containing protein FAPP1,
allows the phosphatase to act in trans on Golgi PI4P at sites of high concentration of
the phosphoinositide [49]. Thus, SAC1 both maintains the PI4P Golgi/ER gradient and
regulates the Golgi PI4P pool.

Given the above-described roles of the VAPs in the OSBP cycle, it is not surprising that
the combined depletion of VAPA and B, or of the single VAP orthologue of invertebrates,
causes an increase in PI4P levels [49,58,110,162] (a caveat is that the transport of PI to the
Golgi, too, is mediated by the VAP-dependent LTP Nir2! [50]). Less expected, yet more
relevant to ALS8 pathology, is the observation that also the exclusive depletion of VAPB,
with VAPA levels untouched, has this effect [77,94], indicating a critical role of VAPB in
phosphoinositide homeostasis. Interestingly, in the MN-like NSC34 cell line, even a partial
reduction of VAPB, to levels mimicking those of a p.P56S-VAPB heterozygote, was sufficient
to affect PI4P levels in the Golgi complex and to cause the expansion of a PI4P-positive
population of peripheral vesicles. Some, but not all of these vesicles were found to be
acidic and to co-localise with the LE/lysosome marker LAMP1 [94]; no other markers of
the endocytic pathway or of the Trans-Golgi Network (TGN), such as Rab7 or the mannose-
6-phosphate receptor, were found within them (our unpublished observations; see also
subsection on delayed neuritogenesis, below).

An open question is the identity of the VAPB-sensitive step(s) within the complex cycle
of events that regulate PI4P intracellular levels. Indeed, OSBP associates with both VAP
paralogues [21,38,131], and, in pulldown experiments, SAC1 has a strong preference for
VAPA over the B isoform [49,74]. As stated earlier in this review (Section 2), there is more
VAPA than B in most cells, including MNs, so one might anticipate that VAPB is dispensable
for processes that function equally well with either paralogue. Notably, however, silencing
of VAPB in HeLa cells was reported to alter the localisation of transfected GFP-SAC1 [77].
In addition, other ORPs which might preferentially associate with the VAPB paralogue,
could be involved in generating the phosphoinositide imbalance [49,77].
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Regardless of the mechanism by which VAPB depletion causes the PI4P increase,
the question that we address in the following part of this section concerns the effects of
this increase on cellular physiology. In Drosophila and C. elegans the consequences of PI4P
elevation are disastrous, as depletion of SAC1 or of the single invertebrate VAP orthologue
causes alterations of synaptic morphology and neurodegeneration, a phenomenon linked
to PI4P: indeed, reduction of the phosphoinositide by downregulation or pharmacological
inhibition of PI4 kinases rescues both neurodegeneration and the synaptic phenotype of
these model organisms [110,163]. In mammals, downregulation of VAPB alone, in the
presence of functional VAPA, is expected to have less dramatic effects, however, two PI4P-
linked phenomena observed in VAPB-depleted mammalian cells—the maintenance of
nuclear envelope architecture in HeLa cells and neurite elongation in NCS34 cells—may
contribute to MN degeneration in ALS8.

4.2.1. Nuclear Envelope Defects

In HeLa cells, VAPB silencing causes delocalisation of the inner nuclear membrane pro-
tein emerin from its normal localisation at the nuclear ring to cytoplasmic puncta [77,164].
Emerin, whose loss of function causes Emery-Dreifuss muscular dystrophy, is a LAP2-
emerin-MAN1 (LEM) domain protein [165] that plays a key role in the organisation of the
nuclear lamina and its association with chromatin, as well as in transcriptional regulation,
mitosis, and nuclear assembly (reviewed in [166]). The important roles of emerin in estab-
lishing and maintaining nuclear envelope organisation likely explain why several nuclear
pore proteins were observed to be delocalised in VAPB-silenced cells [164].

In the study of Darbyson and Ngsee [77], emerin delocalisation occurred also after
silencing of ORP3 or SAC1, and in all three cases (VAPB, SAC1 or ORP3 silencing), it
was paralleled by augmented PI4P; the effect of VAPB silencing was partly reversed
by overexpression of ORP3, suggesting that the VAPB-emerin link is mediated by PI4P
imbalance. How this imbalance could affect emerin targeting is currently unclear. Possible
lipid compositional changes, which could occur consequent to the PI4P imbalance and
affect targeting of nuclear envelope proteins, have not been investigated so far. A further
twist to the story is given by the results of a recent study, which demonstrated that VAPB
itself localises to the inner nuclear membrane, where it directly interacts with emerin, and
also with the nuclear pore protein ELYS [78]. These results suggest that VAPB may play a
direct role in emerin targeting and nuclear pore assembly.

The nucleus-VAPB link has important implications, because defects in the nuclear
envelope, delocalisation of nuclear pore proteins, and impaired nucleo-cytoplasmic trans-
port, have all been linked to ALS pathogenesis [167,168], and defective nucleo-cytoplasmic
transport has been observed in cultured fibroblasts of an ALS8 patient [14]. Further analysis
of ALS8 patients’ cells will hopefully confirm a role of emerin delocalisaton in triggering
MN degeneration.

4.2.2. Delayed Neuritogenesis

Genevini et al. generated NSC34 clones with different degrees of VAPB downreg-
ulation. When these VAPB-depleted cells were induced to differentiate, a significantly
reduced rate of neurite elongation was observed, suggesting a defect in the trafficking of
transport vesicles to the growing neurite. The delay was observed in both the near com-
pletely silenced and in the partially downregulated cells (which also had increased PI4P
levels), suggesting that in wild-type cells the concentrations of VAPB are near threshold for
normal function ([94], see Figure 3). A causal relationship between delayed neuritogenesis
and elevated PI4P was indicated by the rescue of the phenotype when the levels of the
phosphoinositide were reduced by pharmacological inhibition of PI4 kinase IIIβ, which is
active at both the Golgi complex ([169] and lysosomes [170,171]). Although the study of
Genevini et al. analysed differentiating cells, the observed neuritogenesis defect could be
relevant for the survival of mature MNs, as these must continuously replenish their axons
and dendrites with membrane components. Beyond ALS8, disrupted neuronal trafficking
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is thought to be an important player in the pathogenesis of ALS types linked to other, more
common, disease-causing genes [172].
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The molecular mechanism(s) underlying the inhibitory effect of excess PI4P on neuri-
togenesis have not been deciphered yet. PI4P, by recruiting adaptors and regulators at the
TGN, has a crucial role in the generation of secretory vesicles [150,173], and augmented
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PI4P at the TGN can increase secretion of some substrates [49]. The effects of altered PI4P
levels at the Golgi are, however, probably cell- and substrate specific: for instance, deletion
of SAC1 in mammalian cells inhibits transport of a substrate out of the TGN in constitutive
carriers [74]. A block in transport could also occur at a stage subsequent to carrier budding
at the TGN. Analogously to the situation described in yeast, where post-Golgi vesicles
must loose PI4P to become competent for polarised exocytosis [174,175], an excess of PI4P
on post-Golgi vesicles of differentiating NSC34 cells could reduce the vesicles’ capacity
to fuse with the plasma membrane. The PI4P-containing acidic vesicles that we observed
in the VAPB-depleted NSC34 cells could represent stalled intermediates on their way to
fusion with the plasma membrane. Alternatively, they could represent a population of
hypofunctional lysosomes, reported to accumulate in Drosophila cells as a consequence
of elevated PI4P levels caused by the deletion of the Drosophila VAP homologue [162].
Whether the PI4P build-up in these vesicles is due to the PI4P overload in the TGN, or is a
direct consequence of VAPB deficit-caused impairment of ER–endolysosome contact sites,
has not been established so far.

While the PI4P excess caused by VAPB depletion may be acting directly on vesicular
traffic, for instance by aberrant recruitment of PI4P-binding proteins, it probably interferes
with membrane trafficking by indirect effects too: indeed, alteration of the quantity and
distribution of lipids that depend on ORP-PI4P driven countertransport and of the related
regulatory feedback loops could affect the generation of membrane carriers at the TGN
and exocytosis [176–178].

In summary, VAPB deficit leads to excess PI4P by mechanisms that have not yet been
entirely clarified; the PI4P excess causes neurodegeneration in model organisms, probably
by interfering with more than one essential process. Defects in nuclear envelope main-
tenance and neurite elongation are two readouts of PI4P excess that are likely important
contributors to the final death of MNs.

4.3. Hyperpolarsation-Activated Cyclic Nucleotide-Gated (HCN) Channels 1 and 2 (Figure 1C-Box 3)

By allowing the entrance of a depolarising mixed Na+ and K+ current (the Ih or If cur-
rent) in response to hyperpolarisation, HCN channels, expressed mainly in the heart and in
the CNS, play a key role in controlling the rhythmic activity of cardiac pacemaker cells and
spontaneously firing neurons. Mammals produce four HCN paralogues, each containing
six TM helices, which form channels by homo- or hetero-tetramerisation. Gating of the
channels in response to the membrane potential is modulated by cyclic AMP, which binds
to a site close to the C-terminus of each channel subunit. Relevant to the subject of this
review, in neurons, HCN channels are involved in several functions additional to rhythmic-
ity regulation, among which determination of resting membrane potential and regulation
of excitability, dendritic integration, and synaptic transmission (reviewed in [179]).

In a two-hybrid split-ubiquitin screen designed to identify proteins associated with the
HCN2 channel, VAPB turned up in a large number of positive clones [76]. The interaction,
confirmed by pulldown experiments, and extended to HCN1, but not HCN4, was mapped
to VAPB’s TM helix and to the N-terminal portion of the HCN channel.

The functional outcome of the association was tested in microinjected Xenopus oocytes,
and in transfected or VAPB depleted mammalian cells, as well as in animal models. In Xeno-
pus oocytes and in HeLa cells, co-expression of VAPB with HCN2 increased Ih amplitude
by favouring the surface expression of the channel without altering its electrophysiological
properties. This effect appeared to be independent from recycling of the channel and was
therefore attributed to its improved transport through the secretory pathway to the cell
surface. Interestingly, co-expression of VAPB’s TM helix alone recapitulated the effects
obtained with the full-length protein. In Zebrafish and in a knockout mouse [32], VAPB
depletion caused severe bradycardia, and, in the knockout mouse, a reduction in the am-
plitude of Ih in neurons of the ventrobasal thalamus, consistent with reduced excitability.
No data on HCN channel-mediated currents in MNs of the knockout mice were provided;
however, both the HCN1 and 2 paralogues are expressed in MNs of the brainstem and of
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the spinal cord [180,181], suggesting that they play a role in these neurons, too. The results
reported by Silbernagel et al. provide a potential and very interesting link between VAPB
deficit and ALS8 pathogenesis, in light of the implication of ion channel dysfunction as a
common theme in neurodegenerative diseases [182].

A challenging question left open by the work of Silbernagel et al. [76] is the mechanism
by which VAPB facilitates the surface expression of HCN1 and 2. As noted above, the
interaction is mediated by VAPB’s TM helix, and therefore occurs within the plane of
the bilayer, a finding difficult to reconcile with the different localisations (ER and plasma
membrane) of the interacting proteins. The authors suggest that VAPB travels through the
secretory pathway together with the channel, with which it would remain associated as
an accessory subunit; this hypothesis, however, awaits rigorous proof. As an alternative
possibility, we propose that VAPB could transiently interact with the channel in the ER,
thereby facilitating the assembly of the subunits into a tetramer competent for export to
the cell surface. In other words, it would act as an intramembrane chaperone. Whether
VAPB is a stable accessory channel subunit or a transiently interacting protein in the ER,
this interesting and novel VAP function deserves further investigation.

As in the case of ER-mitochondria contacts and of PI4P homeostasis (Sections 4.1 and 4.2),
also for the VAPB-HCN channel interaction the question arises as to the cause of the important
effect of VAPB in the face of normal VAPA levels. This case, however, may provide perhaps
the first example of a clear-cut preference of a client for VAPB over the A paralogue. Indeed,
most of the results of the study of Silbernagel et al. suggest that HCN channels interact
preferentially with VAPB: in the two-hybrid screen, there were no VAPA hits, and VAPA
was ineffective in pulling down transfected HCN channels; VAPA was also less effective
than VAPB in increasing Ih current amplitude when co-expressed in Xenopus oocytes.
Nevertheless, additional clarification is warranted, because the endogenous channel, as
well as the in vitro translated polypeptide, interacted much more strongly with VAPA than
VAPB in pulldown assays. Despite this caveat, it is tempting to speculate that differences
in binding partners between the two VAP paralogues are more likely for interactions that
involve the TM helices than those involving other protein domains; this is because of the
poor conservation of the TM helices in comparison to other VAP regions (e.g., 39 and
82% sequence identity in the TM and MSP domains, respectively, between human VAPA
and B). Further studies, involving site-directed mutagenesis within the TM domains, will
shed light on the molecular basis of TM-based interactions of the VAP proteins.

4.4. Unfolded Protein Response (UPR), ER Stress and Protein Quality Control (PQC)
(Figure 1C-Box 4)
4.4.1. Adaptive and Maladaptive UPR

The UPR is a central cellular signalling hub that governs homeostasis, development,
and life-death decisions, and whose deregulation has been implicated in a variety of dis-
eases, including neurodegeneration (reviews: [183–185]). In mammals, the UPR is mediated
by three transmembrane sensors, which detect problems in the ER lumen (unfolded pro-
teins) and initiate signal transduction pathways aimed at resolving these problems: (i) the
transmembrane kinase/RNAse IRE1 initiates the unusual cytosolic splicing of an mRNA
that codes for the transcription factor X-box binding protein-1 (XBP1); XBP1s, generated
from the spliced mRNA, upregulates the expression of genes for components of the ER
folding machinery and of the ER-associated degradation (ERAD) system; in addition, the
RNAse activity of IRE1 may cleave, hence inactivate, ER-associated mRNAs coding for
other proteins by a process designated regulated IRE1-dependent decay (RIDD), thereby
reducing the translational load on the ER; (ii) ATF6 is a transcription factor, which, under
basal conditions is integrated in the ER membrane by a TM helix. In response to stress,
ATF6 is transported by vesicular carriers to the Golgi apparatus, where two proteases act
in sequence to release its active domain; this can then enter the nucleus and complement
the transcriptional activity of XBP1s; (iii) the third sensor, PKR-like ER kinase (PERK), by
phosphorylating the translation initiation factor eIF2α, attenuates general protein synthesis
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but allows the preferential translation of some transcripts, among which the one coding for
the transcription factor ATF4.

If the cellular responses driven by the three UPR branches are successful, the end result
is restored homeostasis. Indeed, the ER improves its capacity to deal with the overload,
because, on the one hand, its protein folding capacity is upregulated, and, on the other,
it more efficiently disposes of malfolded proteins by the ERAD pathway; at the same
time, the overload is reduced because of attenuated protein synthesis. If, however, the
beneficial interventions of the UPR are insufficient to compensate for the initial genetic or
environmental problem that triggered the response, the ER becomes chronically stressed.
As a consequence, the UPR, faced with a situation sensed as unresolvable, may switch
from its attempts to restore homeostasis to an activity, designated as maladaptive, that
favours apoptosis. Understanding the basis of the transition from the adaptive to the
maladaptive UPR is currently one of the most challenging aspects of research on cellular
homeostatic mechanisms.

Several apoptotic pathways are involved in ER stress-triggered cell death. First, the
cytosolic region of IRE1 can interact directly with the adaptor TRAF2, thereby activating
the stress-activated kinase Jun N-terminal kinase (JNK) [186]; second, ATF4 and its target
gene product, CHOP (C/EBP homologous protein), are transcription factors that control
genes involved in apoptosis [187]; third, the RIDD activity of IRE1 [188] can result in the
degradation of mRNAs encoding proteins required for survival [189] as well as of miRNAs
that regulate the expression of apoptotic proteins [190].

4.4.2. The UPR at the Intersection of PQC Pathways

As mentioned above, the disposal of irreversibly unfolded/misfolded proteins in the
ER lumen is handled by the ERAD system; this PQC pathway effects the retro-translocation
(also referred to as dislocation) of the undesired substrates back to the cytosol and their
delivery to the ubiquitin-proteasome system (UPS). The UPS, a key pathway for the
regulated degradation of short-lived proteins, also provides a major mechanism for disposal
of misfolded proteins and protein aggregates (reviewed in [191,192]). Because the disposal
of cytosolic and ER lumenal proteins converge on this same system, it follows that any
disturbance of it, even if originating in the cytosol, may have consequences for the ER too.
For instance, pathological aggregates of the Huntington disease protein polyQ-Huntingtin,
by clogging the UPS, result in impaired ERAD function, decreased misfolded protein flux,
and ER stress [193,194]. Not to be forgotten are the effects of oxidative stress, which can
be driven by pathological protein aggregates, on protein folding in the ER and on Ca2+

handling, again illustrating how events in the cytosol reverberate on the ER; this subject is
discussed in more detail in another article of this special issue [195].

In addition to the intersection with the UPS, there is also crosstalk between ER stress
and the other major system for degradation of macromolecules, the lysosome-based
macroautophagy (autophagy) system. In this pathway, cellular material, such as pro-
tein aggregates or damaged organelles, are first sequestered within double-membrane
bounded structures named autophagosomes and then degraded after fusion of the au-
tophagosomes with lysosomes (reviewed in [196]). ER stress has generally been found to
inhibit autophagy but may in some cases have the opposite effect [197]. Importantly, the
UPS and autophagy exert reciprocal influence on each other [198]. Thus, the UPS, the UPR,
ERAD, and autophagy are all part of the same PQC network, whose proper functioning is
crucial for cellular health and survival.

4.4.3. ER Stress and ALS8

As discussed above, a maladaptive UPR may be the outcome of different initial insults
to the cell and deal a final blow to their survival. ER stress has indeed been implicated in a
number of neurodegenerative diseases [199]; In ALS, a longitudinal study of a commonly
used mouse model—the superoxide dismutase 1 (SOD1) transgenic mouse—revealed that
the more vulnerable MNs are those that exhibit a UPR before showing signs of degeneration,
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suggesting a causal link between ER stress and MN death [200]. Because of the Jekyll-and-
Hyde nature of the UPR, however, an adaptive UPR may instead help insulted MNs to
withstand stress [201].

Turning to ALS8, the available, limited, information suggests that, like in typical ALS,
ER stress may be involved in the development of the disease. Indeed, an analysis of a
patient’s cultured fibroblasts reported a significant increase in the expression of genes
associated with the PERK-driven apoptosis pathway, including CHOP and ATF4, as well as
in ATF6 and the spliced mRNA encoding XBP1s; some chaperones were also upregulated,
however, no increase in the master UPR chaperone and luminal stress sensor binding
protein (BiP, alias glucose regulated protein of 78 kDa (GRP78)) was detected [14]. In
partial agreement with these results, the spinal cord of heterozygote p.P56S-VAPB knock-in
mouse showed a significant increase in the phosphorylation of the translation initiation
factor eIF2α, the immediate readout of PERK activation, which preceded morphological
alterations of the neuromuscular junction and partial muscle denervation [106]. Although
increased phosphorylation of eIF2α was not observed in the patients’ fibroblasts, and,
conversely, CHOP, ATF4 and ATF6 upregulation was not observed in the p.P56S-VAPB
knock-in mouse, the results suggest that the ATF4/CHOP apoptotic pathway may be
activated in ALS8 MNs. It should, however, be kept in mind that eIF2α phoshorylation is
the point of convergence of four different stress-responsive kinases, of which only PERK is a
UPR transducer [202,203]. Thus, activation of this pathway, known as the integrated stress
response, may be triggered by problems in the cytosol rather than directly by ER stress.

In addition to alterations in stress markers, the heterozygote p.P56S-VAPB knock-
in mice showed increased levels of the ubiquitin receptor p62/SQSTM in spinal cord
MNs [106]; p62/SQSTM is involved in the delivery of ubiquitinated protein aggregates
both to the proteasome and to autophagic membranes (reviewed in [204]). This observation
suggests a deregulation of PQC in MNs, which, the authors suggest, could underlie
the observed ER stress [106]. Notably, p62/SQSTM mutations are linked to fALS and
frontotemporal dementia and have been identified in sALS cases too [205,206].

The above-described results in patients’ cells and in the p.P56S-VAPB knock-in mouse
lead to the question as to whether the observed ER stress and deregulated PQC are direct
effects of VAPB deficit or the indirect consequence of the problems associated with its loss
of function, as described in Sections 4.1 and 4.2 and Section 4.3. For example, loosening
of ER-mitochondria contacts augments basal autophagy [62], an effect that could clash
with the effects of increased PI4P concentration in the endosome-lysosome compartments.
Indeed, as mentioned in Section 4.2, expansion of an endosomal pool deriving from a PI4P-
overloaded Golgi apparatus was reported to result in hypofunctional lysosomes [162], and
excess incorporation of the phosphoinositide in the autophagosomal membrane inhibited
its fusion with lysosomes [207]. In addition, a contribution to stress of mutant VAPB by
gain-of-function mechanisms is possible. As discussed in Section 3 of this review, P56S-
VAPB aggregates have not been detected in patients’ cells, however, they may accumulate
in ageing MNs and aggravate the stress caused by VAPB haploinsufficiency.

A possible direct role of VAPB in PQC regulation and ER stress has been investigated
in acutely depleted cells and in protein-protein interaction studies. Two studies on the
effects of VAPB silencing on the UPR in mammalian cultured cells generated different
results, most likely because of the choice of different cells and reporters: in NSC34 cells,
VAPB deficit reduced the UPR in cells exposed to ER stressors, suggesting that it has a
positive role in triggering ER stress [32]; in HEK293 cells, instead, VAPB silencing caused an
increase in basal, as well as tunicamycin-induced, ATF6/XBP1s-dependent transcription,
suggesting that it plays a negative role in blunting the UPR [75]. A possible mechanism
underlying this UPR attenuation is the observed interaction between the VAPs and ATF6.
This interaction was reported to be mediated by the VAP MSP and an unidentified re-
gion of ATF6’s transcription factor domain [75,208], but has not, to our knowledge, been
further characterised.
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Another potentially very interesting VAPB interaction, involved in PQC, is the one
with the p97 adaptor FAF1/ UBXN3A/UBXD12 [83]. The FAF1 adaptor belongs to a family
of ubiquitin-binding adaptors for p97/Valosin Containing Protein 1 (VCP1), an AAA
ATPase that, by extracting misfolded proteins from the ER for proteasomal degradation, is
a central player in ERAD. The interaction with FAF1 is mediated by a non-canonical FFAT
motif and involves an acidic loop in the VAP MSP additional to its canonical FFAT binding
site [83,208]. FAF1 mediates recruitment of the VAPs to complexes involved in ERAD at the
ER membrane [208] and their association with polyubiquitinated proteins [83]. Expression
of VAPB and A in cultured mammalian cells was observed to stabilise a well-known ERAD
substrate, and it was suggested that VAP’s interaction with ERAD components blunts
their activity [208]. Notably, mutations in p97/VCP1 are linked to fALS, and have been
identified in sALS cases too [209,210].

The VAPs also interact with a number of autophagy proteins, which play roles in
autophagosome biogenesis and in receptor-mediated clearance of the ER (ERphagy), as
summarised in Table 1. To our knowledge, however, the extent of the specific depen-
dence of autophagy and ERAD-related phenomena on the VAPB paralogue has not been
investigated so far.

In summary, the current results suggest that chronic ER stress and PQC dysregulation
are present in ALS8 MNs, however, further studies are required to confirm and fully
characterise the perturbed pathways. It will be particularly challenging to distinguish the
direct consequences of loss-of-function of VAPB from stress responses due to upstream
effects of its deficit, and to understand the possible role of the mutant gene’s product in
perturbing protein homeostasis.

5. Conclusions and Outlook

Since the initial discovery of the VAPs [27], a large body of research has focused on
the exceptionally numerous interactions and functions of these highly versatile proteins.
Interest was heightened by the discovery, in 2004, of the link between VAPB and ALS;
hence, progress in basic research on VAP cell/molecular biology over the past ~15 years
has proceeded in parallel with work aimed at understanding ALS8 pathogenesis. Many
studies have been directed at clarifying the pathogenic mechanisms of the ALS-linked
p.P56S mutation; however, a review of all the studies carried out on animal and cellular
models up till now leads to the conclusion that the mutant protein itself is insufficient to
cause disease, and that a deficit of the wild type protein is the main driver of pathological
changes in MNs (reviewed in [115]). Accordingly, VAPB loss-of-function has been shown
to perturb several basic cell physiological processes, as discussed in this review.

Despite the progress in elucidating the link between VAPB loss-of-function and neu-
ronal degeneration, there are still many open questions on the sequence of events leading
to the death of ALS8 MNs. Given the pleiotropic effect of VAPB loss-of-function, it remains
to be elucidated which of the many VAPB functions/binding partners are critical for MN
health and survival. Is it the sum of more than one defective process that triggers disease, or
does one of the affected processes play the major pathogenic role? Furthermore, since there
appears to be more VAPA than VAPB in most tissues, including MNs, the detrimental effect
of VAPB depletion on MNs points to a specific role of VAPB, not carried out by VAPA, or to
a function that critically depends on the full VAP pool. We believe that an important step
forward will be to address the problem of VAPB versus VAPA specificity: for instance, what
are the relative roles of the two paralogues in PTPIP51-mediated ER-mitochondria contacts
and in HCN channel transport to the cell surface? What is the target of VAPB in regulation
of the PI4P pool? Are other partners specific to VAPB involved in MN degeneration? Is
ER stress a direct consequence of VAPB depletion or secondary to other deficits caused by
its insufficiency?

Important advances in the understanding of the VAPB-ALS link are likely to be
obtained from the further characterisation of iPSC-derived MNs from ALS8 patients. VAPB
aggregates have not been observed in these cells, but so far there are no data on their
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survival, their electrophysiological properties, their PI4P levels in the Golgi. More research
on these cells could open the way to investigate the effects of drugs that target specific
cellular pathways, with the prospect of developing novel therapeutic approaches; these
could be relevant not only for ALS8 but also for more common typical ALS or for a subset
of ALS cases that share a VAP deficit with ALS8. Indeed, as pointed out in the introductory
section of this review, VAP deficit has been implicated in SOD1- linked and sporadic
ALS, and malfolded VAPB in peripheral blood mononuclear cells has been suggested as a
possible diagnostic biomarker for ALS [26]. Furthermore, VAP deficit in Drosophila glial
cells has been proposed to cause neuroinflammation, suggesting a VAPB-linked non-cell
autonomous mechanism underlying MN death [211]. These phenomena broaden the scope
of future research aimed at generating knowledge on the VAPs as well as on the pathogenic
mechanisms of VAPB loss-of-function, which will hopefully translate to the clinic.
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