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ABSTRACT An important hallmark of the human gut microbiota is its species diver-
sity and complexity. Various diseases have been associated with a decreased diver-
sity leading to reduced metabolic functionalities. Common approaches to investigate
the human microbiota include high-throughput sequencing with subsequent correl-
ative analyses. However, to understand the ecology of the human gut microbiota
and consequently design novel treatments for diseases, it is important to represent
the different interactions between microbes with their associated metabolites. Com-
putational systems biology approaches can give further mechanistic insights by con-
structing data- or knowledge-driven networks that represent microbe interactions. In
this minireview, we will discuss current approaches in systems biology to analyze
the human gut microbiota, with a particular focus on constraint-based modeling. We
will discuss various community modeling techniques with their advantages and dif-
ferences, as well as their application to predict the metabolic mechanisms of intesti-
nal microbial communities. Finally, we will discuss future perspectives and current
challenges of simulating realistic and comprehensive models of the human gut mi-
crobiota.
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Microbial communities are abundantly present throughout nature and form many
beneficial symbiotic interactions with different eukaryotic hosts. In many cases,

the host acquires novel functionalities with mutualists that can contribute to host
fitness and well-being (1) by, e.g., the supplementation of essential nutrients (2). These
functional microbes can be found on the interface of nutrient absorption in the
intestinal ecosystem (3) and gut-associated structures, such as bacteriomes (4). Removal
of these symbiotic microbes can lead to host fitness decrease, demonstrating the host
dependence on the symbionts (2) and the relevance of symbiotic interactions.

While the symbiosis between the human gut ecosystem and its host is less well
understood than other symbioses, intestinal microbial communities have been associ-
ated with human well-being (5). In particular, microbial metabolism is considered
relevant for nutrient provisioning and complementary digestion of food (6). The human
gut microbiota consists of more than thousands of microbial species (7), which can
form manifold metabolic interactions between themselves and with their host. Inter-
estingly, the microbiota metabolism is more conserved between human individuals
than the species composition, which suggests that redundant functionalities are pres-
ent in these microbes, complementing each other (8). The metabolic functions of
various gut microbes are suggested to benefit human health with the provisioning of
vitamins (9) and fermentation products (10). Microbial fermentation products can be
utilized by the human host as an additional energy source (11) and benefit the immune
system (12), therefore playing a pivotal role for human well-being.

A loss of microbial and metabolic diversity can lead to various microbiota-associated
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diseases, such as obesity (13), type 2 diabetes (14), and inflammatory bowel disease
(IBD) (15). Treatments for gut-associated diseases also aim to modulate the human gut
microbiota such that it exhibits healthy characteristics. Such treatments can include
fecal microbiota transplantation (16), probiotics (17), and dietary change in the form of
prebiotics (18). Since the microbiota varies between individuals, treatments are ideally
personalized to support each patient’s unique needs. Consequently, it is important to
understand the mechanism by which the microbiota is influenced to thereby enable
the design of novel treatment with higher efficacies.

With the advent of high-throughput sequencing technologies, we can now enu-
merate and describe the microbial and functional diversity of the human gut with
respect to different diseases and conditions. These analyses have unraveled a complex
microbial ecosystem that is influenced by diet and environmental factors (19). Further-
more, transcriptomic and proteomic analyses have allowed researchers to probe the
metabolic activity of the microbiota, revealing high activity of fermentative pathways
and carbohydrate utilization (20). Whole-genome sequencing of single microbes can
give hints on the functions and capabilities of individual members of the intestinal
microbial community (21). Recently, it has become possible to reconstruct individual
genomes from metagenomic data (22). Thus, omics analyses have broadened our
understanding of the human gut microbiota in terms of the possible metabolic function
and microbes that occur in this complex ecosystem. However, it is still difficult to assess
the ecology in terms of metabolic interactions between microbes and how each
microbe contributes to the intestinal microbial community.

To understand the ecological mechanisms that drive the human gut microbiota
better, it is important to go beyond the descriptive nature of high-throughput data
analysis. This can be achieved by formulating knowledge- or data-driven models, which
can describe the underlying ecosystem and give mechanistic insights for hypothesis
generation and designing subsequent experiments. A recent review described the
relevance of such models in giving novel causal relationships in a field that is domi-
nated by data and correlation (23). Here, we will discuss current systems biology
approaches that have been applied to the human gut microbiota. As highlighted
above, metabolism is one of the key features in the gut microbiota and microbes in
general; we will thus focus on this aspect. First, we outline network topology analyses
that are based on newly generated data or already existing knowledge. Then, we will
describe modeling approaches in the field of constraint-based modeling that allow
researchers to simulate interactions within microbial communities. Finally, we will
highlight the advantages and limitations of these approaches and give suggestions for
further studies.

NETWORK-BASED APPROACHES APPLIED TO THE HUMAN GUT MICROBIOTA

Network-based approaches are used to identify relevant microbes or metabolites of
the human gut microbiota. Networks are usually represented by interactions in the
form of edges that connect biological components in the form of nodes. With respect
to the human gut microbiota, these components can represent species that interact
(24) or metabolites that are converted through biochemical reactions (25). The goal of
such networks is to provide a global overview of the underlying system and possible
mechanisms, which makes it possible to identify relevant microbes or metabolites that
play important roles in the network by connecting a variety of components or exhib-
iting key features. In the next paragraphs, we will discuss networks that are created
top-down with newly generated data and knowledge-derived networks that are cre-
ated bottom-up with existing information (Fig. 1).

Data-driven (top-down) networks. Species cooccurrence networks can be used to
investigate ecological interactions between microbes. Based on high-throughput data
analyses, simple networks can be constructed with the species abundance information
for different patients (24). Such networks contain the information of cooccurring
species based on calculation of correlation coefficients for each pair of microbes
(Fig. 1A). Consequently, a positive interaction can be deduced if two microbes have a
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positive correlation, e.g., cooccur with each other, and a negative interaction can be
deduced if the coefficient is negative, e.g., excludes the presence of each other (24).
This information can be relevant for understanding ecological concepts that drive
exclusion mechanisms and niche differentiation. Furthermore, the information on
species that interact positively or negatively can enable further experimental studies to
investigate mechanisms by which these interactions may take place, e.g., production of
antibiotics or metabolic cross-feeding. Despite their benefits and merits, such network-
based approaches have the limitation that they do not provide hypotheses on potential
mechanisms for the species interactions.

To overcome these limitations, metabolism-based networks have been used to
assess the functional aspect of the human gut microbiota. Therefore, metabolic func-
tions or enzymes annotated from high-throughput sequencing of different human
individuals can be used to identify pathway or metabolite differences (26). By connect-
ing enzymes based on the reactions that they are involved in, it is possible to construct
metabolic networks specific for each patient (26). Topological analyses of these net-
works can reveal patient-specific differences and global differences between healthy
controls and patients (26). Additional information can be gained by finding differences
in enzymatic modules consisting of multiple related metabolic functions, which are
connected and thus influence each other. This information can be important when
trying to find potential components for treatments or assessing off target effects (26).
While such networks are primarily constructed from patient data, the connections
between the reactions are retrieved from previous knowledge, e.g., biochemical reac-
tion databases (Fig. 1).

FIG 1 Examples of data-driven network reconstruction based on high-throughput data from different patients or conditions (A) and knowledge-driven
networks based on genome-scale metabolic reconstructions (B).
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Knowledge-driven (bottom-up) networks. In the bottom-up network approach,
biochemical knowledge is used to generate specific networks, e.g., biochemical net-
works, from information provide in databases, such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) (27), MetaCyc (28), and ModelSEED/Kbase (29, 30). In a subse-
quent step, the high-throughput data can then be overlaid with such networks to
provide novel insight and facilitate the generation of hypotheses. For instance, bio-
chemical reaction information has been used to construct a global view of the
metabolic reactions and pathways that take place in the human microbiota to assess its
overall metabolic capacity (20). Useful visualizations of these networks can be achieved
by maps representing how reactions interact with each other and share metabolites
(20). By subselecting these maps according to patient data, it is possible to find
differences in terms of various gut locations (20). With these maps, it is possible to link
metabolic functions and generate a global overview; however, the information on
which metabolic functions are carried out by specific microbes and how they interact
is missing in such analyses.

In another study, the metabolic exchange between microbes has been represented
in a global interaction map, which helped the identification of metabolic deficiencies in
certain diseases (31). On the basis of data in databases and scientific literature, microbes
have been represented by their known transport of various metabolites, which can act
in a beneficial or detrimental manner to the cooccurring species. The global view of all
transports gave clues as to which nutrients were converted by specific microbes and
then potentially supplemented to the host. When mapping patient data to this network
of transporters, it was possible to identify potential exchange deficiencies compared to
healthy controls (31). While these analyses can reveal potential metabolites or interac-
tions that are differentially regulated in patients, they lack the view on the complete
metabolism of each microbe species.

In a complementary approach, genome-scale metabolic reconstructions of organ-
isms are constructed based on genomic and biochemical data to represent compre-
hensively their metabolism to investigate the metabolic potential. To facilitate the
reconstruction process, available automatic reconstruction pipelines, such as Model-
SEED (29), can be used to generate an initial reconstruction based on the genome
annotation, which can be, e.g., retrieved from RAST (32). On the basis of the annotation
of each gene, enzymes are predicted, which carry out one or multiple reactions. In the
automated reconstruction process, biochemical reactions are then retrieved from a
database, such as KEGG (27) or MetaCyc (28). Subsequently, biochemical reactions are
represented in a stoichiometrically accurate manner by their metabolite educts and
products and their thermodynamic directionality (reversible or irreversible). To ensure
correct reaction stoichiometry (33) and directionality (34, 35), further curation of the
database entries may be necessary (36) (see also below). The comprehensive set of
reactions retrieved by this process constitutes the metabolic reconstruction and are
mathematically represented in form of the stoichiometric matrix (S-matrix) (Fig. 1). The
rows in the S-matrix represent the metabolites, and the columns represent the bio-
chemical reactions. Entries are stoichiometric coefficients for each metabolite partici-
pating in a reaction. Through sharing different metabolites, reactions are connected
with each other and therefore represent a metabolic network. In a recent study, we
applied the automatic pipeline of ModelSEED (29) to reconstruct 300 representative
microbes that are present in the human gut (37). We compared the metabolic networks
with each other to find taxon-specific differences between the gut microbes. On the
basis of this analysis, we found that microbial strains can be more metabolically
different than predicted by phylogeny, which highlights the need for taking a diversity
of microbes into consideration to understand the complete metabolism of the human
gut microbiota.

While the automatic reconstruction process provides a good approximation of a
species’ metabolism, the manual curation of reactions is essential for metabolic mod-
eling. On the basis of biochemical knowledge of reaction directionality and substrate
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uptake, reactions are refined within the metabolic reconstruction to be more congruent
with experiments (36). This manual effort cleans up mistakes that are still prevalent in
automatic reconstructions and further expands the metabolic network for biologically
relevant simulation. Several resources and databases are available with various degrees
of curation status (Table 1). In a recent publication (25), we retrieved automatically
reconstructed gut microbe models and applied manual curation efforts to provide a
resource for further refinements and metabolic modeling efforts.

CONSTRAINT-BASED MODELING OF INTESTINAL MICROBIAL COMMUNITIES
Constraint-based reconstruction and analysis. Constraint-based reconstruction

and analysis (COBRA) is based on genome-scale metabolic reconstructions, which are
formalized as metabolic models to simulate biological relevant physiological states. By
applying condition-specific constraints, reconstructions are converted into metabolic
models (Fig. 2). Often, a particular linear metabolic objective is defined, e.g., a biomass
reaction, which summarizes all biochemical precursors known to be required to form a
new cell or organism. The following mathematical problem can then be formulated
while assuming the biological system to be at a steady state: maximize vB, which is
subject to S � v � 0, and vi,min � vi � vi,max, where v represents the flux values
(minimum and maximum values) through all model reactions i while maximizing the
flux vB through the metabolic objective reaction B. The steady-state assumption implies
that metabolites cannot accumulate and the total flux into the network must equal the
total outflux, and it is represented by S � v � 0, where S is the aforementioned
stoichiometric matrix. The constraints, represented as vi,min � vi � vi,max, can reflect
medium conditions, in which the uptake of metabolites via exchange reactions is
limited or limitations of internal reaction fluxes that come from experimental data (36).
The biomass flux then predicts how much biomass the organism can produce under
the given condition. Fluxes that flow through the network predict the metabolic
pathways that are used by the organism in order to achieve the metabolic objective.
The process of finding the solution to the stated optimization problem is called flux
balance analysis (FBA) (40) and can be solved using linear programming. To help with

TABLE 1 Resources and databases to retrieve genome-scale metabolic models of human
gut microbes with their respective curation status

Resource Curation status No. of microbe reconstructions Reference

Kbasea Draft 30
MetaCyca Draft 28
ModelSEEDa Draft 29
AGORA Curated 773 25
BiGG database Curated 78 38
Human metabolic atlas Curated 5 39
aAny available genome sequence can be uploaded to reconstruct a draft metabolic network.

FIG 2 Flux balance simulations of individual genome-scale metabolic models and the emergence of alternative optimal flux distributions.
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the interpretation and data integration, fluxes are typically scaled to millimoles per
gram (dry weight) per hour, and the biomass is usually given in gram (dry weight) per
hour (41). Constraint-based modeling approaches can be applied to the human gut
microbiota by either analyzing the metabolic capabilities of single species (42–45) or
combining metabolic models of multiple species in a community modeling approach
(46–50). Computational toolboxes, such as the COBRA toolbox (51), facilitate such
investigations by the systems biology and the microbiome research communities.

An advantage of the COBRA approach is that it can assess the spectrum of
metabolism for an organism (52). The steady-state solution space contains all possible
flux distributions consistent with the applied constraints for a given condition-specific
model. To deal with this degenerative nature of FBA, i.e., that there are typically more
than one possible flux distribution, parsimonious FBA can be used to select the flux
distribution that minimizes the sum of all reactions fluxes and thereby estimates the
minimization of enzyme usage (53). This particular flux distribution can be computed
with an additional linear programming problem, which minimizes the total flux while
ensuring the calculated biomass objective (53). Furthermore, flux variability analysis
(FVA) (54, 55) can be applied, in which each reaction in the model is minimized and
maximized with the aim to find the range of flux values for each reaction (i.e., the flux
span) that can be carried by each reaction. These computations enable the overall
assessment of metabolic functionalities an organism can achieve.

Compartmentalized community models. Compartmentalized microbial commu-
nity models can be constructed by integrating individual microbial metabolic recon-
structions via their S-matrices (Fig. 3A). In this combined model, the individual microbes
are separated from each other by occupying different compartments, in which they
can secrete and take up metabolites from a shared environment (56). Therefore, the
microbes can compete for nutrients in this environment but can also support each
other by releasing metabolites to be used by other microbes. The optimized biomass
of this community is usually composed as a combination of the individual biomass
reactions of each microbe (56). Additionally, coupling constraints can be applied to
ensure that the flux through each biochemical reaction is scaled with the achievable
biomass reaction (57). Further developments of the community objective include a
multiobjective optimization, in which the egoistic growth interest of each microbe is
optimized while ensuring an overall community growth (58). These methods allow the
prediction of metabolic interactions based on combined S-matrices.

FIG 3 Flux balance simulation (FBA) of compartment-based communities (A) as well as dynamic FBA of population-based (B) and individual-based models (C).
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Pairwise models of microbial communities can give new insights in terms of the
metabolic interactions that occur in the human gut. In a recent study, we applied
pairwise community models to the human gut microbiota by modeling all possible
pairs of more than 700 microbes and found strikingly mostly negative metabolic
interactions, e.g., competition for resources, of different microbes (25), which under-
lines the ecological concept that negative interactions shape diversity in the human gut
microbiota (59). Several other studies have investigated pairwise interactions of gut
bacteria and discovered novel metabolic interactions and the exchange of key metab-
olites (57, 60, 61). By simply adding additional microbes to the compartment-based
strategy, it is possible to model intestinal microbe communities of multiple species (49).
A study based on 11 metabolic models (62) revealed a vivid exchange of fermentation
products and the conversion of metabolites involved in neurotransmitter production,
which can have important implications in various neurological diseases. The concept of
modeling multiple species has been further applied to model the influence of different
diets on the metabolic interactions of different gut bacteria (63). While such generated
information of compartmentalized community models can be useful in finding new
hypothesis of metabolic interactions, they do not represent the temporal dynamics of
the interactions between the species.

Population-based models. Population-based COBRA modeling can be used to
analyze temporal dynamics of metabolic interactions within microbial communities.
With the optimization of biomass growth, FBA intrinsically models growth of microbe
populations. The combined S-matrix approach can also be used to model population
dynamics with respect to a temporal scale (64). Essentially, the biomass optimization of
each microbe is solved iteratively and independently. Each iteration represents a
discrete time interval, in which new biomass (as defined by the biomass reaction) is
produced and metabolites are secreted or taken up. The units of the fluxes and biomass
are scaled according to the time interval. Similar to the compartmentalized community
models, metabolites are secreted into a shared compartment. Therefore, the same
positive or negative interactions between microbes, as discussed above, can potentially
take place. However, through the introduction of a temporal scale via the time intervals,
it is possible to investigate the evolution and emergence of these interactions under
different conditions. This extension can help with the understanding of how different
interactions are temporally dependent, as it is thought to be the case for the human
gut microbiota where nutrient intake is dynamically changing throughout the day (65).
Experimental time series data can be integrated in such temporal dynamics to adjust
the simulation results (66). Recent approaches also add a spatial dimension to such
community models to represent the colony growth of organisms (67). The inclusion of
a spatial dimension allows the representation of metabolite concentrations, which can
diffuse and create different gradients. Such gradients are thought to strongly influence
the gut microbiota by forming different niches in which the microbial community
differentiates (68). Population-based community modeling can therefore help to inves-
tigate what metabolites affect and dynamically change the microbial community.

Population-based COBRA modeling can give new insights in the dynamic change of
metabolic interactions of human gut microbial communities. A recent approach ap-
plied population-based metabolic models to a simple community of six microbes (69).
The results of this analysis demonstrated a highly metabolic active community that
exchanges a variety of different metabolites through a complex interaction network.
Within this interaction network, many cross-feeding interactions have been validated
against knowledge from literature. Notably, these interactions can change over time
and are therefore highly dynamic (69). By calibrating the relative abundances of a
representative intestinal microbial community, a recent study (70) could also reproduce
the dynamic change of the community structure in response to different diets. A
significant assumption of such models is that each microbe consists of a population of
homogenous cells, which operate under similar environmental niche conditions. This
approach can be useful to investigate the metabolic behavior of microbial populations
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but is limited in predicting metabolic interactions between individuals of one popula-
tion.

Individual-based community models. The metabolic interactions between distinct
microbial organisms can be modeled by combining the COBRA approach with
individual-based modeling (IBM). IBM is a method also used in classical ecology (71) to
model species populations in terms of single independent individuals by discrete time
steps and a spatial environment. Individuals in this environment can interact according
to predefined rules, which determine their states. Through these local interactions,
global population structures can emerge that determine the system state. Therefore,
population dynamics can help to understand how single cells shape and structure
populations of species in an ecosystem. Several approaches have been published that
combined IBM with COBRA modeling to study the metabolism of single cells in a
population of a single species (72) or multiple species (73, 74). Briefly, each single cell
is represented by a metabolic model and simulates its metabolism according to the
spatial position in the environment, which includes certain metabolites. Metabolites
can diffuse through this environment, described using partial differential equations, to
reflect concentration gradients that dominate the community and to create niches that
allow the activation of different metabolic pathways. Each species is thus represented
by metabolically heterogeneous individuals, which permits the simulation of the full
metabolic potential (73). Thus, this method allows researchers to predict the metabolic
interactions between species and within species that can have different metabolic
phenotypes depending on the spatial resource allocation (Fig. 3C).

Individual-based COBRA modeling can give insights into the spatial and temporal
community structure of the human gut microbiota. For instance, a recent study has
explored the effects of antibiotics on a two-species community model of human gut
microbes, represented by a combination of individual-based and kinetic modeling (75).
Similarly, the combined approach of IBM and COBRA has been applied to analyze
microbial communities in the human gut (73). The community model contained seven
representative microbes that have previously been experimentally shown to represent
the properties of the gut microbiota (76). The simulations recapitulated experimentally
known metabolite concentrations but also predicted novel cross-feeding interactions
through fermentation products exchanged within the microbes of the community (73).
Furthermore, by applying a spatial gradient of mucous glycans, spatial niche differen-
tiation of microbial cells could be observed, consistent with experimental microscopy
studies. This observation further strengthens the fact that metabolism is an important
factor in shaping the gut microbiota and inducing ecological interactions. Recently, this
approach has been further expanded to integrate metagenomic data of patients and
healthy controls to predict personalized dietary treatments (77). Such findings demon-
strate the relevance of the integration of ecological methods with COBRA to under-
stand the metabolic mechanisms that shape the temporal and spatial community
structure. There are several tools available that allow constraint-based modeling of
microbial communities (Table 2).

CURRENT CHALLENGES OF GUT MICROBIOTA MODELING

The COBRA approaches for analyzing microbial communities provide promising
tools for investigating the metabolic effect of the human gut microbiota. Several
studies have been conducted in this context, mostly focusing on small communities
representative of the intestinal microbiota (Table 3). These studies have revealed
several important aspects of the human gut microbiota and its metabolism through the
use of mechanistic metabolic models, which allow researchers to identify relevant
metabolic pathways underlying the observed metabolic interactions between species.
These analyses can improve our understanding of the metabolic mechanisms that
shape intestinal microbial communities, but there are several limitations and challenges
that need to be considered when applying COBRA community modeling to the human
gut microbiota.
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Horizontal gene transfer. A challenging aspect in community modeling of the
human gut microbiota is horizontal gene transfer (HGT). HGT seems to occur frequently
within the human gut microbiota (78, 79) and represents a source for evolutionary
innovation. Though the effect of HGT on gut-associated community has not been
studied yet, metabolic models could be used to address such questions (80). Thus, the
combination of evolutionary and ecological modeling could give novel insights into the
dynamics of the human gut microbiota.

Scalability and model complexity. One of the most striking hallmarks of the
human gut microbiota is its species diversity, which poses challenges to the model
simulations that need to be addressed. Simplified microbiota models of less than 10
species are relevant for studying metabolic interactions in general and can be used to
simulate experiments that are conducted with small microbial communities in gnoto-
biotic animals (76) or in vitro (82). However, such models will never be able to capture
and explain the high complexity of the human gut microbiota. Why are there so many
different species? Why is the human gut microbiota more diverse than other body
sites? Why are some diseases associated with a lower microbiota diversity? These are
some of the questions that can be addressed only with more comprehensive microbi-
ota model. In a recent publication (25), we created a resource of more than 700 curated
metabolic models of gut microbes. Combining those into a community model poses

TABLE 2 List of available tools as freely accessible software packages for constraint-based modeling of microbial communities

Strategy and tool Tutorial(s) Link Reference

Compartment-based models
MMinte Yes https://github.com/mendessoares/MMinte 61
OptCom No http://www.maranasgroup.com/submission/OptCom.htm 58
Microbiome modeling toolbox Yes https://opencobra.github.io/cobratoolbox/ 51

Population-based models
COMETS Yes http://www.bu.edu/segrelab/comets/ 67
MCM Yes http://www.zoology.ubc.ca/MCM 66
DyMMM No https://sourceforge.net/p/dymmm 64
SteadyCom No https://github.com/maranasgroup/SteadyCom 70

Individual-based model
BacArena Yes https://github.com/euba/BacArena 73

TABLE 3 List of the different constraint-based community modeling approaches that have been applied to model microbial consortia of
the human gut microbiota

Strategy and application to the human gut microbiota No. of microbial species With host Reference

Compartment-based models
Host-microbe metabolic interactions 1 Yes 57
Microbe-microbe metabolic trade-off 2 No 60
Microbe-microbe metabolic interactions 3 No 48
Microbe-microbe metabolic interactions with different diets 4 No 63
Human metabolic interactions with microbial community 11 Yes 90
Metabolic interactions between microbes in community 11 Yes 62
Metabolic interactions between microbes in community, emergent metabolic properties
of personalized microbial communities

�100 No 50

Metabolic interactions between personalized microbial communities and whole-body
and organ-level metabolism

�100 Yes 81

Population-based models
Dynamic metabolic interactions within microbial community 6 No 69
Simulating microbe abundance profiles 9 No 70

Individual-based models
Effects of antibiotic treatments on the metabolic interactions between species 2 No 74
Diet interactions within microbiota and cross-feeding 3 No 74
Niche differentiation induced by mucous glycans 7 No 73
Integration of metagenomic data and prediction of personalized dietary treatments �100 No 77
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several difficulties, such as the simulation time. Compartmentalized models are ex-
tended versions of single metabolic models, which become more challenging to solve
as the number of variables and mass-balances increases. In particular, extensive calcu-
lations associated with simulation methods, such as FVA, require dedicated algorithms
that make effective use of, for instance, parallelization of the computations (55, 83).
By doing so, we were able to simulate with microbiota and host-microbiota models
containing hundreds of thousand variables and linear equations (50, 81), demonstrat-
ing the scalability of this approach. Population-based models, on the other hand,
simulate each microbe independently and scale therefore with the number of species
in the community. Individual-based community models are generally independent of
the number of species but scale linearly with the number of individuals (73) and are
therefore limited in modeling a small spatial scale. Taken together, each simulation
approach requires the consideration of the trade-off between model complexity and
simulation time.

Model complexity also poses the problem of subsequent data analysis and visual-
ization. By simulating large-scale microbiota models with a high number of variables, it
becomes difficult to identify the explaining pathways. The large amount of simulations
and the complexity of the models further require data analysis approaches to find the
most relevant parameters influencing the modeled system with the aim to propose an
experimentally testable hypothesis. State-of-the art machine learning approaches have
already been used to aid the analyses of COBRA simulation results (84, 85) but have yet
to be systematically integrated with the COBRA modeling of the human gut microbiota.

Data integration. High-throughput omics data can be used to contextualize
genome-scale metabolic models (86, 87). Similarly, omics data from microbiome studies
can be integrated into COBRA community microbiota models to generate context-
specific models. For instance, in our recently published resource of gut microbe
reconstructions (25), we have mapped metagenomic data of microbial abundances
onto our set of microbes, which resulted in microbiota models consisting of about 100
microbes, indicating the need of comprehensive and scalable modeling approaches to
analyze this data. Additionally, relative microbial abundances estimated from meta-
genomic data can be used to calibrate the microbial community (50). As such, the
microbiota models are sample and/or person specific and permit the assessment of
microbial capabilities unique to an individual, or a patient group. However, attention
should be paid to the biological interpretation of this integration in different commu-
nity modeling approaches. In compartment-based models, the bacterial abundances
can be scaled with the community biomass (50, 81), which assumes that the microbial
abundance correlates with the weight (dry weight) of each organism. In contrast, in
individual-based models, the cell count of the species populations is scaled by the
microbial abundances (77). As an alternative measure, the replication rates can be
estimated from metagenomic data (88) and used as a proxy for microbial growth rates.
If available, further data, such as meta-transcriptomic, meta-proteomic, and meta-
metabolomic data (89), could be integrated into microbial community models to
further constrain the models, thereby making them more representative of the real
biological system.

Model validation. Experimental validation of community simulation results plays
an important role to assess the predictive potential of the microbial community models.
While community models can give interesting novel hypotheses with their simulation,
particular attention should be paid to the biological relevance of the predictions. It is
therefore important to relate and validate at least part of the simulations with exper-
imental values that come from existing knowledge or direct experiments. Existing
knowledge can be used to validate the predictions of community models, e.g., by
comparing simulated with measured metabolite concentrations (63). This will also help
to assess the relevance of the community models and how they should be interpreted.
Since models of the human gut microbiota can be quite complicated and extensive, it
is also difficult to find appropriate data or design experiments that can be used for
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validation. Part of the simulation results will thus be a novel hypothesis that can be
validated only with new experiments. This can guide the targeted design of experi-
mental studies, which becomes important in the field of the human gut microbiota to
reduce the complexity to simple findings.

CONCLUSIONS AND FUTURE PERSPECTIVES

The introduced COBRA community modeling approaches are promising tools to
give novel insights and hypotheses of microbial consortia in the human gut. The
models allow for the integration of multidimensional omics data and go beyond the
descriptive nature of more traditional high-throughput data analysis approaches with
the potential to unravel novel mechanisms. The different discussed modeling para-
digms rely on various assumptions that need to be assessed before starting an analysis.
On the basis of this assessment, the model that is least complicated and most
explanatory for a specific research question should be chosen. It could also be fruitful
to combine different approaches to see their consistency or potential differences for a
specific problem. For example, it would be interesting to model single isolated species
and communities separately to identify beneficial or detrimental effects on the single
species level. Further comparisons can be made between network-based and modeling
approaches. Can, for example, the negative and positive interactions in a coexistence
correlation network be explained by the underlying metabolic interactions? Compari-
sons between algorithms could give further hints on candidate experiments that can be
performed for validation. This can drive further research on the human microbiota,
mechanistically predicting different treatments for various diseases.
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