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Epigenetic clock, a highly accurate age estimator based on DNAmethylation (DNAm) level,
is the basis for predicting mortality/morbidity and elucidating the molecular mechanism of
aging, which is of great significance in forensics, justice, and social life. Herein, we
integrated machine learning (ML) algorithms to construct blood epigenetic clock in
Southern Han Chinese (CHS) for chronological age prediction. The correlation
coefficient (r) meta-analyses of 7,084 individuals were firstly implemented to select five
genes (ELOVL2, C1orf132, TRIM59, FHL2, and KLF14) from a candidate set of nine age-
associated DNAm biomarkers. The DNAm-based profiles of the CHS cohort (240 blood
samples differing in age from 1 to 81 years) were generated by the bisulfite targeted
amplicon pyrosequencing (BTA-pseq) from 34 cytosine-phosphate-guanine sites (CpGs)
of five selected genes, revealing that the methylation levels at different CpGs exhibit
population specificity. Furthermore, we established and evaluated four chronological age
prediction models using distinct ML algorithms: stepwise regression (SR), support vector
regression (SVR-eps and SVR-nu), and random forest regression (RFR). The median
absolute deviation (MAD) values increased with chronological age, especially in the 61–81
age category. No apparent gender effect was found in different ML models of the CHS
cohort (all p > 0.05). The MAD values were 2.97, 2.22, 2.19, and 1.29 years for SR, SVR-
eps, SVR-nu, and RFR in the CHS cohort, respectively. Eventually, compared to theMAD
range of the meta cohort (2.53–5.07 years), a promising RFR model (ntree � 500 and
mtry � 8) was optimized with anMAD of 1.15 years in the 1–60 age categories of the CHS
cohort, which could be regarded as a robust epigenetic clock in blood for age-related
issues.
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INTRODUCTION

Aging is an inevitable, universal and natural phenomenon that occurs with age, characterized by
progressive decline in organismal function and more susceptible to irreversible degenerative disease
and even death (Sen et al., 2016). Accumulating studies have linked aging to epigenetic alterations
(Grönniger et al., 2010; Sen et al., 2016; Horvath and Raj, 2018). As such, aging denotes an
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elementary epigenetic phenomenon, and epigenetic changes are
widely considered to play a crucial role in aging (Fraga et al., 2005;
Boks et al., 2009). Epigenetics is often defined by changes in gene
function that do not involve any changes in DNA sequence, and
epigenetic changes during aging mainly include histone
modification and DNA methylation (DNAm) (Parson, 2018;
Unnikrishnan et al., 2019).

DNAm is a chemical modification that mainly occurs in
cytosine-phosphate-guanine (CpG) loci, especially in the CpG
islands. In fact, an initial study of age-associated methylation
in normal tissue was motivated by the study of methylation in
cancer (Esteller, 2002). Cancer is well recognized as a disease of
aging. For example, Christensen et al. verified this by
proposing that variations in age- and exposure-related
methylation may significantly contribute to increased
susceptibility to several diseases (Christensen et al., 2009).
Emerging studies are beginning to work on the associations
between methylation profiles and human tissues; however,
most of them have focused on therapeutic targets for
pathological tissues (Suzuki et al., 2006; Portela and Esteller,
2010; Gao et al., 2019).

In forensics, DNAm biomarkers mainly focus on normal
tissues, and employing methylation levels of strongly age-
related CpGs (AR-CpGs) into construction of age predictive
models has become a mainstream of age-estimation strategies
(i.e., epigenetic clock) (Horvath and Raj, 2018). Epigenetic clock,
which measures alterations in specific CpGs, is a synonym of a
highly accurate age estimator based on DNAm levels
(Unnikrishnan et al., 2019). As the most promising molecular
age estimator, epigenetic clock can not only accurately predict
age, mortality, or morbidity but also help to disentangle the role
of DNAm in the mechanisms of aging, therefore facilitating anti-
aging interventions (Jylhävä et al., 2017; Horvath and Raj, 2018;
Unnikrishnan et al., 2019). Moreover, the epigenetic clocks can be
utilized in other non-clinical areas, such as 1) forensic DNA
phenotyping, including scenes in criminal investigation or
catastrophic disaster (Gršković et al., 2013; Vidaki et al., 2013;
Parson, 2018); 2) potentially determination of age of criminal
responsibility for judgement (Gršković et al., 2013); and 3)
children and youth growth monitoring, athlete selection, and
social welfare recognition in our social life (Weidner et al., 2014).

To date, even though the relationship between aging and CpG
methylation is complicated (Tra et al., 2002), large series of AR-
CpGs were applicable for age prediction from methylation
analysis, and quite a few epigenetic clocks of different
populations were generated, providing references for distinct
forensic scenarios. For example, Hannum et al. (2013)
identified 71 AR-CpGs using the Illumina Infinium
HumanMethylation450 BeadChip assay and built an age
calculator with a correlation of 96% and a median absolute
deviation (MAD) value of 3.9 years. Naue et al. chose 15 AR-
CpGs for methylation analysis using the massive parallel
sequencing method and proposed a regression model with an
MAD value of 3.21 years (Naue et al., 2017). Smeers et al.
investigated 16 AR-CpGs by pyrosequencing method and
constructed three statistical prediction models with MAD
values of 3.21, 3.20, and 3.26 years, respectively (Smeers et al.,

2018). Dias et al. tested 5 AR-CpGs using the multiplex SNaPshot
assay and developed an age prediction model based on 4 of them,
with anMAD value of 4.97, which explains 92.5% variation in age
(Dias et al., 2020).

As mentioned above, theMAD values for most DNAm-based
age prediction models were more than 3 years (Zbieć-Piekarska
et al., 2015b; Cho et al., 2017; Naue et al., 2017; Vidaki et al., 2017;
Aliferi et al., 2018; Smeers et al., 2018; Dias et al., 2020), and also
many factors have influences on age prediction accuracy, which
limited its practical application. For example, different human
body fluids (blood, semen, saliva, etc.) exhibit distinct
methylation patterns (Jung et al., 2019), and in different
populations/genders, the same DNAm biomarkers show
diverse methylation levels in the same age category (Zbieć-
Piekarska et al., 2015b; Cho et al., 2017; Dias et al., 2020). In
addition, there are various alternative approaches (genome-wide
DNAm, Illumina BeadChip, bisulfite pyrosequencing, etc.) for
DNAm detection, while the bisulfite targeted amplicon
pyrosequencing (BTA-pseq) technology supports standardized
and cost-effective high-throughput analysis, which is generally
relatively accurate. Except for the selection of population-/
gender-/tissue-specific DNAm biomarkers and detection
methods, the algorithm also has an impact on the age-
prediction accuracy. Aliferi et al. (2018) compared the
efficiency of 17 machine learning (ML) models based on the
same MPS data and suggested that multiple linear regression
(MLR) models did not outperform the generalized regression
neural network (GRNN) model and several non-linear
approaches showed increased accuracy, especially for support
vector machine polynomial (SVMp). Xu et al. (2015) found that
the MAD values reduced in the models of nonlinear regression,
BP neural network, and support vector regression (SVR) by using
the same CpGs when comparing with the MLR model. Garali
et al. compared six different statistical models with the MLR
model of Zbiec-Pierkarska (Zbieć-Piekarska et al., 2015b), and
the results suggested that multiple quadratic regression (MQR),
SVM, gradient boosting regressor (GBR), and MissMDA
(mMDA) models outperformed the MLR model for age
prediction from ELOVL2 (Garali et al., 2020).

Hence, in order to establish robust age prediction ML models
for Southern Han Chinese (CHS), a candidate set of nine DNAm
biomarkers was collected by meta-analyses of 7,084 individuals.
Among them, five promising age-related genes (34 CpGs) were
selected according to the correlation coefficient (r) ranking and
Gene Expression Omnibus (GEO) data mining by AgeGuess
(Gao et al., 2020). The DNAm-based profiles of the CHS
cohort (240 blood samples with ages of 1–81 years) were
generated by BTA-pseq. In addition, four different ML
algorithms, stepwise regression (SR), SVR (including eps- and
nu-regression), and random forest regression (RFR), were used to
establish the age-prediction models based on AR-CpGs (|r|≥0.7).
The samples were randomly divided into different datasets
according to different genders and chronological ages, and we
evaluated the model efficiencies in Training and Validation sets
by MAD and root mean square error (RMSE) values, to find the
best-performing ML model of CHS to estimate the chronological
ages in practice.
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MATERIALS AND METHODS

AR-CpG Selection and Sample Collection
The bibliographic search strategies were developed according to
the DNAm-based age prediction studies with MAD values less
than 5 years between 2014 and 2021, and we collected a cohort of
7,084 individuals from 16 countries or populations (Weidner
et al., 2014; Bekaert et al., 2015; Xu et al., 2015; Zbieć-Piekarska
et al., 2015a; Zbieć-Piekarska, et al., 2015b; Park et al., 2016;
Zubakov et al., 2016; Cho et al., 2017; Feng et al., 2018; Alsaleh

and Haddrill, 2019; Daunay et al., 2019; Jung et al., 2019; Li et al.,
2019; Dias et al., 2020; Garali et al., 2020; Lau and Fung, 2020; Pan
et al., 2020; Piniewska-Róg et al., 2021; Sukawutthiya et al., 2021;
Woźniak et al., 2021; Xiao et al., 2021). The correlation coefficient
(r) ranking of nine age-associated genes was obtained by meta-
analyses (Figure 1 and Supplementary Figure S1). We selected
four promising DNAm biomarkers (ELOVL2, C1orf132, FHL2,
and TRIM59) according to the correlation coefficient ranking
(|r|≥0.8) and the KLF14 gene by GEO data mining using a three-
step feature selection algorithm AgeGuess (Gao et al., 2020),

FIGURE 1 |Detailed meta-analysis results (A) and correlation coefficient ranking (B) of the candidate age-associated gene set. (n, sample size; |r|, absolute value of
correlation coefficient; CI, confidence interval; p, significance of Z test.)

FIGURE 2 | Spearman correlation analyses between DNA methylation levels of 34 CpGs located at five genes and chronological ages of three different datasets in
the CHS cohort (n � 240, blood samples). (A) Detailed population sizes of different datasets (in the CHS cohort, randomly 70%/30% for Training and Validation sets,
detailed information in Supplementary Table S4). (B) Spearman correlations between chronological ages and DNA methylation levels at each CpG in three different
gender datasets (r, correlation coefficient; 0.9≤|r|≤1.0, very high correlation; 0.7≤|r|<0.9, high correlation; 0.5≤|r|<0.7, moderate correlation; |r|≤0.5, low correlation,
details in Supplementary Table S5).
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including a total of 34 CpGs (details in Supplementary Table S1).
The PCR primers of five age-related DNAm biomarkers
(Supplementary Table S2) were designed by PyroMark Assay
Design Software 2.0 (Qiagen, Hilden, Germany).

A total of 240 unrelated healthy individuals were recruited
from Han Chinese, who had settled in south China for at least
three generations. Peripheral blood samples (2 ml) and accurate
information (including age, gender, nationality) were collected
from all participants of the CHS cohort. All volunteers had signed
the informed consent forms (the underage children were signed
by their guardians in accordance with Chinese laws and
regulations), and the study was approved by the Biomedical
Ethical Committee of Southern Medical University (No. 2021-
015) following the standards of Declaration of Helsinki.

Sample Preparation and BTA-pseq
DNA Extraction and Quantification
Genomic DNA was extracted from 200 μl peripheral blood by
QIAamp Blood Mini Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s protocol. The extracted DNA samples were
then quantified using Qubit® 4.0 Fluorometer instrument (Thermo
Fisher Scientific, Waltham, MA, United States) with Qubit®
dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA,
United States) according to the manufacturer’s instructions.

Bisulfite Conversion
The conversion of unmethylated cytosines to uracils in DNA
samples was carried out with the EpiTect Fast DNA Bisulfite Kit
(Qiagen, Hilden, Germany), following the manufacturer’s
instruction. With the input of 300 ng DNA, the bisulfite DNA
conversion was performed using a thermal cycler that comprised:
two cycles of initial denaturation at 95°C for 5 min and incubation at
60°C for 10 min followed by a hold at 20°C for up to 20 h in the
thermal cycler. The convertedDNAwas then eluted into 15 μl of the
elution buffer (EB) obtained from the same kit, normalized to 20 ng/
μl as the DNA template, and subsequently stored at −20°C until use.

Targeted Amplicon PCR
After bisulfite conversion, 100 ng of each converted DNA was
submitted into a multiplex polymerase chain reaction (PCR)
amplification with PyroMark PCR Kit (Qiagen, Hilden,
Germany). Each multiplex reaction was performed in a final
volume of 25 μl containing 12.5 μl of 2✕ PyroMark PCR Master
Mix (providing a concentration of 1.5 mM MgCl2), 2.5 μl of 10✕
CoralLoad Concentrate, 9 μl of primer mix, and 1 μl of template
DNA. The multiplex reaction was amplified under the following
conditions: 1) initial PCR activation at 95°C for 15 min; 2) 45
cycles consisting of denaturation at 94°C for 30 s, annealing at
56°C for 30 s, and extension at 72°C for 30 s; and 3) final extension
at 72°C for 10 min followed by a hold at 4°C. Negative control
without DNA template was prepared in each PCR process.

Pyrosequencing
Following amplification, all PCR products were sequenced using
PyroMark Gold Q24 Reagents (Qiagen, Hilden, Germany) in
combination with PyroMark Q24 platform (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions. The

generated pyrogram traces with sharp and distinct peaks were
subsequently analyzed, and the methylation levels at different
CpGs were calculated by the peak heights observed in PyroMark
Q24 Advanced software v3.0.1 (Qiagen, Hilden, Germany). The
missing methylation percentage values have been filled in with
the median (Supplementary Table S3).

Statistical Analysis
Spearman Correlation
The Spearman correlation coefficient (r) was calculated by IBM®
SPSS® Statistics 26 (IBM Corporation, Armonk, NY,
United States), SAS® 9.4 software (SAS Institute Inc., Cary,
NC, United States), and R (version 3.6.1). The r values are
used to assess the strength and direction of the linear
relationships between pairs of variables (predicted and
chronological ages). According to Mukaka (2012), the r values
followed the rule of thumb for interpreting size of a correlation
coefficient: 1) 0.9≤|r|≤1.0, very high correlation; 2) 0.7≤|r|<0.9,
high correlation; 3) 0.5≤|r|<0.7, moderate correlation; and 4) |
r|≤0.5, low correlation. The AR-CpGs (|r|≥0.7) were selected to
establish different ML models.

Dataset Information
As shown in Figure 2A, the CHS cohort was randomly divided into
a Training set (70%, n � 170, 93 females and 77 males) and a
Validation set (30%, n � 70, 39 females and 31 males). The
obtained methylation levels of Training set and the
corresponding chronological ages were used for model training.
Parameter tunning was performed by leave-one-out (k-fold) cross-
validation, during which a set of samples (a fold) is removed from
the dataset as the Validation set and the remaining samples were
assigned as a Training set. In addition, for the evaluation of gender
differences and aging effects, both Training and Validation sets
were divided into three different gender datasets (female, male, and
combined datasets, details in Figure 2A) and four age categories
(1–20, 21–40, 41–60, and 61–81 years, details in Supplementary
Table S4), respectively.

Model Performance Comparison
Model performance was compared in terms of MAD and RMSE
values, which are calculated by IBM® SPSS® Statistics 26 and R
(version 3.6.1). The MAD value is defined as the average distance
between each data value and themean, a way to describe variation in a
dataset, while the RMSE value is widely used to compute the error
distance between the estimated values. Both of them are the main
metrics used to measure the quality of the regression output models.
To measure the overall performance of each model, the MAD and
RMSE values were calculated for thewhole CHS cohort. Subsequently,
to evaluate the generalization and the actual prediction performance
of thefinalmodel, and to evaluate gender or aging effects,MAD values
for different datasets needed to be analyzed.

Machine Learning Model
Stepwise Regression Model
For multivariate linear regression analysis, the model selection
procedure SR was performed using IBM® SPSS® Statistics 26
(IBM Corporation, Armonk, NY, United States) for model
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building together with 0.05 significance criteria for inclusion in
the final model. Specifically, by excluding all previously
selected variables with a p-value of 0.05 or greater until no
variables can be eliminated nor new variables can be
introduced in the regression equation, stepwiselm can create
a linear model and automatically add to or trim the model,
thus improving the selection of important variables in
relatively small datasets (Núñez et al., 2011). Overall, the
essence of these steps is to establish an “Optimal” MLR
equation. The accuracy of age prediction with those tested
CpGs was assessed by the goodness-of-fit (R2), which is a
parameter establishing the discrepancy between the
observed values (chronological ages) and the expected
values (predicted ages) under an applicable model, and
generally used in regression to evaluate the performance of
the model. Therefore, model equations with the greatest R2

were selected as the candidate predictors based on the
multivariant regression analysis.

Support Vector Regression Model
For SVR analysis, SVR model was carried out by R (e1071
package). As reported, support vector machine (SVM) is a
powerful technique for classification, regression, and outlier
detection, and a correct choice of kernel parameters is crucial
for a promising result. So, we constructed and refined regression
models by following methods: 1) select support vector machines
with radial (SVMr) function as kernel, 2) employ eps-regression
and nu-regression for comparison, and 3) adjust the parameters
“cost, gamma, and epsilon” for eps-regression and “cost and nu”
for nu-regression. Eventually, two optimized SVR models with
best-performing parameters were obtained.

Random Forest Regression Model
For random forest regression analysis, random forest exploiting
classification trees were constructed based on Breiman’s
random forest algorithm (on the basis of Breiman and
Cutler’s original Fortran code) using randomForest R
package. Random forests represent an effective tool in
prediction, and RFR algorithm that based on decision trees
plays an important role in selecting the “optimal” markers for
model building. To reduce bias and operate effectively in
regression, optimization of the RFR model was carried out
by tuning the parameters mtry and ntree. mtry refers to the
number of variables randomly sampled as candidates at each
split, and ntree is defined as the number of trees to grow. By
multiple rounds of optimization, a final mtry of 8 was chosen,
the ntree was set at 500, and the optimal RFR model was

established. The value (% Var explained) represents the
overall explanatory rate for the variances of the response
variables by the predictive variables. We used the value (%
IncMSE, increase in mean squared error) to measure the
importance of predictive variables, which means that by
randomly assigning a value to each predictive variable, if the
predictive variable is more important, the model prediction
error will increase after its value is randomly replaced.

RESULTS

AR-CpG Selection and Spearman
Correlation
At first, a cohort of 7,084 individuals from 16 countries or
populations related to DNAm-based age prediction studies
was collected by bibliographic search to conduct meta-analyses
(details in Supplementary Figure S1). Figure 1A presents the
results of a meta-analysis of the detailed correlation coefficients
for candidate age-associated genes in the meta cohort. The
absolute values of correlation coefficients (|r|) for nine DNAm
biomarkers ranged from 0.59 (ZNF423) to 0.89 (ELOVL2). There
are eight of nine DNA biomarkers with |r|≥0.7 (Figure 1), and the
|r| ranking of the candidate genes is visualized in Figure 1B.
According to the self-defined threshold value (|r|≥0.8), four
promising genes (ELOVL2, C1orf132, FHL2, and TRIM59)
were selected for further validation in the CHS cohort. In
addition, the KLF14 gene that was screened by a three-step
feature selection algorithm AgeGuess (Gao et al., 2020) was
also selected. Supplementary Tables S1, S2 present the
detailed 34 CpGs and PCR primers of five aforementioned
DNAm biomarkers, respectively.

The detailed DNAm levels of 34 CpGs and the corresponding
personal information (chronological ages and genders) in the
CHS cohort are presented in Supplementary Table S3. In
addition, according to gender stratification (Figure 2A and
Supplementary Table S4), the Spearman correlation analyses
were conducted between the DNAm levels and the chronological
ages in three different datasets, which is visualized in Figure 2B
(detailed results in Supplementary Table S5). Except for
C1orf132 where DNAm decreases with age, other genes have
positive correlations with chronological ages. In total, we
identified 25 AR-CpGs out of the 34 CpGs in the CHS cohort
(29 AR-CpGs for female dataset, 24 AR-CpGs for male dataset),
which are highly related (|r|≥0.7, p< 0.05) with the chronological
ages of CHS. In addition, the KLF14 has no apparent strong
correlation with the chronological ages (all r< 0.7), except for

TABLE 1 | Stepwise regression (SR) equations and system efficiencies in three different datasets of the CHS cohort (n � 240, blood samples).

Dataset SR equation R2 Adjusted R2 RMSE MAD

Females y � 35.518 + 0.679×F1−0.317×C1+0.319×T2−0.241×C2+0.438×E2+0.170×T4−0.202×F4+0.124×K1 0.94 0.93 4.07 3.00
Males y � 21.347 + 0.488×E1−0.412×C1+0.360×F5+0.125×E7+0.320×E5 0.96 0.96 3.45 2.64
Combined y � 24.260 + 0.348×F1−0.463×C1+0.188×E3+0.151×E1+0.088×T4+0.315×E2−0.260×F4+0.222×F2+

0.054×E7+0.125×T5
0.95 0.94 3.89 2.97

R2, coefficient of determination/goodness-of-fit; Adjusted R2, adjusted coefficient of determination; RMSE, root mean square error; MAD, median absolute deviation.
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KLF14_K1 in males (r � 0.7082). Meanwhile, three different AR-
CpGs (ELOVL2_E3, ELOVL2_E4, and FHL2_F1) have high
correlations with the chronological ages in all gender datasets
of the CHS cohort. Detailed results of Spearman analyses are
visualized in Supplementary Figures S2–S6 for ELOVL2,
C1orf132, FHL2, TRIM59, and KLF14, respectively.

Stepwise Regression Model
The AR-CpGs with |r|≥0.7 of different datasets were regarded as
alternative stepwise variables. A stepwise variable selection was
conducted to select the best possible combination of predictors
from the candidate highly associated CpGs for the SR model,
which guaranteed the explained variability without overfitting the
data. Based on different gender datasets, we built three distinct SR
equations and calculated corresponding statistics for female
(MAD � 3.00 and RMSE � 4.07), male (MAD � 2.64 and
RMSE � 3.45), and combined (MAD � 2.97 and RMSE �
3.89) datasets corresponding to the age prediction models
(details in Table 1, all adjusted R2 ≥ 0.93). There was no
significant difference between females and males in the CHS
cohort (t � 0.59, p � 0.61).

Furthermore, we evaluated the prediction accuracy of the SR
models in Training (MAD � 3.04, n � 170) and Validation (MAD
� 2.80, n � 70) sets, respectively (Supplementary Table S6). The
MAD values between Training and Validation sets had no
significant difference (t � −1.06, p � 0.31). In total, the MAD
values of different CHS datasets ranged from 2.14 (1–20 age
category of Training set, n � 41) to 5.12 (61–81 age category of
Validation set, n � 3). In addition, in the female dataset, theMAD
values spanned from 2.25 (1–20 age category of Training set, n �
20) to 8.39 (61–81 age category of Validation set, n � 1). In the
male dataset, theMAD values varied from 1.91 (1–20 age category
of Validation set, n � 9) to 6.73 (61–81 age category of Validation
set, n � 2). For different age categories, the lowest MAD value
(1.91) was found at male validation dataset (1–20 age category,
n � 9), while the highest MAD value (8.39) was identified at
female validation dataset (61–81 age category, n � 1). The MAD
values between females and males had no significant difference in
both Training (t � 1.06, p � 0.35) and Validation (t � 0.25, p �
0.54) sets. Apparently, the MAD values rise with advancing ages
(especially in the 61–81 age category), which indicated that the
methylation-based SR model prediction accuracy decreases due
to biological and physiological changes involved in the aging
process, especially for the aged.

Support Vector Regression Model
Here, we constructed SVR models with two different methods
(eps- and nu-regression) using correspondingly AR-CpG loci
(|r|≥0.7) of distinct gender groups.

SVR eps-Regression
As shown in Table 2, we found 163 support vectors in the CHS
cohort with anMAD value of 2.22 (RMSE � 2.95). In addition, the
MAD values were 2.09 and 2.12 for female (n � 132, RMSE � 2.84)
and male (n � 108, RMSE � 2.93) datasets, respectively, with no
significant difference (t � 0.51, p � 0.13). The best performance
(with the lowestMAD value) of SVR eps-regression was obtained
with the optimized parameters (cost � 1, gamma � 0.04, epsilon �
0.1). The detailed MAD values for Training and Validation sets
are presented in Supplementary Table S7. TheMAD values were
2.33 and 1.87 for Training and Validation sets, respectively, with
no significant difference (t � 1.68, p � 0.12).

In different age categories, the MAD values ranged from 1.59
(1–20 age category of Validation set, n � 18) to 4.72 (61–81 age
category of Training set, n � 12). In addition, in the female
dataset, theMAD values spanned from 1.35 (1–20 age category of
Validation set, n � 9) to 10.06 (61–81 age category of Training set,
n � 4). In the male dataset, the MAD values varied from 1.53
(1–20 age category of Validation set, n � 9) to 5.09 (61–81 age
category of Validation set, n � 2). The MAD values between
females and males had no significant difference in both Training
(t � 0.77, p � 0.07) and Validation (t � −0.38, p � 0.90) sets.
Overall, except for the 61–81 age category, the MAD value for
each dataset was no more than 2.44.

SVR nu-Regression
Besides, the SVR nu-regression model was also used to predict the
chronological ages (Table 2). TheMAD value of the CHS cohort was
2.19 (RMSE � 2.94), which was obtained at cost � 1 and nu � 0.5
(including 168 support vectors). In female and male datasets, the
MAD values were 1.92 and 2.00 with the support vectors of 105 and
79, and the RMSE values were 2.82 and 2.90, respectively. However,
there was no significant difference between females and males in the
CHS cohort (t � 0.52, p � 0.09). The detailed MAD values of
Training and Validation sets are presented in Supplementary Table
S7. TheMAD values were 2.33 and 1.84 for Training and Validation
sets with no significant difference (t � 1.78, p � 0.10), respectively.

In different age categories, the MAD values ranged from 1.56
(1–20 age category of Validation set, n � 18) to 4.73 (61–81 age

TABLE 2 | Model settings and system efficiencies for three different datasets of the CHS cohort (n � 240, blood samples) in two SVR models.

SVR Setting Dataset n Number of
support vectors

RMSE MAD

cost gamma epsilon nu

SVR-eps 1 0.04 0.1 – Females 132 90 2.84 2.09
Males 108 69 2.93 2.12
Combined 240 163 2.95 2.22

SVR-nu 1 – – 0.5 Females 132 105 2.82 1.92
Males 108 79 2.90 2.00
Combined 240 168 2.94 2.19

SVR-eps, support vector regression eps-regression; SVR-nu, support vector regression nu-regression; RMSE, root mean square error; MAD, median absolute deviation.
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category of Training set, n � 12). In the female dataset, theMAD
values spanned from 1.08 (1–20 age category of Validation set,
n � 9) to 10.54 (61–81 age category of Training set, n � 4). In the
male dataset, theMAD values varied from 1.27 (1–20 age category
of Validation set, n � 9) to 5.18 (61–81 age category of Validation
set, n � 2). The MAD values between females and males had no
significant difference in both Training (t � 0.75, p � 0.07) and
Validation (t � −0.27, p � 0.68) sets. The MAD value for each
dataset was no more than 2.41 except for the 61–81 age category.

Compared with SVR-eps, the prediction capacity of the SVR-
nu model was more excellent with lower MAD value for each
dataset, while the model stability for both of them has larger
fluctuations at the 61–81 age category (MAD values ranging from
3.42 to 10.54, details in Supplementary Table S7).

Random Forest Regression Model
Furthermore, the DNAm profiles of 240 CHS samples were
learned by the RFR algorithm. For the ntree feature selection,
we set six different threshold values (100, 300, 500, 1,000, 5,000,
and 10,000) to find the robust limit with lower error rate (details
in Supplementary Figure S7). In fact, the error rates tended to be
stable when the ntree was more than 300. However, we set an
ntree border at 500 to obtain more reliable results without regard
to the hashrate for practice case handling. In addition, the feature
selection (ntree � 500) was validated in different gender datasets,
which indicated that the relatively lower and stable error rates are
obtained with ntree of 500 (Figure 3). The E3 and E4 AR-CpG
markers of ELOVL2 genes (r > 0.9 in different gender datasets,
details in Supplementary Table S5) ranked the top three
positions in different gender datasets, which demonstrated that
these biomarkers are the important predictive variables in the
CHS cohort. According to different numbers of AR-CpGs for
distinct gender datasets, themtry values were set up at 9, 8, and 8
for female, male, and combined datasets, respectively.

With the feature selection and parameter setting as described
above, the RFR model could explain 93.21% of the total variances
(90.62% for females and 93.88% for males) in the CHS cohort

(Table 3). TheMAD values were 1.29 (RMSE � 1.77), 1.45 (RMSE
� 1.95), and 1.32 (RMSE � 1.77) for combined, female, and male
datasets, respectively. There was no significant difference between
females and males in the CHS cohort (t � 0.98, p � 0.05). As
shown in Supplementary Table S8, the MAD values of Training
and Validation sets were 1.37 and 1.10, with no significant
difference (t � 1.97, p � 0.07).

In different age categories, the MAD values ranged from 0.45
(1–20 age category of Validation set, n � 18) to 3.39 (61–81 age
category of Validation set, n � 3). In the female dataset, the MAD
values spanned from 0.59 (1–20 age category of Validation set, n �
9) to 4.47 (61–81 age category of Training set, n � 4). In the male
dataset, the MAD values varied from 0.75 (1–20 age category of
Validation set, n � 9) to 2.21 (61–81 age category of Validation set,
n � 8). The MAD values between females and males had no
significant difference in both Training (t � 0.90, p � 0.13) and
Validation (t � 0.39, p � 0.23) sets. The detailed MAD values for
each dataset are presented in Supplementary Table S8, and except
for the 61–81 age category, the MAD values were less than 1.80.

Model Performance Comparison
Based on aforementioned ML algorithms, four different ML
models have been established after multiple rounds of
optimization, and the model efficiencies have been evaluated
(details in Table 4). All R2 values were above 0.95, and the R2

value reached to 0.99 in the RFR model. The MAD values of the
CHS cohort were 2.97 (RMSE � 3.89), 2.22 (RMSE � 2.95), 2.19
(RMSE � 2.94), and 1.29 (RMSE � 1.77) for SR, SVR-eps, SVR-nu,
and RFRmodels, which are also visualized in Figures 4A,B. In the
female dataset, the MAD values were 3.00 (RMSE � 4.07), 2.09
(RMSE � 2.84), 1.92 (RMSE � 2.82), and 1.45 (RMSE � 1.95) for
SR, SVR-eps, SVR-nu, and RFR models, respectively. In the male
dataset, theMAD values were 2.64 (RMSE � 3.45), 2.12 (RMSE �
2.93), 2.00 (RMSE � 2.90), and 1.32 (RMSE � 1.77) for SR, SVR-
eps, SVR-nu, and RFR models, respectively. It demonstrated that
no matter in female or male datasets, the RFR model had the
highest predictive accuracy with an MAD value of 1.29.

FIGURE 3 | Validation of feature selection (ntree � 500) and AR-CpG importance ranking in three different gender datasets of the CHS cohort (n � 240, blood
samples). (A) Female dataset (n � 132). (B)Male dataset (n � 108). (C)Combined dataset (n � 240). (ntree, number of trees to grow, which should not be set to too small
a number, to ensure that every input row gets predicted at least a few times; %IncMSE, increase in mean squared error.)
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In four different ML models of the CHS cohort, we definitely
observed that the MAD values increased with the chronological
ages, especially in the 61–81 age category with a rapid increase
(Figures 4C–F). In addition, to obtain more precise prediction
accuracy, we evaluated the best-performing RFR model in the age
categories of 1–60 (excluding the 61–81 age category). As presented
in Supplementary Figure S8, the ntree feature (ntree � 500) was
further validated in different gender datasets, and the E3 and E4
CpGs of ELOVL2were also themost important predictive variables
in the RFR model (1–60 age categories). TheMAD value of all 225
CHS samples reduced to 1.15 (RMSE � 1.54), and theMAD values
were 1.21 and 1.01 for Training (n � 158) and Validation (n � 67)
sets, respectively (Supplementary Table S9). In Table 4 and
Figures 4G,H, the MAD values of the RFR (1–60) model were
1.29 in females (RMSE � 1.67) and 1.20 in males (RMSE � 1.60).
Compared with the RFR model for the 1–81 age categories, both
theMAD and RMSE values of RFR (1–60) have decreased, and the
MAD values were especially less than 1.00 in the 1–20 age category
(Supplementary Table S9), which demonstrated that the RFR
(1–60) model is more suitable for the age precise prediction of
youngsters. Additionally, the relationships between predicted ages
and chronological ages in different ML models were conducted
(Supplementary Figure S9), and the R2 values of all different ML
models were more than 0.94.

DISCUSSION

Forensic community has long been seeking for a molecular
marker to facilitate age prediction from biological traces at

crime scenes. The DNAm biomarkers served as the most
promising information source for chronological age
estimation, even though the aging process was impacted by
both inherited genetic and environmental factors (Li et al.,
2018; Morrow et al., 2020; Ryan et al., 2020; Mukherjee et al.,
2021). Most of the existing studies selected their DNAm
biomarkers based on these biomarkers’ biological relevance to
the aging process (Zubakov et al., 2016), statistically correlations
with the chronological ages (Shadrina et al., 2018), or feature
selection algorithms (Gao et al., 2020). In this study, the
correlation coefficient ranking of nine candidate DNAm
biomarkers was obtained from a cohort of 7,084 individuals
using meta-analysis. Among them, we selected four top-
ranking genes (ELOVL2, TRIM59, FHL2, and C1orf132) and
KLF14 chosen by a three-step feature selection algorithm
AgeGuess to generate the DNAm profiles of the CHS cohort
by BTA-pseq technology.

Correlation of DNAm status in five abovementioned genes
with chronological age has been very well documented in
different tissues and cell types (Zubakov et al., 2016; Cho
et al., 2017; Jung et al., 2019; Dias et al., 2020; Anaya et al.,
2021; Pfeifer et al., 2021; Woźniak et al., 2021). Our Spearman
correlation analysis detected different strongly related CpG
(|r|≥0.9) numbers in male (10 AR-CpGs) and female (4 AR-
CpGs) datasets, mainly in ELOVL2 and FHL2. However, the
MAD values had no significant difference between female and
male datasets in different SR (t � 0.59, p � 0.61), SVR-eps (t �
0.51, p � 0.13), SVR-nu (t � 0.52, p � 0.09), and RFR (t � 0.98, p �
0.05) models. The results indicated that the effect of gender on age
prediction has not been detected in the present study (all p >
0.05), which was in concordant with Koch andWagner (2011). In
contrast, some studies presented that DNAm in men changes 4%
faster than that in women (Hannum et al., 2013) and the
predicted age was higher in men than in women (Weidner
et al., 2014; Zbieć-Piekarska et al., 2015b). The gender effect
on age estimation is inconclusive; however, it is conclusive that
there is no gender effect in our ML models at least.

The chosen methylomic biomarker KLF14 has strongly age-
associated relationships in Caucasians and Hispanics (Gao et al.,
2020), but the age correlations were not apparent in the CHS
cohort, Koreans, and Polish (Supplementary Table S10). In
addition, we observed high r value of 0.798 (F7 of FHL2) in
the CHS cohort, but the corresponding r value is 0.42 in Polish. In
different East Asian populations, the r values were 0.67 and

TABLE 3 | Detailed feature selection and model efficiency information of random forest regression (RFR) models in three different gender datasets of the CHS cohort.

ML model Dataset n ntree mtry % Var explained RMSE MAD

RFR Females 132 500 9 90.62 1.95 1.45
Males 108 500 8 93.88 1.77 1.32
Combined 240 500 8 93.21 1.77 1.29

RFR (1–60) Females 127 500 9 91.35 1.67 1.29
Males 98 500 8 92.92 1.60 1.20
Combined 225 500 8 93.13 1.54 1.15

ntree, number of trees to grow, which should not be set to too small a number, to ensure that every input row gets predicted at least a few times; mtry, number of variables randomly
sampled as candidates at each split; % Var explained, the overall explanatory rate for the variances of the response variables by the predictive variables; RMSE, root mean square error;
MAD, median absolute deviation.

TABLE 4 | System efficiency comparisons of different machine learning (ML)
models.

ML model R2 RMSE MAD

SR 0.95 3.89 2.97
SVR-eps 0.97 2.95 2.22
SVR-nu 0.97 2.94 2.19
RFR 0.99 1.77 1.29
RFR (1–60) 0.99 1.54 1.15

R2, coefficient of determination/goodness-of-fit; RMSE, root mean square error; MAD,
median absolute deviation; SR, stepwise regression; SVR-eps, support vector
regression eps-regression; SVR-nu, support vector regression nu-regression; RFR,
random forest regression in the CHS cohort; RFR (1–60), random forest regression at the
1–60 age categories of the CHS cohort.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org January 2022 | Volume 9 | Article 8199918

Fan et al. Age Prediction Machine Learning Models

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


0.87 at T8 of TRIM59 in CHS and Koreans, respectively. Our
results demonstrated that different populations have distinct
methylation status under the same conditions, for both
intercontinental and regional populations (termed as
population-specific), which indicated that it is urgently
necessary to determine the population-specific AR-CpGs
available for practical application regionally.

This study further established four different ML models for
chronological age prediction in the CHS cohort. Our results
obtained from both Training and Validation sets are
concordant in four different ML models (all p > 0.05), and the

MAD values were less than 3.0 years (Table 4), which indicated
that all ML models are robust in the CHS cohort. Based on the
same five age-related genes, Zbieć-Piekarska et al. constructed the
SR model in Polish with the MAD values of 3.4 and 3.9 in
Training and Validation sets, respectively (Zbieć-Piekarska et al.,
2015b). Another SRmodel exhibited anMAD value of 4.18 in 100
Korean blood samples (Cho et al., 2017). Jung et al. used
multiplex methylation SNaPshot assay to establish the SR
model using 150 Korean blood samples with the MAD values
of 3.174 and 3. 478 in Training and Validation sets, respectively
(Jung et al., 2019). Compared to the aforementioned SR models,

FIGURE 4 |Median absolute deviation (MAD) and root mean square error (RMSE) values of different machine learning (ML) models. (A)MAD value comparison of
four different models in the CHS cohort (n � 240, blood samples). (B) RMSE value comparison of four different models in the CHS cohort (n � 240, blood samples). (C)
MAD values in different age categories of the SR model. (D)MAD values in different age categories of the SVR-eps model. (E)MAD values in different age categories of
the SVR-nu model. (F) MAD values in different age categories of the RFR model. (G) MAD value comparison between RFR (1–81) and RFR (1–60) models. (H)
RMSE value comparison between RFR (1–81) and RFR (1–60) models.
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the SR model of the CHS cohort showed higher prediction
accuracy (MAD � 3.04 in Training set and MAD � 2.80 in
Validation set). In addition, the MAD values of two optimized
SVR models were 2.22 and 2.19 for SVR-eps and SVR-nu models
(Table 2, Table 4), which were better than the SR model in the
CHS cohort. Additionally, the RFR model with an MAD value of
1.29 was the best-performing ML model in the CHS cohort,
which was confirmed at both Training (MAD � 1.45) and
Validation (MAD � 1.32) sets without significant difference.
Under the same condition, different ML algorithms have
apparent influences on age prediction model accuracy.

In our data, we also found that the age prediction accuracy
decreases with chronological age in different ML models
(Figures 4C–F). As DNAm is a dynamic modification
process, age-associated changes in DNAm have been well
documented, and a previous study has identified that DNAm
tends to increase with age on some CpG islands (Field et al.,
2018). Moreover, the MAD values are affected by small sample
size (only 15 individuals in the 61–81 age category of the CHS
cohort), resulting in some biases for chronological age
prediction. Thus, the absolute differences between predicted
and chronological ages are larger in the categories of older
people, which are also confirmed by previous studies (Zbieć-
Piekarska, et al., 2015b; Hamano et al., 2016; Cho et al., 2017;
Dias et al., 2020). Notably, the MAD value of the RFR model
reduced to 1.15 years in the age range of 1–60. In the meta
cohort, theMAD values ranged from 2.53 to 5.07 years. As far as
we know, it is the best chronological age prediction model in
Han Chinese.

In fact, the DNAm status reflects biological age rather than
chronological age. However, DNAm estimated age can be
considered as an “epigenetic clock,” which in many cases runs
parallel with chronological age (Horvath, 2013; Marioni et al.,
2015). The epigenetic clock of CHS can be established by four
age-related genes and different ML algorithms. From our
perspectives, finding more population-specific and age-
associated genes, expanding larger sample sizes (Figures
4G,H), and optimizing ML algorithms will contribute to
generating more precise epigenetic clocks for diverse human
populations.

CONCLUSION

In the present study, we conducted that 1) a candidate set of nine
DNAm biomarkers was collected by meta-analysis with a number
of 7,084 individuals; 2) the DNAm profiles of five promising
genes were generated using BTA-pseq in the CHS cohort; and 3)
four different ML models based on age-related CpGs (|r|≥0.7)
were established and optimized in different datasets. In addition,
we concluded that 1) gender effect has little influence on age
prediction; 2) methylation levels at different CpGs exhibit
population specificity; and 3) the age prediction accuracy
decreases with chronological age. Eventually, an optimized
RFR ML model with an MAD value of 1.15 has been
established (ntree � 500 and mtry � 8) at the 1–60 age

categories of CHS using whole blood DNAm data generated
by BTA-pseq.
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