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Abstract

Ookinete invasion of Anopheles midgut is a critical step for malaria transmission;

the parasite numbers drop drastically and practically reach a minimum during the

parasite’s whole life cycle. At this stage, the parasite as well as the vector

undergoes immense oxidative stress. Thereafter, the vector undergoes oxidative

stress at different time points as the parasite invades its tissues during the parasite

development. The present study was undertaken to reconstruct the network of

differentially expressed genes involved in oxidative stress in Anopheles stephensi

during Plasmodium development and maturation in the midgut. Using high

throughput next generation sequencing methods, we generated the transcriptome

of the An. stephensi midgut during Plasmodium vinckei petteri oocyst invasion of

the midgut epithelium. Further, we utilized large datasets available on public

domain on Anopheles during Plasmodium ookinete invasion and Drosophila

datasets and arrived upon clusters of genes that may play a role in oxidative stress.

Finally, we used support vector machines for the functional prediction of the un-

annotated genes of An. stephensi. Integrating the results from all the different data

analyses, we identified a total of 516 genes that were involved in oxidative stress in

An. stephensi during Plasmodium development. The significantly regulated genes

were further extracted from this gene cluster and used to infer an oxidative stress

network of An. stephensi. Using system biology approaches, we have been able to

ascertain the role of several putative genes in An. stephensi with respect to

oxidative stress. Further experimental validations of these genes are underway.
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Introduction

Maintenance of redox homeostasis is critical for proper functioning of cellular

processes and disruption of this prooxidant-antioxidant balance in a cell results in

oxidative stress. Oxidative stress may be caused by the normal functioning of the

cell (mitochondrial respiration) or as an immune response to pathogens [1, 2] and

is manifested by an increase in reactive oxygen species (ROS) and reactive

nitrogen species (RNS) in the cells. These reactive species are capable of modifying

DNA and proteins, inactivating biological activity and causing oxidative injury

[3, 4]

Several studies have established that generation of ROS can be endogenous due

to the leakage of activated oxygen from mitochondria during oxidative

phosphorylation, peroxisomes, and activated inflammatory cells [5] or exogenous

inflammatory cytokines, pathogens, and metals [6, 7]. ROS are toxic to cells and

there are several detoxifying mechanisms that are employed by the cell to prevent

oxidative damage.

Plasmodium, the causative agent of malaria, leads a complex life cycle,

alternating between two hosts, vertebrate and invertebrate, with diverse

environmental and physiological regimens. Further, within these two hosts, the

parasite also exists as intra- and extracellular forms thereby being exposed to

extreme surroundings. Several studies have revealed that Plasmodium undergoes

immense oxidative stress during their erythrocyte cycle, considering that they live

in a pro-oxidant environment in the red blood cells that contains oxygen and iron

[8–10]. Recent studies have focused on targeting the Plasmodial redox system for

anti-malarial therapy [11]. Several drugs have been developed to disrupt the

mechanism and balance of ROS and RNS molecules, by targeting the enzymes of

the parasite responsible for maintaining the redox balance [12]. During the

mosquito cycle, the parasite undergoes tremendous oxidative stress. It can be

rightly said that one of the major bottleneck in the parasite life cycle is the

dwindling of its numbers during oocyst development in the mosquito stage [13].

However, it has been shown that Plasmodium overcomes this obstacle by using its

defense mechanisms to protect against oxidative damage [10, 14, 15].

Just as in the case of Plasmodium, its vector, Anopheles also undergoes

tremendous oxidative stress due to the high proliferative rate of the parasite and

invasion of several of its organs by the parasite. The zygote transforms into motile

ookinetes within 24 hours of ingestion of an infected blood meal and invades the

mosquito midgut epithelium. Once inside, the ookinete develops into the oocyst

between the basal lamina and the midgut epithelium. Upon maturity, the oocyst

produces thousands of sporozoites that are released from the midgut into the

hemocoel and finally reach the salivary glands. Here, they invade the salivary

glands and mature to form the salivary gland derived sporozoites that are ready to

infect the host during the next mosquito bite. During each of the invasion process

and subsequent increase in parasite numbers, the mosquito undergoes extreme

oxidative stress and several of the signaling pathways and innate immunity

pathways are activated to protect the mosquito [16–20].
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In the post-omics era, it is becoming clear that integration of genome-scale

technologies provide better tools for understanding biological function [21]. Any

cellular function is a dynamic interaction of several proteins to enforce a highly

sensitive and a regulated system. A ‘single gene’-‘single function’ approach is fast

being replaced by interaction networks for evaluating the intricacies involved in

complex conditions like pathogen infection [22–24].

We have undertaken the present study to elaborate perturbations in the redox

system of An. stephensi during successive stages of the development and

maturation of Plasmodium vinckei petteri. Using next generation sequencing

platforms, we obtained the transcriptome of the midgut of An. stephensi during P.

vinckei petteri oocyst stage. We identified those transcripts that were differentially

expressed and evaluated the dynamics of the An. stephensi redox system during

oocyst development. Using Support Vector Machines (SVM) we classified

unannotated genes of the transcriptome dataset into oxidative stress pathways.

Additionally, we identified microarray datasets from public databases that studied

An. gambiae during Plasmodium development, and arrived upon the set of An.

gambiae genes involved specifically in oxidative stress during Plasmodium midgut

invasion. Using all the above information, we inferred an almost complete

network of the oxidative stress of An. stephensi during Plasmodium invasion.

Materials and Methods

Ethics statement

Animal experiments were performed in accordance with National animal ethics

guidelines of the Government of India after approval by Institutional Animals

Ethics Committees of International Centre for Genetic Engineering &

Biotechnology, New Delhi (Permit number: ICGEB/AH/2011/01/IR-8).

Mosquito rearing and Plasmodium vinckei petteri infection

Anopheles stephensi were reared at 28–30 C̊ and humidity maintained at 70–75%.

Mosquitoes were maintained by feeding with raisin soaked in 2% sterile glucose

solution and water. 4–5 days old female mosquitoes were fed on P. vinckei petteri

279 BY (gametocytemia 5,0.05%) infected mice. Midguts from the infected

mosquitoes were dissected on 5th day post infection and checked for the presence

of oocysts for the confirmation of infection.

Anopheles stephensi sample collection and RNA isolation

Anopheles stephensi midgut samples were collected from three different stages,

namely, sugar fed (PVpSF), blood fed (PVpBF5D) and blood fed 5 days post P.

vinckei petteri infection (PVpiBF5d). In case of infection and blood feed, around

150–200 An. stephensi mosquitoes were fed on P. vinckei petteri 279 BY

(gametocytemia 5,0.05%) infected mice. Fully fed mosquitoes were separated

from unfed and partially fed mosquitoes and reared in cages until day 5 post
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feeding. Midguts were dissected and stored in trizol in 280 C̊. The feeding

experiments were performed for a minimum of three times for both blood and

infected blood feeding and a total of 200–300 midguts were collected over a period

of time for each sample. Total RNA was isolated separately from each lot and

finally pooled during RNA seq library preparation. The libraries were made

following manufacturer’s instruction. RNA sequencing was performed using

Illumina platform. The Total RNA quality was verified using RNA 6000 Nano Kit

(Agilent Technologies, USA) on 2100 Bioanalyzer (Agilent Technologies, USA),

with a minimum RNA Integrity number (RIN) value of 7.

Preparation of library and Sequencing

Three Paired-End RNA-seq libraries of An. stephensi were generated, one each

from total RNA extracted from sugar fed mosquitoes (PVpSF), mosquitoes 5 days

post blood feed, (PVpBF5D) and mosquitoes 5 days post infected blood feed

(PVpiBF5D). The RNA-Seq library construction and sequencing was performed

by commercial service providers (NxGenBio Life Sciences, New Delhi, India).

Total RNA was used to enrich mRNA using Oligotex mRNA midi prep kit

(QIAGEN, Germany). 2 mg of total RNA using oligo(dT) magnetic beads and

fragmented into 200–500 bp using divalent cations at 94 C̊ for 5 min. The cleaved

RNA fragments were copied into first strand cDNA using SuperScript II reverse

transcriptase (Life Technologies, Inc.) and random primers. Fragments were A-

tailed and end repaired after second strand cDNA synthesis. The cDNA libraries

were constructed for the samples using the TruSeq RNA Sample Preparation Kit

(Illumina, Inc.) with alternate fragmentation method for generating 200–500 bp

fragments, according to manufacturer’s instructions. The Paired-End RNA-Seq

libraries were diluted and sequenced using TruSeq SBS Kit V3 on HiSeq2000

(Illumina, San Diego, CA) for generating 26100 bp sequencing reads.

Transcriptome Assembly and Read Mapping

A simplified workflow of transcriptome assembly and analysis performed in this

study is shown in Figure 1. The sequence reads of all the libraries were adapter

trimmed using fastx toolkit and were subjected to quality check (QC) using

FastQC retaining only high quality reads (.Q20) and discarding the rest [25].

The high quality reads were analyzed both by de novo assembly using Trinity [26]

(data not shown) and by genome based analysis. TopHat [27] was used for

genome mapping and An. stephensi genome was used as the reference genome

which was downloaded from VectorBase [27]. Further analysis was performed

with Cufflinks [27]. TopHat aligns the reads to the reference sequences using

Bowtie tool [28] and realign the unaligned sequences by breaking them into small

fragments.

Oxidative Stress in Anopheles stephensi
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Functional annotation

One of the critical and essential steps in the analysis of high-throughput

sequencing data is proper annotation of the assembled reads. The functional

characterization of the assembled transcriptomes of all libraries of An. stephensi

consisted of three steps (Figure 1). First, we performed homology based search of

VectorBase mapped genes of An. stephensi against An. gambiae, a genome that is

very well annotated and belongs to the same subgenus. We used BioMart tool

from VectorBase to identify the homologs. Second, we used Blast2GO tool [29] to

annotate the genes that were not annotated in the first step. Blast2GO blast the

input sequence against NCBI nr database, retrieve the GO terms of the blast hits,

assign the score to each GO term and finally select the lowest term from the

branch of GO hierarchy tree to assign it to the input sequence. Third, we

implemented support vector machine (SVM) to annotate the rest of the genes as

described in next section.

Figure 1. Pictorial representation of the workflow followed for the analysis of RNA-seq data and microarray data.

doi:10.1371/journal.pone.0114461.g001
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Annotation of genes from the transcriptome using Support Vector

Machines

Evolutionary information can be extracted using Position Specific Substitution

Matrix (PSSM), hence, for the functional characterization of the An. stephensi

transcripts that were not annotated by simple Blast as described in the previous

section; we built a predictive model based on PSI-BLAST (Position Specific

Iterated BLAST). In order to build the predictive model we used SVM, a powerful

supervised machine learning algorithm for prediction, that classifies an object into

one or more classes based on the set of input feature vectors. In our study, PSSM

generated by PSI-BLAST was used as the input feature vector for SVM. PSSM

based classifiers has been reported as the most suited among the SVM classifiers

[30]. PSSM generates 20xN matrix, where N is the length of the sequence of the

query. To make input feature vectors of fixed length we normalized the matrix

using logistic function.

We built the training data for SVM model by downloading protein sequences of

20 Arthropod species from KEGG and all the sequences, irrespective of the

species, were clustered according to the selected pathways. We built m number of

SVM models for m pathways. The training data for each of the ith model

consisted of protein sequences of ith pathway of interest as positive set and

protein sequences of the m-i pathways as negative set (Figure 2). The redundancy

of the positive and negative datasets was removed using CD-HIT [31]. The lowest

possible threshold for identity by CD-HIT was 40%; we used this threshold to

generate non-redundant training datasets. As a 40% threshold reduced the size of

positive dataset quiet a lot and resulted in highly imbalance training datasets, we

also generated positive datasets by utilizing thresholds of 50%, 60% and 70%. We

used libSVM with radial basis function as the kernel to build SVM model. To

handle the class imbalance problem we penalized positive dataset using weight

parameter of svm-train. We performed 5-fold cross-validations to estimate the

values of cost, gamma and weight parameters. The final training datasets for each

SVM model and the selected parameter values are given in Table S3. All the

unannotated genes were then subjected to the SVM analysis. The pathway

predictions of the genes were performed on the basis of SVM prediction score

(Fig. 2).

Evaluation of prediction models

We evaluated the performance of our classifiers by calculating accuracy, Receiver

operating characteristic (ROC) curve and Area under Curve (AUC). ROC is a plot

of false positive rate (1-specificity) on x-axis and true positive rate (sensitivity) on

y-axis. The plot depicts the trade-off between specificity and sensitivity. The

mathematical representations of the expressions can be represented as:

Sensitivity5 (TP/TP+FN)6100

Specificity5 (TN/TN+FN)6100

Accuracy5 (TP+TN/TP+FN+TN+FP)6100

Oxidative Stress in Anopheles stephensi
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MCC5(TP6TN) – (FP6FN)/sq.root [(TP+FN)6(TN+FP)6(TP+FP)

6(TN+FN)]

Where TP means True positive, TN means True Negative, FN means False

Negative and FP means False Positive.

Differential expression and enrichment analysis

The differential expression analyses of the libraries were performed with

Bioconductor package edgeR. edgeR uses TMM (Trimmed mean of M values)

approach for the normalization of read counts. We identified differentially

expressed genes by comparing all the three libraries with each other i.e. PVpSF vs

Figure 2. The figure represents the SVM work flow used in this study.

doi:10.1371/journal.pone.0114461.g002
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PVpBF5D, PVpSF vs PVpiBF5D and PVpBF5D vs PVpiBF5D. edgeR analysis were

performed by taking disperson value of 0.1 and p value ,50.05.

Differentially expressed genes from each comparison were taken separately and

subjected to pathway enrichment analysis. For the identification of significantly

enriched pathways the protein sequences of An. stephensi corresponding to

differentially expressed genes were downloaded from VectorBase and were

analyzed using KOBAS web server. Hypergeometric test was selected as statistical

method and FDR correction was performed using Benjamin and Hochberg

method (1995). Pathways with p,50.05 were considered as significant pathways.

Microarray Data search

A data search was conducted to identify the relevant data sets to be used for the

study. A search was performed using ‘‘Mosquito’’, ‘‘Plasmodium’’, ‘‘Drosophila’’,

‘‘Oxidative stress’’ and ‘‘Infection’’ as key elements and wherever required, the

related terms and alternative terms were also used. Online library and databases

namely, PubMed, ArrayExpress and Gene Expression Omnibus (GEO) were

searched for the data using the key words and the relevant data were downloaded

(Table S1).

Microarray Data Analysis

For the purpose of maximizing the information on redox dynamics of

Plasmodium invasion in An. stephensi, we incorporated microarray experiment

datasets with similar experimental setup from two other dipteran species, one of

which belongs to the same subgenus i.e. An gambiae and the other is more closely

linked by evolutionary and genetic lineage i.e. Drosophila melanogaster. We

downloaded three datasets (Table S1) from public repositories Gene Expression

Omnibus (GEO) and ArrayExpress namely (1) E-MEXP-378 : Transcription

profiling of mosquitoes fed blood infected with two alternative P. berghei strains;

wild type (wt) or an invasion-deficient, CTRP (Circumsporozoite- and TRAP-

related protein) knockout (ko) strain (2) E-MEXP-1859: Transcription profiling

of Drosophila transformed with two Plasmodium cell surface antigens, circum-

sporozoite protein (CSP) and Thrombospondin-related adhesive protein (TRAP)

and (3) GSE11012: An analysis of the impact of infection by Buchnera aphidicola

APS on gene expression of Drosophila S2 cells. All the three datasets were

background corrected and normalized using LOESS and Aquantile normalization.

The normalized data were further analyzed using Bioconductor packages LIMMA

[32, 33]. We used eBayes function to calculate moderated paired t-statistics after

fitting the linear model and assessed the genes expressing differentially using p-

value cutoff of 0.05. The p-values were corrected for multiple testing with

Benjamini and Hochberg’s (BH). The differentially expressed genes were further

clustered using Non-negative matrix factorization (NMF) [34], which were then

subjected to pathway enrichment analysis using gene set enrichment analysis

(GSEA) [35].

Oxidative Stress in Anopheles stephensi
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Generation of An. stephensi gene-gene co-expression network

An. stephensi gene co-expression network was generated using

ExpressionCorrelation plugin of Cytoscape (http://apps.cytoscape.org/apps/

expressioncorrelation) [36]. ExpressionCorrelation uses Pearson Correlation

Coefficient for computing similarity matrix. For generation of the significant

network using expression values minimum of four datasets are required. For this

purpose, in addition to the gene expression data of the three RNA-seq libraries in

this study, namely, PVpSF, PVpBF5D, PVpiBF5D, one more RNA seq datasets,

namely, PVxBF5D (generated from An. stephensi fed on human blood) was used

to generate the gene co-expression network. Common genes among all the

libraries, with their expression values were used as an input for generation of the

gene co-expression network using ExpressionCorrelation plugin of Cytoscape.

The identified and predicted genes related to oxidative stress were mapped onto

the An. stephensi gene interaction network and a sub-network consisting of only

these mapped genes was drawn out from the network.

Results and Discussion

Integration of different types of genomic data provided new insights into the

interactions that exist between genes that are otherwise not distinguishable while

studying single data sets [37–39]. In the present study, we inferred gene-gene

interaction network of oxidative stress in An. stephensi during P. vinckei petteri

development by integrating datasets originating from Illumina RNA-seq

technology and gene expression microarrays.

Anopheles stephensi midgut transcriptome during blood feed and

P. vinckei petteri infection

In order to understand the dynamics of infection especially during P. vinckei

petteri oocyst development in the midgut, we obtained the transcriptome of the

midgut during the time point of mature oocyst development in the midgut.

Physiologically, at this stage, the oocysts are mature and were ready to invade the

midgut with oocyst derived sporozoites which is ideal for our study purpose of

studying the oxidative stress in Anopheles during Plasmodium invasion. Analysis of

such a cellular state is likely to reveal metabolic homeostasis facilitating parasite

maturation and most importantly minimal metabolic penalty on vector. We

dissected the midguts at day 5 post infection and processed those midguts that

had maximum oocysts [40]. Total RNA was isolated from the midgut of

mosquitoes at different time points and at different conditions over several

feeding experiments (minimum of three times). The RNA was extracted from

each group independently and midguts of around 200–300 mosquitoes for each

condition were finally pooled during library preparation and sequenced in one

run due to budget constraints. A total of 1.286108 reads , which includes

4.216107 reads from PVpSF library, 4.246107 reads from PVpBF5D library and

Oxidative Stress in Anopheles stephensi
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4.376107 reads of PVpiBF5D library were further processed (Table 1). The

quality scores of reads were assessed and reads were trimmed by keeping quality

score threshold as 20. We got 86.45% reads of PVpSF, 85.64% reads of PVpBF5D

and 89.26% reads of PVpiBF5D, which were subjected to de novo assembly (data

not shown) as well as reference mapping and assembly using TopHat and

Cufflinks. Reference mapping with the newly published An. stephensi genome

identified a total of 10496 genes in PVpSF, 9974 genes in PVpBF5D and 9613

genes in PVpiBF5D libraries from a total of 13650 genes present in VectorBase.

Diverse An. stephensi genes are impacted during Plasmodium
vinckei petteri infection

To understand oxidative stress in An. stephensi during P. vinckei petteri infection,

it is important to understand the regulation of the An. stephensi transcripts at this

stage. For this purpose, we analyzed the expression pattern of the transcripts both

at their relative abundance state and the consequence at the related impacted

pathways. At the transcript level, within each library, on the basis of fold change in

abundance, and P-value, a total 1501 genes were found to be differentially

expressed in all the libraries taken together. Upon blood feeding, 483 genes were

found to be differentially expressed, out of which 357 genes were found to be up

regulated and 126 genes were down regulated. Upon parasitized blood feeding,

611 genes were differentially expressed out of which 507 genes were up regulated

and 104 genes were down regulated. When compared between PVpiBF5D and

PVpBF5D libraries that would emphasize on role of parasite development in the

mosquito, 407 genes were found to be differentially expressed of which 293 genes

to be up regulated and 114 genes were down-regulated. (Figure 3).

Additionally, the differentially regulated transcripts of all the three libraries

were analyzed for their pathway information. The transcripts were clustered into

different pathways using KOBAS web server [41] (Fig. 4). Upon blood feeding, ten

pathways were found to be significantly regulated (P value ,0.05), four to be up-

regulated and six found to be down-regulated. Upon parasitized blood feeding, it

was found that out of six significant pathways, five pathways were down-

regulated, with oxidative phosphorylation (OXPHOS) as the only pathway found

to be up-regulated. When the infected blood fed and blood fed libraries were

compared to see the impact of parasite development, it was seen that parasite

Table 1. Mapping summary of RNA-seq data.

S. No. Midgut Samples
Total number of
reads

No. of reads after quality
trimming

Total number of Anopheles
stephensi genes

1. Sugar-fed mosquito (5 dpi) 4.216107 3.646107 10496

2. Blood-fed mosquito (5 dpi) 4.246107 3.636107 9974

3. P. vinckei petteri infected blood-fed
mosquito (5 dpi)

4.376107 3.906107 9613

*RNA-seq libraries were mapped to Anopheles stephensi genome using TopHat and Cufflinks tools.

doi:10.1371/journal.pone.0114461.t001
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development regulates five pathways significantly of which two were up-regulated

and three were down-regulated. It is noteworthy that OXPHOS was up-regulated

in both infected PVpSF5D vs PVpiBF5D and PVpiBF5D vs PVpBF5D libraries

with high significance (p value ,0.005), emphasizing the role of oxidative stress in

Anopheles due to the Plasmodium development.

This interesting finding prompted us to further investigate those transcripts in

these regulated OXPHOS pathways. We found a total of 20 genes to be impacted

due to blood feeding and Plasmodium infection with most of the genes being part

of the OXPHOS and the electron transport chain (Table 2). Previous studies have

established the role of these important pathways in blood feeding in mosquitoes

[42, 43]. Similarly, effects of Plasmodium infection in Anopheles OXPHOS have

paved the way for better understanding of melanization in Anopheles [44].

Moreover, research has shown conserved nature of the OXPHOS genes within

insects [45] and the importance and distribution of mitochondria in the midgut

Figure 3. Venn diagram representing data summary of differentially expressed Anopheles genes from RNA-seq data.

doi:10.1371/journal.pone.0114461.g003
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epithelia of mosquitoes [46, 47]. Recent studies have established the existence of

dynamic mitochondrial supercomplexes on mammals, plants, yeast and bacteria

[48–50]. These supercomplexes are categorized into five complexes based on their

location and interaction with each other within the inner membrane of

mitochondria [51]. In our transcriptome analysis, we observed that Complex I

and IV were the most regulated during Plasmodium development while Complex

III was also impacted upon blood feeding.

Anopheles genes prediction in oxidative stress pathways using

SVM

Comparative genomics can be used for the functional annotation of genomes that

are not annotated completely. We annotated assembled transcriptome of the An.

stephensi genome by identifying homologs of An. gambiae genes using VectorBase

and Blast2GO tool. However, from a total of 13650 genes, 2516 genes were

remained unannotated. We utilized PSSM based SVM classifier to annotate these

genes and predicted putative genes that may be playing a role in the redox system

of the mosquito during Plasmodium development. A total of 1352 non-redundant

transcripts were classified into 8 different pathways according to their SVM scores

(Table S3). The robust prediction performance of the SVM models is assured by

ROC analysis (Figure S1). These genes were further utilized in generation of the

oxidative stress network of Anopheles. The accuracy for Citric acid cycle was found

to be ,84%, PPP,100%, Oxidative phosphorylation ,98%, Jak ,96%, MAPK

Figure 4. KOBAS analysis of differentially expressed genes. Graph represents the significant pathways predicted after KOBAS analysis.

doi:10.1371/journal.pone.0114461.g004
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,98%, Glycolysis ,96% , TGF ,96% and WNT ,90%. The AUC (Area under

Curve) values of these pathways supported the accuracy of the pathway models.

The AUC value for the Glycolysis ,0.9801, Citric acid cycle with AUC value of

0.8571, PPP with highest value 1, oxidative phosphorylation ,0.9704, TGF

,0.9978, WNT ,0.944, for MAPK it is 0.9821 and for JAK is predicted to be

0.9762.

Analysis of An. stephensi gene-gene co-expression network

In the last decade, importance of gene interaction network using integrated data

sets in providing insights to gene functions and their interactions is evident from

several studies [52–54]. The purpose of the study was to generate a network of the

redox system of An. stephensi during P. vinckei petteri development and to

understand the interactions of these participating genes during Plasmodium

invasion of the midgut. For this purpose, it was important first to generate a

broad interaction network of An. stephensi before segregating the redox related

sub-set. For this purpose, we utilized the annotated genes of our transcriptome

dataset to arrive upon a reference network on to which the oxidative stress genes

identified and predicted in our study were mapped to infer the oxidative stress

sub-network network of An. stephensi upon P. vinckei petteri infection with 516

Table 2. The table shows the genes impacted due to blood feeding and Plasmodium infection.

Gene stable ID Gene description PVpSF PVpBF5D PVpiBF5D

ASTE000780 cytochrome c oxidase subunit 6b 239.485 64.1909 66.4754

ASTE001936 V-type H+-transporting ATPase S1 subunit 809.598 495.414 1122.98

ASTE002173 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4 53473.4 62413.1 177530

ASTE003681 F-type H+-transporting ATPase subunit f 29635.9 35116.4 127126

ASTE004313 cytochrome c oxidase subunit VIIa 19671.2 16596.3 54387.4

ASTE004686 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 704.049 378.93 877.12

ASTE006397 Mitochondrial cytochrome c oxidase subunit VIC 4825.3 1808.03 4017.93

ASTE006537 NADH dehydrogenase (ubiquinone) Fe-S protein 5 1672.32 551.183 1042.74

ASTE006599 V-type H+-transporting ATPase subunit G 5330.65 10551.3 20947.1

ASTE007332 Cytochrome b-c1 complex subunit 6, mitochondrial 2365.17 4372.13 15279.9

ASTE007457 cytochrome c oxidase subunit 6a, mitochrondrial 720.388 262.231 398.623

ASTE007459 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 1 1149.47 2322.19 4313.28

ASTE007790 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 1 2571.73 755.536 530.959

ASTE007986 V-type H+-transporting ATPase subunit G 1152.51 2491.39 4094.67

ASTE009530 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5 969.942 672.816 1840.72

ASTE009682 V-type H+-transporting ATPase subunit D 821.749 421.051 1207.4

ASTE010674 NADH dehydrogenase (ubiquinone) 1 subcomplex unknown 2 599.622 426.454 1739.31

ASTE011398 F-type H+-transporting ATPase subunit g 14815.4 22686.2 53015.7

ASTE011779 cytochrome c oxidase assembly protein subunit 17 180.156 319.84 489.181

ASTE014405 ubiquinol-cytochrome c reductase subunit 9 1604.72 95.9353 160.348

Most of the genes play role in the OXPHOS and the electron transport chain.

doi:10.1371/journal.pone.0114461.t002
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nodes and 2904 edges (Fig. 4). The reference network was generated keeping

default correlation threshold of 20.95 and 0.95. The final reference network was

made up of 8871 non-redundant genes.

Oxidative stress gene clusters using microarray data analysis

Anopheles data set E-MEXP-378 was an exhaustive microarray experiment

involving time-points during the invasion of ookinete into the midgut of

Anopheles. The original study was a functional genomic analysis of midgut

epithelial responses in Anopheles during Plasmodium invasion [55] using a MMC1

(or 20 K) platform having total of 19,680 EST clones. The elegant experiment

setup consisted of 53 sample data sets at three time points of ookinete invasion,

namely 18–22 hrs post infection, 24–28 hrs post infection and 40–44 hrs post

infection. A significant outcome of this study was the identification of

remodeling/restructuring of the actin and microtubule cytoskeleton network due

to Plasmodium infection. In the present study, we identified differentially

expressed An. stephensi genes in oxidative stress during the early stages of P.

vinckei petteri invasion.

Since Anopheles gambiae genome is poorly annotated, we extrapolated

orthologs/paralogs of redox system from a Drosophila microarray dataset. A

previous study has utilized the robustness of the Drosophila system to identify

genes that regulate Plasmodium growth in the mosquito [56]. For our analysis, we

utilized the dataset from E-MEXP-1859 which originally was a Drosophila dataset

with Plasmodial genes knocked in to understand the function of two important

Plasmodium invasion molecules [57]. The study used Drosophila, a model system,

to understand the role of Plasmodial surface antigens in Plasmodium invasion.

The authors were able to provide evidence of the role of immunity genes in this

process using 21 chips of 13,614 Drosophila genes. In our study, in addition to

identifying genes affected upon Plasmodium maturation, this dataset was selected

as reference data to identify genes playing role in oxidative stress but not yet

annotated in Anopheles.

Previous studies have highlighted the impact of bacterial infection on the redox

status in mosquitoes [19]. In order to identify those redox genes that are specific

to Plasmodium invasion, another Drosophila microarray dataset (GSE11012)

involving bacterial infection was selected as a control [58]. The study was

performed over different time points of bacterial infection using 13842 unique

gene IDs. The genes common to bacterial infections were excluded from analysis.

For the purpose of identifying genes that may play a role in oxidative stress of

Anopheles during Plasmodium development, detailed computational analysis was

performed on the selected microarray datasets (see Materials and Methods). The

entire probe Ids of the datasets were converted to their respective gene Ids

separately, using an in-house Perl script. Cluster analysis using Non-negative

matrix factorization (NMF) algorithm was performed those clusters with co-

phenetic coefficient of 0.9611 and six clusters were selected for further analysis.
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Table 3. Expression pattern of the RNA-seq and microarray predicted genes related to oxidative stress.

Gene Status SF BF5D iBF5D

ASTE000971 Annotated 381.968 319.061 405.627

ASTE003004 Annotated 47.9869 40.0328 27.2383

ASTE003715 Annotated 27.2428 23.6363 13.0793

ASTE004575 Annotated 500.691 356.958 332.761

ASTE004646 Annotated 50.6197 42.9242 72.3875

ASTE006040 Annotated 12.7964 21.5695 31.2505

ASTE006069 Annotated 598.912 490.404 334.513

ASTE006760 Annotated 287.084 180.579 341.974

ASTE007589 Annotated 3.80819 4.85993 16.6953

ASTE008571 Annotated 68.1175 28.406 42.6152

ASTE009039 Annotated 0.423056 0.170206 0.229036

ASTE010206 Annotated 332.959 593.219 303.61

ASTE010699 Annotated 10.8378 8.66985 12.0489

ASTE010862 Annotated 26.6517 20.8814 22.1117

ASTE001492 Annotated;GO 4.81434 3.51005 5.44027

ASTE003100 Annotated;GO 686.938 848.5 1261.81

ASTE006711 Annotated;GO 174.985 203.972 182.272

ASTE008907 Annotated;GO 1812.43 1262.74 2702.9

ASTE009813 Annotated;GO 350.706 72.1614 73.289

ASTE010772 Annotated;GO 527.803 391.384 471.926

ASTE011022 Annotated;GO 3193.95 7203.98 22057.8

ASTE000131 GO 47.282 41.9047 96.9806

ASTE000143 GO 9.26815 5.86659 6.20112

ASTE000912 GO 86.6084 130.991 80.9358

ASTE001043 GO 210.914 102.15 147.858

ASTE001249 GO 153.995 102.33 201.927

ASTE001371 GO 128.209 100.369 85.1941

ASTE001567 GO 242.662 628.562 512.411

ASTE001773 GO 7351.09 5017.66 6439.2

ASTE002909 GO 115.25 121.663 32.7457

ASTE002914 GO 162.207 122.774 58.1257

ASTE002991 GO 13.0357 27.1839 34.4705

ASTE003073 GO 3.95207 5.35709 6.64083

ASTE003130 GO 111.493 70.7715 125.698

ASTE003223 GO 18.1754 14.4909 19.7527

ASTE003848 GO 3.05716 3.12325 2.94652

ASTE004135 GO 107.759 112.337 60.473

ASTE004515 GO 179.896 135.373 139.161

ASTE004690 GO 38.7047 30.4935 43.1306

ASTE004709 GO 4.87481 7.14552 13.1994

ASTE004710 GO 8.93586 10.5808 22.1294

ASTE005121 GO 3.3418 19.4879 20.4617

ASTE005165 GO 412.232 743.759 654.745

ASTE005387 GO 8.67074 55.0254 4.73109
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Gene Set Enrichment Analysis (GSEA) analysis of data E-MEXP-378 and E-

MEXP-1859 revealed six pathways each having significant P-values and OXPHOS

pathway was found to be common among them. GSEA results showed

cytoskeleton organization and biogenesis, Wnt signaling pathway, JAK-STAT, p53

signaling pathway, pentose phosphate pathway and OXPHOS as significant

pathways for E-MEXP-378 and likewise oxidative phosphorylation, response to

oxidative stress, Toll pathway, response to ROS, melanization defense response

and hydrogen peroxide catabolic response as significant pathways for E-MEXP-

1859 dataset. The 13 common differentially expressed significant genes in dataset

E-MEXP-1859 and GSE11012 were removed from the further analysis so as to

Table 3. Cont.

Gene Status SF BF5D iBF5D

ASTE005445 GO 251.465 152.927 107.231

ASTE005602 GO 371.038 314.707 204.804

ASTE005696 GO 77.6152 347.119 236.1

ASTE006080 GO 106.617 41.7707 47.5019

ASTE006277 GO 143.891 219.73 109.634

ASTE006361 GO 48.7165 43.3185 23.9857

ASTE006397 GO 4825.3 1808.03 4017.93

ASTE006501 GO 180.108 296.007 79.8115

ASTE007457 GO 720.388 262.231 398.623

ASTE007781 GO 138.289 138.146 182.986

ASTE007782 GO 144.385 111.405 62.9876

ASTE007973 GO 152.821 126.328 81.7444

ASTE008071 GO 161.366 90.8716 84.8784

ASTE008211 GO 3.89653 2.99567 6.48923

ASTE008276 GO 481.106 321.01 140.308

ASTE008687 GO 111.786 72.2075 115.313

ASTE008731 GO 37.1639 200.549 160.301

ASTE008825 GO 16.4813 30.7846 5.32786

ASTE008900 GO 99.0236 81.4236 78.6687

ASTE009014 GO 18.4728 16.4796 18.2949

ASTE009146 GO 217.069 185.006 178.595

ASTE009370 GO 86.3904 77.4245 120.952

ASTE009555 GO 24.3915 36.7647 33.2701

ASTE009860 GO 70.0946 49.8105 9.94767

ASTE010293 GO 343.966 322.758 399.022

ASTE010572 GO 26.2349 20.7426 17.9355

ASTE010775 GO 7.49661 7.50756 7.59294

ASTE011003 GO 11.0987 8.78333 5.66391

These genes were selected on the basis of GO terms, and microarray analysis. RPKM values of all the genes are also shown in the table.
*The analysis was performed using Anopheles gambiae genes. Anopheles gambiae IDs were then converted into Anopheles stephensi IDs using BioMart
tool of VectorBase.

doi:10.1371/journal.pone.0114461.t003
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reduce the false positive results. Detailed analysis of these datasets revealed 40

genes of An. gambiae (Table S2) and 145 genes of D. melanogaster to play a key

role in oxidative stress response.

Redox system of Anopheles is a complex network of gene

interactions

For the purpose of inferring the redox system of Anopheles, a three prong

approach was used. Our aim was to integrate different types of data sets and

extract information for most of the genes that are playing role in oxidative stress

in Anopheles including unannotated genes, information of genes in other insects,

extract information available in public domain and our own experimental data.

Previous studies performed by integrating such information have yielded much

information in predicting gene function [59, 60].

The different methodologies finally resulted in a cluster of transcripts playing

role in oxidative pathways (Table 3). Furthermore, those transcripts that were

Figure 5. Gene interaction Co-expression network of Anopheles stephensi. (a) Meta-network showing interaction between the genes. The oxidative
stress genes are highlighted in different colors. (b) A sub-network representing the interaction between oxidative stress related genes. Red color nodes
shows genes predicted using SVM, Green color represents the GSEA predicted genes, Dark yellow node represent GO predicted genes, Light blue shows
already annotated genes.

doi:10.1371/journal.pone.0114461.g005
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significantly regulated were mapped onto the reference network (Figure 5a) and a

sub-network was extracted out of the meta-network (Figure 5b). Ookinete

invasion of the midgut is triggered off by the adhesion of the parasite ookinete

onto the epithelium of the mosquito midgut resulting in activation of processes

that produce reactive oxygen species. Through our study including both de-novo

study and reference mapping study using TopHat and Cufflinks, we hypothesize

the involvement of some new molecules predicted by SVM and gene ontology in

oxidative stress in Anopheles (Figure 6). Maintenance of ROS is accomplished by

Figure 6. Figure representing the hypothetical model of oxidative stress pathway. This model includes 3 predicted proteins namely, FOXRED1,
SCMC3 and SQR represented by red star.

doi:10.1371/journal.pone.0114461.g006
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reduction of O2 to H2O while maximizing ATP synthesis [61] which is

accomplished by the action of several enzymes like super oxide dismutase (SOD)

and glutathione peroxidases. It is known that superoxide that is formed in

mitochondria is produced by respiratory complexes and is detoxified by the action

of the several species of SODs. Network generated in our study propose a possible

role of FAD-dependent oxidoreductase domain-containing protein 1 (FOXRED1)

in this conversion. It is known that FOXRED1 is localized in mitochondria and

known to have chaperonic functionality in mitochondria complex 1 [62].

However, this has not been identified in midguts of mosquito prior to our study.

Another possible involvement is that of Sulfide: Quinone oxidoreductase (SQR)

in the reduction of thioredoxin in the thioredoxin-proxiredoxin pathway to limit

accumulation of peroxides [63]. In addition to the above molecules, our study has

proposed the role of small calcium binding mitochondrial carrier protein 3

(SCMC 3) in Anopheles redox homeostasis. Role of calcium in maintaining

mitochondrial function and combating oxidative stress has been well documented

[64].

The cluster of genes involved in oxidative stress in Anopheles in our study is

quite exhaustive. We have utilized both computational and high throughput data

generation platforms to infer an almost complete redox system of Anopheles and

proposed a model where new molecules could be playing important roles in

oxidative stress of the malaria vector. Our proposed equilibrium awaits

experimental validation.

Supporting Information

Figure S1. ROC plot showing the performance of the SVM models of different

pathways.

doi:10.1371/journal.pone.0114461.s001 (TIF)

Table S1. Table showing the data used in the study.

doi:10.1371/journal.pone.0114461.s002 (DOCX)

Table S2. Table representing the GSEA predicted Anopheles genes (microarray

data) which may play role in oxidative stress.

doi:10.1371/journal.pone.0114461.s003 (DOCX)

Table S3. The excel sheet shows the SVM summary and the predicted SVM

scores of unannotated transcripts.

doi:10.1371/journal.pone.0114461.s004 (XLS)
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