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ABSTRACT: Extracting information from experimental measurements in the
chemical sciences typically requires curve fitting, deconvolution, and/or solving the
governing partial differential equations via numerical (e.g., finite element analysis)
or analytical methods. However, using numerical or analytical methods for high-
throughput data analysis typically requires significant postprocessing efforts. Here,
we show that deep learning artificial neural networks can be a very effective tool for
extracting information from experimental data. As an example, reactivity and
topography information from scanning electrochemical microscopy (SECM)
approach curves are highly convoluted. This study utilized multilayer perceptrons
and convolutional neural networks trained on simulated SECM data to extract
kinetic rate constants of catalytic substrates. Our key findings were that multilayer perceptron models performed very well when the
experimental data were close to the ideal conditions with which the model was trained. However, convolutional neural networks,
which analyze images as opposed to direct data, were able to accurately predict the kinetic rate constant of Fe-doped nickel
(oxy)hydroxide catalyst at different applied potentials even though the experimental approach curves were not ideal. Due to the
speed at which machine learning models can analyze data, we believe this study shows that artificial neural networks could become
powerful tools in high-throughput data analysis.
KEYWORDS: scanning electrochemical microscopy, machine learning, artificial neural networks, convolutional neural networks,
data analysis

1. INTRODUCTION
Scanning electrochemical microscopy (SECM) is a scanning
probe technique that can obtain spatial-dependent surface
reactivity and topography of solid surfaces operating in a
solution phase.1−8 In SECM, the probe is typically a micro- or
nanoelectrode (referred to as a tip electrode), and reactivity
and topography of the surface (referred to as the substrate) are
determined via detecting the flux of redox-active molecules
between the tip and substrate through current measurements
on the tip electrode.8−10 Spatial-dependent information is
typically obtained by raster-scanning the tip electrode in the
x−y plane over the substrate of interest.11−16 However, a
challenge in SECM is that the reactivity and topography are
often convoluted because the flux of the redox mediators is
dependent on both the reactivity of the substrate and the tip/
substrate distance.17 Thus, it is common practice to perform an
additional ex situ imaging technique in parallel with SECM to
obtain separate topography information so reactivity informa-
tion can be inferred.18

Recently, the Amemiya and Leonard groups have developed
an intelligent mode of nanoscale SECM to image both
reactivity and topography simultaneously of nonflat substrates

with reactive and inert regions.19,20 This intelligent imaging
mode is based on the analysis of approach curves taken at
different positions over the substrate of interest. The power of
this approach curve mapping technique is that it can
unequivocally determine the reactivity and the topography
because the tip is approached toward the substrate at each
pixel in the image. However, the challenge with intelligent
SECM is converting the direct current measurement to
topography and reactivity in real time. This deconvolution
requires solving complex partial differential equations (e.g.,
Fick’s diffusion with potential-dependent flux boundary
conditions) in three-dimensional space via finite element
analysis software and/or postmeasurement fitting of exper-
imental data to nonlinear analytical models.2 This data analysis
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adds significant postprocessing time and limits the total
number of pixels that can be obtained in an image.

Here, we report on using machine learning techniques as an
alternative to finite elemental analysis and nonlinear curve
fitting for obtaining the substrate kinetics of SECM approach
curves. Simply put, machine learning models use mathematical
algorithms to uncover patterns within the data provided to the
system.21 Bond, Compton, Liu, and others have used machine
learning and artificial neural networks to analyze electro-
chemical cyclic voltammetry data, mainly via classification
algorithms to predict mechanisms.22−26 Similar to voltamme-
try, the observed shape of an SECM approach curve is
dependent on the kinetic rate constant of the substrate
reaction. Our goal was to determine if machine learning
algorithms could calculate the kinetic rate constant of a
substrate without actually solving the partial differential
equations that govern the process. Specifically, we investigated
the use of two types of artificial neural network machine
learning algorithms, multilayer perceptrons (MLP) and
convolutional neural networks (CNN). MLP models pass an
entire data set through multiple layers of nodes (i.e.,
perceptrons) where each node acts analogous to a transfer
function where inputs are multiplied by weights and entered
into an activation function to obtain an output. Training the
model to convert the input data set into an output is done
through back-propagation where the weights of the neural
network are tuned based on the error of the previous iteration
(i.e., epoch).27−30 CNN models are typically used for image
classification, for example, they are used to detect letters and
numbers in handwriting analysis.31−43 In general, a CNN
makes a classification via scanning through the image to extract
features in a hierarchical manner, starting with the low-level
features and then utilizing the final feature map in an MLP for
the final classification.

All machine learning models need large amounts of data for
training. Here, we used data generated from analytical
expressions previously derived to capture how the shape of
SECM approach curves changes as a function of the kinetic
rate constant of the substrate.2 We investigated two different
methods of utilizing SECM approach curve data with MLP
models�(1) only the measured current data and (2) the slope
of the current vs z-position data. Since CNN models are
typically trained on image data, the approach curves were
converted to image form for use in the CNN model. Validation
of the model was performed by performing experimental
approach curves on a Fe-doped nickel (oxy)hydroxide
substrate. While this material has practical significance as an
electrocatalyst for the oxygen evolution reaction (OER),44−46

this material was chosen because it has the unique property of
transitioning from completely insulating to completely
conducting as a function of potential. Thus, on the same
substrate, we can obtain electron-transfer kinetic rate constants
on an outer-sphere redox process spanning several orders of
magnitude.

We observed that both the MLP and CNN models can
obtain very high accuracy on ideal SECM approach curves.
However, on nonideal SECM approach curves, where the
nonideality occurs from a combination of rough surfaces with
tip/substrate misalignment, the CNN model outperforms the
MLP models. We attribute this to the CNN model being able
to obtain the general trend via analyzing the image as opposed
to the raw data. We envision this machine learning technique
will not only impact the rapid analysis of SECM approach

curves but could be applied to other areas of data analysis
where numerous experiments need to be quantified.

2. EXPERIMENTAL AND COMPUTATIONAL
METHODS

2.1. Computational Methods
2.1.1. Data Set and Data Processing. Two separate data sets

were synthesized: one for the multilayer perceptron (MLP) and the
other for the convolutional neural network (CNN). The data for the
MLP consisted of 2250 approach curves, the current values of which
were calculated using the expression derived by Lefrou et al.2
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where Rg is the ratio of the radius of the insulation sheath around the
electrode to the radius of the disk electrode (rglass/a); L is the ratio of
the distance the tip is away from the substrate to the radius of the disk
electrode (d/a); and κ, α, and β are described as follows
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where k is the kinetic rate constant of the substrate, D is the diffusion
coefficient of the redox mediator, and a is the radius of the tip
electrode.

Each approach curve in the model was unique, each having a
different substrate rate constant value and a final tip−substrate
distance. The rate constant values range from 1 to 10−5 cm s−1 with a
diffusion coefficient of 10−5 cm2 s−1. The final tip−substrate distances
ranged d/a values (where d is the tip−substrate distance and a is the
radius of the electrode) from 0.1 to 2. Each approach curve consisted
of 150 points.

The data for the CNN consisted of 3800 images of approach
curves. These images were 100 pixel by 100 pixel grayscale images
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that did not include the x and y axes or axis labels. Each of these
approach curves also has a unique rate constant value and a final tip−
substrate distance. The rate constant values ranged from 1 to 10−3 cm
s−1, the diffusion coefficient was 10−5 cm2 s−1, and the final tip−
substrate distance values ranged from d/a values of 0.01 to 0.3.

2.1.2. Machine Learning Packages. All machine learning
algorithms were programmed in Python using Jupyter Notebooks.
The Keras library, a wrapper for the Tensorflow, was used as the
machine learning library to implement both the MLP and CNN
algorithms. All source code for this study can be found in the
Supporting Information. Two MLP models were built: MLP-C and
MLP-S. Both models only used the ReLu activation function in all
hidden layers. The MLP-C model consisted of three hidden layers
each having 10 nodes. The MLP-S model consisted of four hidden
layers, where the first three layers consisted of 10 nodes each and the
last hidden layer consisted of five nodes. The MLP regression models
were trained over 1000 epochs. The CNN model consisted of two
feature extractors, each of which consisted of a convolutional layer
followed by a max pooling layer. The dimension of all max pooling
layers was 2 × 2. The first convolutional layer used a 10 × 10 kernel
to output a 32 × 32 lower-level feature map. The second
convolutional layer used a 5 × 5 kernel, which outputs a 10 × 10
higher-level feature map. Both feature extractors use ReLu as the
activation function all throughout and a dropout of 0.25. The first and
only hidden layer of the MLP attached to the second extractor
consisted of 256 nodes and uses the ReLu activation function as well.
The final output layer consisted of 10 nodes to represent the 10
classes, and it uses the softmax activation function.

2.1.3. Model Evaluation. Both data sets were split into training
and testing sets, with an 80:20 split. Mean-squared error and mean
absolute error were used to determine the quality of the regression
MLP model. Accuracy, precision, recall, and F-1 score were used to
evaluate the multiclass classification CNN model.

2.2. Experimental Methods

2.2.1. Chemicals and Materials. Iron(III) nitrate nonahydrate
(Fe(NO3)3·9H2O, 98%+, ACS Reagent, Acros), nickel nitrate
hexahydrate (Ni(NO3)2·6H2O, 99%, Fisher Scientific), ethylene
glycol ((CH2OH)2, 99.8%, anhydrous, Sigma-Aldrich), sodium
hydroxide (NaOH, 98.7%, Certified ACS, Fisher Scientific),
potassium chloride (KCl, 99%+, Certified ACS, Fisher Scientific),
and hexaammineruthenium(III) chloride (Ru(NH3)6 Cl3, 99%, Strem
Chemicals) were all used as received without additional purification.
The electrolyte solution was prepared using ultrapure water (18.2 MΩ
cm) from Millipore Synergy UV system. Platinum wire (purity 99.9%,
0.01 mm diameter, temper hard, Good Fellow) was used for tip
electrode fabrication. The 10 μm Pt microelectrode was manufactured
following the same procedure as previously described.4

2.2.2. Fe-Doped Nickel (Oxy)hydroxide Synthesis. The Fe-
doped nickel (oxy)hydroxide crystalline-derived catalyst was synthe-
sized following the same procedure as previously described.44,45

Briefly, mixtures of 0.02 M Ni(NO3)2·6H2O and 0.02 M Fe(NO3)3·
9H2O were prepared separately in ethylene glycol and subsequently
added together in an 8:2 ratio. This solution was drop-cast on cleaned
fluorine-doped tin oxide (FTO)-coated glass (Sigma-Aldrich) and
placed into an oven at 135 °C for 30 min, then repeated once more
for a second coating. The crystalline thin-film samples were further
annealed at 525 °C for 3 h to create the Fe-doped nickel
(oxy)hydroxide layer. The Fe-doped nickel (oxy)hydroxide was
then electrochemically conditioned by applying an oxidation current
of ca. 10 mA cm2 in 1 M NaOH for 1 h.

2.2.3. Scanning Electrochemical Microscopy Measure-
ments. All SECM experiments were performed via a custom-built
SECM, as previously described.47 The Fe-doped nickel (oxy)-
hydroxide crystalline catalyst was inserted into a custom electro-
chemical cell (Teflon) as the substrate electrode, which was then

Figure 1. Overview of three different methods of obtaining a substrate kinetic rate constant from SECM approach curves. Using finite elemental
analysis or analytical expressions to solve diffusion equations, which govern how the tip current changes with substrate kinetics (top). Entering raw
approach curve data into a multilayer perceptron model to obtain the kinetic rate constant (middle) and using the image of an approach curve in a
convolutional neural network to obtain a kinetic rate constant (bottom).
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mounted on the motion controller system. A 200 μm Pt wire coil was
used as the counter electrode, and an Ag/AgCl electrode was used as
the reference. The electrolyte solution used was 10 mM Ru(NH3)6

3+,
thoroughly purged with argon before use. The 10 μm Pt
microelectrode was used as the SECM tip electrode for SECM
experiments. The Pt tip electrode was initially placed in close
proximity to the desired hole in the Fe-doped nickel (oxy)hydroxide
crystalline catalyst by visual alignment.

The first series of SECM experiments were performed in the 10
mM Ru(NH3)6

3+ solution. A CV was performed from +0.05 to −0.3
V vs Ag/AgCl to verify the reduction potential range of Ru(NH3)6

3+

to Ru(NH3)6
2+. To bring the tip close to the catalyst surface, a

reducing potential of −0.3 V vs Ag/AgCl was applied on the tip
electrode as it was stepped toward the substrate until a current
enhancement of 0.5 was reached. The tip electrode was then raster
scanned over a 300 μm × 300 μm region while still holding −0.3 V vs
Ag/AgCl to find the desired hole in the Fe-doped nickel
(oxy)hydroxide crystalline catalyst. Once positioned, smaller reactivity
maps (150 μm × 150 μm) with higher resolution (3 μm) and sample
interval of 0.4 s were performed. For each of these maps, the tip
electrode was held at −0.3 V vs Ag/AgCl, while the substrate was
varied from +0.05 to +0.8 V vs Ag/AgCl. Finally, approach curves
were obtained over the Fe-doped nickel (oxy)hydroxide sample at
various substrate potentials to change the kinetics of the Ru(NH3)6

3+

to Ru(NH3)6
2+ reaction.

3. RESULTS AND DISCUSSION
Two different artificial neural networks, multilayer perceptron
(MLP) and convolutional neural networks (CNN), were

evaluated to determine their ability to calculate the substrate
kinetic rate constants of SECM approach curves. This was
compared to traditional approaches of using finite elemental
analysis or analytical solutions to Fick’s diffusion equations,
which govern the flux of redox-active molecules between the
tip and substrate of SECM experiments (Figure 1).

To train the models, SECM approach curves were simulated
using eqs 1−6 as shown above.2 As shown in Figure 2, there is
a dramatic change in the shape of an SECM approach curve

based on the kinetics of the substrate. For rate constants slower
than 10−3 cm s−1, the approach curve approaches pure negative
feedback where the hindered diffusion caused by the close tip/
substrate distance governs the flux of the redox molecules
towards the tip electrode. Contrastingly, when the substrate
kinetic rate constants exceed 1 cm s−1, the approach curve

Figure 2. Example SECM approach curves showing pure positive
feedback at fast substrate rate constants, pure negative feedback at
slow substrate rate constants, and mixed feedback at intermediate rate
constants (k = cm s−1).

Figure 3. Comparison between the predicted substrate kinetic rate
constant from the MLP-C model to the known substrate kinetic rate
constant (red points). The blue 45° line is the perfect prediction
comparison line.

Figure 4. Comparison between the predicted substrate kinetic rate
constant from the MLP-S model to the known substrate kinetic rate
constant (red points). The blue 45° line is the perfect prediction
comparison line.

Table 1. Range of Substrate Kinetic Rate Constants for Each
Class, in the Multiclass Classification CNN Model

class no. min k(cm s−1) max k(cm s−1)

0 0.001 0.0029
1 0.003 0.0049
2 0.005 0.0069
3 0.007 0.0089
4 0.009 0.0099
5 0.01 0.029
6 0.03 0.049
7 0.05 0.069
8 0.07 0.089
9 0.09 0.1
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becomes pure positive feedback where the increase of mass
transfer of the redox-active molecule is caused by complete
conversion at the substrate. For all kinetics between these
values, mixed feedback is observed. Because the shape of the
approach curve is different for each kinetic rate constant, we
hypothesized that machine learning models could accurately
make correlations to predict the kinetic rate constant without
actually solving the partial differential equations that govern
SECM approach curves.
3.1. Multilayer Perceptron Models on Simulated SECM
Approach Curves
MLP models are traditionally not conducive for importing two-
dimensional data (e.g., current vs time). Thus, we investigated
two different feature options. First, we used the raw normalized
current value of each point rendering 150 features for each
curve. This MLP model trained on these features will be
named MLP-C moving forward. The other is selecting the
slope of the normalized current and the normalized distance
between two consecutive points rendering 149 features for
each curve. This MLP model trained on these features will be
named MLP-S moving forward.

The MLP-C model consisted of three hidden layers, each of
which consisted of 10 nodes (perceptrons). The activation

function for each node in the hidden layer was the rectified
linear unit (ReLu). Because this is a regression model, a linear
activation function was used for the output layer. The MLP-C
model was able to train without showing signs of overfitting.
This was confirmed by the decrease of the mean absolute error
and the mean-squared error of both the training set and the
validation set at a similar rate while training over the 1000
epochs (see Figure S1 for details).

To evaluate the MLP-C model, we fed the model the
experimental data from the testing set (i.e., the data that the
model did not use for training) and compared the results from
the model to the known kinetic rate constants from the
analytical equations. As shown in Figure 3, very good
agreement between the model prediction and the actual
results was obtained. We measured a mean absolute error of
0.14 and a mean-squared error of 0.06 on the testing set. Most
of the error is a result of the model’s lack of capability to
predict extreme rate constant values (e.g., smaller than 10−4.5

and larger than 10−0.5). This is because the approach curves at
these values are approaching pure negative feedback and pure
positive feedback, respectively, and the difference between the
approach curves in these regions is very small.

The MLP-S model (the model trained on the normalized
slope instead of only the normalized current) consisted of four
hidden layers. The first, second, third, and fourth hidden layers
consisted of 10, 10, 10, and 5 nodes. Again, the MLP-S model
was also able to train without showing signs of overfitting as
the mean absolute error and mean-squared error of both the
training and validation error decreased at a similar rate (see
Figure S2 for details).

Figure 4 shows the model-predicted kinetic rate constant vs
the actual kinetic rate constant from the analytical expression.
Again very good agreement between the model prediction and
the actual results was obtained. In fact, the mean absolute error
was measured to be 0.05 and the mean-squared error was
measured to be 0.01 for the testing set data. As was the case for
the MLP-C model, most of the error in the MLP-S model is a
result of the model’s lack of capability to predict extreme rate
constant values. Note that this model showed improved mean
absolute error values and mean-squared error values compared
to the model which was trained on the data where the current
values were selected as features. This is because slopes contain
information regarding the current and tip−substrate distance
values. Therefore, we observed that using the slope as a
method for incorporating time-dependent experimental data
into MLP models can improve their accuracy and predicting
power.
3.2. Convolutional Neural Networks

The images used to train the CNN were 3800 grayscale 100 ×
100 images of approach curves, each corresponding to a
unique substrate rate constant and a final tip−substrate
distance pair. The legends and the x and y axes of the graph
were not included. Only the curve alone was included as input,
with example images shown in Figure S3.

The CNN was trained as a multiclass classification model,
with each approach curve belonging to one of 10 classes. Each
class represented a range of rate constant values as shown in
Table 1. Just as in the MLP model, each approach curve in the
data set had a unique rate constant and final tip/substrate
distance combination.

The CNN consisted of two feature extractors, each
consisting of two convolutional layers, one max pooling

Table 2. Precision, Recall, and F-1 Score of the Training Set
for the CNN Model for Each of the 10 Classes

class no. precision recall F-1 score

0 1.00 0.98 0.99
1 0.98 0.98 0.98
2 0.98 0.96 0.97
3 0.95 1.00 0.97
4 0.95 0.99 0.97
5 1.00 0.93 0.96
6 0.66 0.97 0.79
7 0.51 0.20 0.29
8 0.42 0.78 0.54
9 0.76 0.23 0.35
accuracy: 0.80

Figure 5. Confusion matrix showing the predicted result vs the actual
result for each of the 16 classes for the multiclass CNN model.

ACS Measurement Science Au pubs.acs.org/measureau Article

https://doi.org/10.1021/acsmeasuresciau.2c00056
ACS Meas. Sci. Au 2023, 3, 103−112

107

https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.2c00056/suppl_file/tg2c00056_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.2c00056/suppl_file/tg2c00056_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsmeasuresciau.2c00056/suppl_file/tg2c00056_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.2c00056?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.2c00056?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.2c00056?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsmeasuresciau.2c00056?fig=fig5&ref=pdf
pubs.acs.org/measureau?ref=pdf
https://doi.org/10.1021/acsmeasuresciau.2c00056?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


layer, with a window size of 2 × 2, and one dropout layer, the
rate of which was set to 0.25 to minimize the risk of overfitting
by randomly nullifying 25% of the filter parameters. This will
reduce complexity, more of which leads to overfitting of the
model. In the first convolutional layer, the low-level features of
the original image were extracted using a 10 × 10 kernel,
outputting a 32 × 32 filter. The most significant features of the
filter were extracted using a max pooling layer. The resulting
low-level feature map was then sent through the second
extractor to extract high-level features using a 5 × 5 kernel,
outputting a 64 × 64 filter. A larger filter size was selected for
the second extractor to accommodate high-level feature
extraction. The most significant features of this filter were
then extracted using a final max pooling layer. Finally, the
resulting feature map of the convolutional layers was subjected
to flattening via a multilayer perception, which consisted of one
layer with 256 nodes using the ReLU activation function.

Accuracy, precision, and recall on the testing set were used
to evaluate the CNN model, as shown in Table 2. In addition,
the confusion matrix showing the accuracy of each of the
classes is shown in Figure 5. Examination of Table 2 and
Figure 5 shows that the CNN model was able to predict the
rate constant to the appropriate class for classes 0−6, which are
rate constants ranging from 0.001 to 0.049 cm s−1. Again, this
is performed with the model only “looking” at the image
without performing any additional calculations. For classes 7−
9, the accuracy is significantly lower; however, the confusion
matrix shows that the CNN usually only predicts one class
higher or lower than the true class. These inaccurate
predictions arise from each of these classes having fast kinetic
rate constants with values ranging from 0.05 to 0.1 cm s−1.
Thus, each of the approach curves in classes 7−9 have very
similar shapes and are approaching a pure positive feedback
approach curve (see Figure 2). However, even though the
prediction was inaccurate for some curves in these classes,

Figure 6. SECM imaging in 10 mM Ru(NH3)6
3+ with 10 μm Pt tip electrode held at −0.3 V vs Ag/AgCl and substrate held at (a) off, (b) +0.05,

(c) +0.4, (d) +0.6, (e) +0.7, and (f) +0.8 V vs Ag/AgCl.
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most results were only one class away from the true value.
Thus, the model can determine a lower bound for the kinetic
rate constant that approaches pure positive feedback and
provide a good estimate of the effective rate constant.
3.3. Model Utilization on Experimental Data
As mentioned above, we set out to determine how well these
models would work on nonideal experimental approach curves.
To do this, we utilized the Fe-doped nickel (oxy)hydroxide as
an example material because it is a popular OER catalyst (OER

performance shown in Figure S4) and it holds the unique
property of transition from insulating at low positive potentials
to conducting at high positive potentials. Thus a single sample
can span the entire range of effective kinetic rate constants
(i.e., the measured rate encompassing both changes in the
conductivity of the electrode and the rate of electron transfer)
of outer-sphere, reversible electron-transfer reactions simply by
changing the substrate potential.

To demonstrate this, Figure 6a−f shows constant-height
SECM images (150 μm × 150 μm) in 10 mM Ru(NH3)6

3+ of
the crystalline Fe-doped nickel (oxy)hydroxide electrocatalyst
with a defect shown in the center. Here, the Fe-doped nickel
(oxy)hydroxide catalyst is on the outside of the defect, and at
the defect, the conductive fluorine-doped tin oxide-coated glass
is exposed to the electrolyte. For each of these images, the Pt
tip electrode is held at −0.3 V vs Ag/AgCl and the substrate is
(a) turned off, held at (b) +0.05, (c) +0.4, (d) +0.6, (e) +0.7,
and (f) +0.8 V vs Ag/AgCl. While a potential of +0.05 V vs
Ag/AgCl should be sufficient to oxidize the Ru(NH3)6

2+ back
to Ru(NH3)6

3+ and create positive feedback, this was not
shown on the catalyst surface when such potential was applied.
This is attributed to significantly slower kinetics on the catalyst
surface when in the insulating state. However, the center of the
image shows a hole in the catalyst surface, revealing the plain
FTO glass in the middle. The FTO region does demonstrate

Figure 7. Experimental SECM approach curves of Ru(NH3)6
3+ to Ru(NH3)6

2+ over the Fe-doped nickel (oxy)hydroxide catalyst surface as a
function of substrate potential (a). Analytical fits of the experimental approach curve to reveal the kinetics at each potential (b).

Figure 8. Predicted rate constant vs actual rate constant of the experimental approach curves on the Fe-doped nickel (oxy)hydroxide sample. (a)
Predicted vs true values of the MLP-C model and (b) that of the MLP-S model.

Figure 9. Confusion matrix showing the CNN predicted vs
COMSOL determined effective rate constant for the experimental
data on the Fe-doped nickel (oxy)hydroxide catalyst sample.
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positive feedback at an applied potential of +0.05 V vs Ag/
AgCl. As the substrate potential becomes more positive during
the SECM imaging, the positive feedback across the image
becomes more prominent. Once the substrate reaches +0.6 V
vs Ag/AgCl, the catalyst region transitions from insulating to
conducting and is able to turn around the redox species and
create a small positive feedback. The FTO glass is at the
maximum positive feedback at this potential. Finally, once the
substrate reaches +0.8 V vs Ag/AgCl, the catalyst region shows
the same maximum feedback as the FTO glass, demonstrating
that the electron-transfer step can occur sufficiently fast that
the kinetics are no longer the limiting component.

After imaging, the SECM tip approached toward the
substrate while holding the substrate at varying potentials.
The tip electrode was held constant at −0.3 V vs Ag/AgCl.
These experiments resulted in the approach curves shown in
Figure 7a. As shown in Figure 7a, the approach curves
transition from negative feedback to positive feedback as the
potential of the substrate changes from +0.5 to +0.8 V vs Ag/
AgCl, verifying the results determined by the SECM imaging.
Further, these approach curves were simulated with the
analytic expression described in eqs 1−6 assuming a diffusion
coefficient of 10−5 cm2 s−1, as shown in Figure 7b. Here, we
can see that the rate constant of the substrate varied from
0.001 to 0.07 cm2 s−1.

To evaluate how well the machine learning models
performed on nonideal experimental data, kinetic rate
constants for each of the four approach curves shown in
Figure 8 were calculated with each of the three models. The
performance of the regression MLP models is shown in Figure
8. For the MLP-C model (Figure 8a), the performance is
relatively poor compared to the performance on synthetic data.
We attribute this poor accuracy to the MLP-C model only
using the measured current data, without any z-position data.
Thus, nonidealities that may arise from nonflat substrates and
imperfect tip/substrate alignment are not captured in the
simulated data used to train the model. Thus, the MLP-C
model has difficulty capturing the kinetic rate constant of the
substrate based on the real approach curve data.

For the MLP-S (Figure 8b) model, there is a significant
improvement compared to the performance of the MLP-C
model. This improvement is due to the fact that the slope
values, which incorporate the z-position data, are a better
representation of the approach curves compared to only the
measured current values. However, because the MLP-S model
relies on the slope, it may be more susceptible to experimental
noise in the measured current, which could affect the
individual slope calculations.

The results of the CNN model are shown in Figure 9. It is
shown that the experimental curves, all of which corresponded
to either class 0, 5, 6, or 8 were predicted perfectly. Because
CNN models are able to “look” at the approach curves and
gauge the direction and the amount of curvature in the
approach curve, it acts more like how a human would interpret
the data and appears to be less susceptible to nonidealities or
experimental noise.
3.4. Conclusions

We have demonstrated that artificial neural networks can be a
powerful tool for performing high-throughput data analysis on
experimental data. In fact, the CNN used in this study was able
to evaluate all 800 approach curves in the testing set in under
400 ms. While analysis via finite element analysis could take

over 60 s for a single approach curve. We also identified that
feature design is important for the rapid analysis of
experimental data. For example, multilayer perceptron models
can be used on two-dimensional data if the features can be
designed to incorporate both dimensions (e.g., using the slope
between the measured current and the z-position for SECM
approach curves). A second key finding is that CNN is more
apt to handle nonideal data because these models simulate how
humans “look” at an image. Thus, CNNs can be very powerful
for data that has significant noise or nonidealities and they can
provide effective rate constant information on complex
electrochemical systems. These advantages outweigh the fact
that there is some “blank space” with no information in
analyzing images.

Once these artificial neural networks are trained, analyzing
the data is extremely rapid and efficient. Thus, we believe that
online machine learning will become a powerful tool for high-
throughput chemical data analysis.
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