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Abstract

Background: The detailed analysis of transcriptional regulation is crucially important for understanding biological
processes. The gap gene network in Drosophila attracts large interest among researches studying mechanisms of
transcriptional regulation. It implements the most upstream regulatory layer of the segmentation gene network.
The knowledge of molecular mechanisms involved in gap gene regulation is far less complete than that of
genetics of the system. Mathematical modeling goes beyond insights gained by genetics and molecular
approaches. It allows us to reconstruct wild-type gene expression patterns in silico, infer underlying regulatory
mechanism and prove its sufficiency.

Results: We developed a new model that provides a dynamical description of gap gene regulatory systems, using
detailed DNA-based information, as well as spatial transcription factor concentration data at varying time points.
We showed that this model correctly reproduces gap gene expression patterns in wild type embryos and is able
to predict gap expression patterns in Kr mutants and four reporter constructs. We used four-fold cross validation
test and fitting to random dataset to validate the model and proof its sufficiency in data description. The
identifiability analysis showed that most model parameters are well identifiable. We reconstructed the gap gene
network topology and studied the impact of individual transcription factor binding sites on the model output. We
measured this impact by calculating the site regulatory weight as a normalized difference between the residual
sum of squares error for the set of all annotated sites and for the set with the site of interest excluded.

Conclusions: The reconstructed topology of the gap gene network is in agreement with previous modeling
results and data from literature. We showed that 1) the regulatory weights of transcription factor binding sites
show very weak correlation with their PWM score; 2) sites with low regulatory weight are important for the model
output; 3) functional important sites are not exclusively located in cis-regulatory elements, but are rather dispersed
through regulatory region. It is of importance that some of the sites with high functional impact in hb, Kr and kni
regulatory regions coincide with strong sites annotated and verified in Dnase I footprint assays.

Background
The detailed analysis of transcriptional regulation is cru-
cial for understanding biological processes, and interest
in this problem grows due to new large-scale data acqui-
sition techniques. However despite our expanding
knowledge of the biochemistry of gene regulation, we

lack a quantitative understanding of this process at a
molecular level. We do not understand the mechanism
of transcription factor (TF) interactions with adaptor
proteins, basal transcriptional machinery and chromatin.
We do not know why some cis-regulatory elements
(CREs) are modular, while other are scattered over
many kilobases of DNA. We cannot effectively predict
the aspects of spatiotemporal expression mediated by a
particular DNA region and which set of transcription
factor binding sites (TFBS) forms a functional CRE.
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The segment determination network in Drosophila
attracts large interest among researches studying
mechanisms of transcriptional regulation. The body of
fruit fly consists of repeated morphological units called
segments. The borders of segments are demarcated
(determined) simultaneously during the blastoderm
stage, just before the onset of gastrulation. The segment
determination is under control of hierarchical cascade of
segmentation genes, most of which are transcriptional
regulators. These genes fall into 4 classes. At the bottom
of the cascade are the maternal co-ordinate genes bicoid
(bcd, one letter code - B) and caudal (cad, one letter
code - C). The other groups of genes are gap genes
(Kruppel (Kr, one letter code - K), giant (gt, one letter
code - G), hunchback (hb, one letter code - H), knirps
(kni, one letter code - N), tailless (tll, one letter code -
T) and huckebain (hkb, one letter code - J), pair-rule
and segment-polarity genes.
There is a large amount of experimental data available

about the segment determination system. The gap gene
system implements the most upstream regulatory layer
of the segmentation gene network. It receives inputs
from long-range protein gradients encoded by maternal
coordinate genes and establishes discrete territories of
gene expression. In this process the gap gene cross-reg-
ulation plays important role. The formation of gap gene
expression domains is a dynamic process: the domains
do not form in one place, but instead in the posterior
half of the embryo they shift anteriorly during cleavage
cycle 14.
At the molecular level we know the genomic location

of many functionally verified CREs, as well as identity
and binding affinity of sites for relevant regulating TFs.
A wealth of genome scale functional studies provide
data on Chip-Seq, RNASeq and DNaseI accessibility
measurements. The analysis of these datasets demon-
strated that maternal co-ordinate and gap TFs bind to
thousands of sites across the Drosophila genome and
that the dominant force in cells that modifies the
intrinsic DNA specificity of TFs is the inhibition of
DNA binding by chromatin [1]. High resolution ima-
ging and image processing techniques provide spatio-
temporal data on segmentation gene expression at
cellular resolution [2].
In spite of these efforts we still do not understand the

molecular mechanisms involved in gap gene regulation.
It is known that the the gap regulatory regions usually
contain several CREs driving expression in a precise spa-
tiotemporal pattern and often containing large number
of apparent redundant sites for the same TF. Certainly
this molecular complexity is important, however the
mechanisms underlying it remain elusive.
Mathematical modeling extends the boundaries of

genetics and molecular approaches. In general the

sufficiency of inferred regulatory mechanism cannot be
proven without reconstructing the system ab initio. Cur-
rently there is no assay, which accurately reproduces
eukaryotic transcription in vitro from well-defined
reagents. Mathematical modeling allows us to recon-
struct wild type gene expression patterns in silico, to
infer underlying regulatory mechanism and prove its
sufficiency.
Three major classes of mathematical models have

been applied to model regulation in gap gene network:
Boolean, differential equation-based and thermodynamic
(also termed fractional occupancy) models [3].
Boolean models represent regulatory relations as logic

gates and in the gap gene system they were applied to
identify feedback loops which account for topology of
gene network at steady-state.
The differential equation based models represent a

regulatory network by differential equations, in which a
set of molecules such as mRNAs and proteins interact
by explicit rules defined in terms of kinetic equations.
When applied to the gap gene system these models
were able to infer regulatory interactions responsible for
formation of the expression domain boundaries, as well
as to explain mechanisms for the dynamic anterior shifts
of gap domains. It should be noted that the deciphering
of the mechanisms of domain motion would be impossi-
ble with classic genetic approaches in default of mutants
defective for any specific domain shift.
Thermodynamic models rely on simple biophysical

descriptions of DNA-protein interactions and statistical
physics. They attempt to infer information about gene
regulation from the sequences of CREs and the binding
affinities of TFs to these elements. This formalism was
used to model expression levels in constructs driving
reporter gene expression from different gap gene regula-
tory elements.
It should be noted that all these models have advantages

and limitations from the perspective of input data quan-
tity, degree of complexity, and the time interval in which
they can model gene expression. Boolean models are suita-
ble to work with large amounts of data produced by gen-
ome-wide experiments, but they do not in general
consider DNA sequence information. Thermodynamic-
based models specifically take into account the features of
CREs. However these models provide output for a particu-
lar time moment and do not capture the system dynamics.
On the contrary differential equation models allow scien-
tists to consider transcriptional regulation over continuous
time intervals. The primary limitation of these models is
the size of gene network, as the number of parameters
rapidly grows with increase of gene number and the pro-
blem becomes computationally infeasible. Besides, the dif-
ferential equation based models usually describe gene
interactions in terms of activation/repression and the fine
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details of transcriptional regulation that thermodynamic-
based models offer, are not included.
Evidently, to decipher the molecular mechanisms

involved in gap gene regulation we need to understand
how genetic information encoded in regulatory elements
of these genes is translated into dynamical aspects of gap
gene expression. This can be achieved by combining
strength of both thermodynamic and differential equa-
tion based formalisms. Here we present a new model that
provides a dynamical description of gap gene regulatory
systems, using detailed DNA-based information, as well
as spatial TF concentration data at varying time points.
We showed that this model correctly reproduced gap
gene expression patterns in wild type embryos and is able
to predict gap expression patterns in mutants and repor-
ter constructs.

Results and discussion
Sequence based model of gap gene network
We developed a new model of the gap gene regulatory
network which takes as input the affinities of predicted
TFBS together with spatial TF concentration data. The
output of the model are spatial and temporal patterns
of four gap genes hb, Kr, gt, and kni in the form of
protein concentration profiles over about one hour of
development.
The binding sites for TFs Bcd, Cad, Hb, Gt, Kr, Kni,

Tll and Hkb were predicted using position weight
matrices (PWMs, see Additional file 1 and Methods).
The predicted TFBS affinities were calculated based on
the PWM score of the corresponding strongest site as in
[4]. The spatial TF concentration data were taken from
FlyEx database, which contains data on segmentation
gene expression at cycles 13 and 14A of the early
embryo development [5].
Our model consists of two layers. The first layer is a

thermodynamic based calculation of the gene activation
level. We adopt and modify a method of this calculation
presented in [4]. The probability of transcriptional gene
activation is assumed to be dependent on the rate of basal
transcriptional machinery (BTM) recruitment, which is
determined by different probabilities of all possible occu-
pancy states of the regulatory region. Each occupancy
state represents a different TF binding configuration on
the DNA sequence. As many CREs require mechanisms
such as synergy, cooperativity, quenching, and direct
repression for proper function [6-10] the model incorpo-
rates additional mechanistic features such as short range
repression and homotypic cooperativity in transcription
factor-DNA binding [11].
The short range repression, also known as quenching, is

a mechanism by which repressors influence activators only
if they are bound within a “short range” of the activator
binding site [12,13]. According to this mechanism, a

bound repressor cannot interact with the basal complex,
but instead leads to a new configuration of the enhancer
where its neighborhood in the DNA sequence becomes
forbidden to binding by any other TF [4].
One feature of the model which can be incompatible

with the gap gene network is the fact that the type of reg-
ulatory action (activation or repression) and its strength
for a given TF is the same for all target genes. Previous
modeling and experimental results showed that this is
not true for gap genes, which may simultaneously exhibit
self-activation and repression for other gap genes [14].
Taking this into account, we modified the model to allow
different regulatory actions for TFs depending on a target
gene, as described in more details in the next section.
Following [4] we consider that transcriptional output is

proportional to the probability of the BTM binding. To
model the spatiotemporal dynamics of mRNA and protein
synthesis in the early embryo, we write two sets of the
reaction-diffusion differential equations [15-17]. We add
the delay parameter to account for the average time
between events of transcription initiation and correspond-
ing protein synthesis.
We modeled, in one dimension, a region of the blasto-

derm corresponding to the central midline of the embryo.
We consider a time period of cleavage cycles 13 and 14A.
Cleavage cycle 14A is about one hour long and is divided
into 8 temporal classes (T1-T8) of 6.5 minutes each. The
number of nuclei along the A-P axis is doubled when
going from c13 to c14. The model was fitted to data on
gap protein concentrations from the FlyEx database [5].
Optimization was carried out by differential evolution
(DEEP) method [18,19] to minimize the combined objec-
tive function. This function is a sum of the residual sum of
squared differences between the model output and data,
weighted pattern generating potential and a penalty term,
which limits a growth of regulatory weights. The weighted
pattern generating potential was proposed in [20] to
account not only for the magnitude of difference between
model and data, but also for the direction of change.
The model outputs with the score of combined optimi-

zation function below 350000 were inspected visually,
and the solutions which fit the data without visual defects
were selected. We obtained eleven similar solutions
which produced calculated expression patterns that clo-
sely match the gap gene expression profiles in the wild
type embryo (Figure 1).
To validate our fitting procedure we performed a four-

fold cross-validation test. The entire dataset was parti-
tioned randomly into four subsets. Then, the model was
fitted using the data contained in three subsets (a training
set). The obtained parameter values were used to make
predictions for the subset left out (a test set) and the
quality of prediction was estimated by calculation of the
root mean square (rms) (see Methods section). This was
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repeated four times, so that each subset is left out exactly
once. This procedure resulted in the mean rms score
28.42 and standard deviation 1.29 that is comparable
with the scores for original parameter sets rmsmean =
27.15 and rmssd = 2.14. We applied Student’s t-test with
Welch modification [21] to confirm that the difference
between these rms scores is statistically insignificant, P >
0.10. Figure 2 shows the boxplot of the rms values for
original and “cross-validation” networks.
In order to further validate that the model is sufficient in

data description we constructed a random dataset (“nega-
tive control”) in which the expression patterns of kni and
hb, as well as expression patterns of Kr and gt were
shuffled with respect to gene regulatory regions. Conse-
quently, the data the model is fitted to may be considered
“nonsense”. In this test we hoped that no parameter set

could be found making the model output to coincide with
“nonsense” data. We noted that a portion of resulting para-
meter sets has very small affinity constants (K < 10−4) for
all TFBS of several TFs, and, hence, these TFs are almost
switched off. Evidently, such a situation is not feasible and
therefore we removed these parameter sets from further
analysis. The mean rms score for the obtained set of para-
meter vectors was 41.07. The boxplot of the rms scores
for biological and negative control data is presented in
Figure 2. According to Student’s t-test with Welch modifi-
cation t = 11.26, P − value = 5.101 × 10−15, consequently,
the difference in rms mean values is statistically significant.

Gene network topology
In segmentation network a TF can function as both acti-
vator and repressor. To account for the possibility of

Figure 1 Model output for a representative network as compared to protein concentration profiles from the FlyEx database. Results
are shown for 3 time moments - early (T1), middle (T3) and late (T7) cleavage cycle 14A. Though there are some defects in predicted patterns
at T1, the model correctly reproduces the dynamic of the system.
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dual regulation we introduced the genetic interconnec-
tivity matrix Tab, which characterizes the action of TF b
on gene a. The positive elements of the matrix are sta-
tistical weights aA of interaction between bound TF and
the BTM, while negative elements correspond to the
repressor strength bR. We assume that a bound repres-
sor R acts via the short-range repression mechanism.
We describe the topology of regulatory network by

assigning the elements of T matrix into two categories:
‘activation’ (positive parameter values) and ‘repression’
(negative parameter values). The predicted topology cor-
responds to categories containing most of the parameter
values (Table 1). The main features of the gap gene net-
work topology are in agreement with previous modeling
results and data from literature [14]. Bcd and Cad acti-
vate zygotic gap gene expression in a majority of cir-
cuits. Genes hb, Kr, kni, and gt exhibit autoactivation.
Third, the reciprocal interactions between the trunk gap
genes Kr, hb, kni and gt are repressive. An exception is
activation of hb by Gt and Kr. Tll represses Kr and gt,
and acts as activator of hb and repressor of kni in a

majority of networks. For a majority of parameter sets
Hkb represses hb, Kr and gt, but acts as kni activator in
a half of networks.

Parameter identifiability
For further studies we selected one of the parameter sets
based on its best visual coincidence with experimental
data and low rms value equal to 25.18. In this network
(Table 2) Kr is activated by Bcd and slightly repressed
by Hb. Cad activates hb, Kr, gt, but slightly represses
kni. Tll activates hb and represses all other trunk gap
genes. Hkb acts as a repressor. TFs Hb, Kr, Gt and Tll
have high cooperativity constants ω, close or equal to 5.
On the other hand, Bcd and Cad received low coopera-
tivity values (close to 1) together with Kni and Hkb.
Affinity binding constants K for a TF’s strongest sites
vary by three orders of magnitude between 0.0001347
for Hkb and 0.049862 for Kni.
To understand how reliable our model is we per-

formed the identifiability analysis of the model para-
meters estimated by fitting to experimental data.
We decide about the sensitivity of the model solution

to parameter changes by calculating the confidence inter-
vals for the estimated parameter values (see Methods).
This calculation is performed under the assumption that
error in data is normally distributed. The error in the
gene expression data almost linearly increases with the
mean concentration, as it happens for the Poisson distri-
bution. We apply the variance-stabilizing transform
y =

√
x to both data and model solution in order to make

the error independent of the mean. The parameter esti-
mates found for original objective functional turned out
to be also the minimizers for the transformed one.
The predicted topology of regulatory network is based

on the sign of the T matrix elements. We constructed
confidence intervals for the parameter set from Table 2
in the vicinity of the model solution. Some values of
regulatory parameters are small, and it is necessary to
inspect the significance of the values or their signs. We
classify parameters as non-identifiable if their confidence
interval includes both positive and negative values and
hence contains zero. It can be seen in Figure 3 that the
non-identifiable regulatory parameters are autoregulation
of Kr and the regulation of Hb by Tll, which means that
we cannot make significant conclusions about these inter-
actions. The regulatory parameters which involve Hkb as a
repressor have large confidence interval. The same is true
for the regulatory parameter which characterizes the
action of Gt on tll. The analysis shows good identifiability
of all other regulatory parameters. Therefore, the identifia-
bility analysis sustains the gene network topology deduced
from classification of parameter values only.
The confidence intervals for thermodynamic para-

meters are given in Table 3. For most of these parameters

Figure 2 Box-and whisker plot of rms values obtained by fitting to
biological data in the cross-validation test and by fitting to random
dataset.

Table 1 Prediction of network topology based on
classification of T matrix elements

Name hb Kr gt kni bcd cad tll hkb

hb (11,0) (1,10) (3,8) (0,11) (11,0) (8,3) (7,4) (3,8)

Kr (9,2) (10,1) (0,11) (1,10) (4,7) (8,3) (0,11) (1,10)

gt (1,10) (0,11) (11,0) (1,10) (9,2) (6,5) (1,10) (4,7)

kni (0,11) (0,11) (0,11) (11,0) (11,0) (8,3) (4,7) (5,6)

Numbers in cell define in how many networks a given interaction was
classified as activation or repression. Columns correspond to TFs, rows to
target genes.
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the confidence intervals are small. The exceptions are
cooperativity constants ω for Kr, Tll and Hkb, which
have very large confidence intervals.
The confidence intervals provide the full information

about the parameter estimates only in case of parameter
independency, otherwise the intervals are overestimated.
Moreover, strong correlation between parameters may
lead to their non-identifiability, because a change in one
parameter value can be compensated by the appropriate
changes of another parameters and, hence, does not sig-
nificantly influence the solution. It was reported that
parameters in the thermodynamic models, for example,
affinity constants and cooperativity constants, may be
correlated [22]. Because of that we investigated the
dependencies between parameters using the collinearity
analysis of the sensitivity matrix. This method allows to
reveal correlated and hence non-identifiable subsets of
parameters.

The sensitivity matrix was analyzed in the vicinity of a
point in the parameter space corresponding to the opti-
mal model solution, as described in Methods. The colli-
nearity index gk (3) was computed for all the subsets of
dimension k of the parameter set with the threshold
value fixed at 4. For k = 3, this threshold value corre-
sponded to approximately 90% pairwise Pearson correla-
tion between columns of the sensitivity matrix. We
identified poorly identifiable parameters by finding 2-
and 3-dimensional subsets with the collinearity index
exceeding the threshold value (Table 4). It turned out
that almost all parameter combinations in these subsets
involve parameters defined as non-identifiable by
exploration of the confidence intervals, namely regula-
tory parameter TKK for Kr autoactivation, regulatory
parameter TKJ, which involves Hkb as a repressor and
Kr as a traget gene, or cooperativity constant ωHkb.The
correlation between parameters in this approach is

Table 2 The parameter estimates for a representative network

Name hb Kr gt kni bed cad til hkb

hb 2571.86 -10.96 472.97 -703.89 3821.42 1232.89 824.14* -5487.58

Kr 136.22 222.92* -311.29 -60.24 33.35 9084.28* -3388.59 -993.95*

gt -1528.17 -4250.83 8310.29 -1513.01 918.23 2272.27 -3612.94 -1208.58

kni -3946.83 -2424.43 -3399.80 8973.61 5232.66 -11.30 -5126.47 -9175.97

K 0.005731 0.004891 0.036382 0.049862 0.008036 0.005595* 0.000223 0.001347

uj 5.000000 4.958060 5.000000 1.000053 1.000012 1.000001* 4.565639 1.132316*

Columns correspond to TFs, rows to target genes. K and ω are affinity and cooperativity constants respectively. Poorly identifiable interactions are marked with *

Figure 3 95% confidence intervals for estimates of the T
matrix elements of a representative network. The parameter
estimates are labeled by single-letter notations of genes: hb(H), Kr(K),
gt(G), kni(N), bcd(B), cad(C), tll(T), hkb(J). The first letter corresponds
to the target gene (e.g., HT stands for THT). HT has the largest
interval and the interval for KK crosses the zero axis.

Table 3 Estimates and 95% confidence intervals for
affinity and cooperativity constants K and ω in a
representative network.”

Parameter Value a b

KH 0.005731 5.663804e-03 5.798196e-03

KK 0.004891 4.705545e-03 5.076455e-03

KG 0.036382 3.604491e-02 3.671909e-02

KN 0.049862 4.933258e-02 5.039142e-02

KB 0.008036 7.944617e-03 8.127383e-03

KC 0.005595 5.547746e-03 5.642254e-03

KT 0.000223 2.106789e-04 2.353211e-04

KJ 0.001347 1.180521e-03 1.513479e-03

ωH 5.000000 4.829196e+00 5.170804e+00

ωK 4.958060 -4.610752e+00 1.452687e+01

ωG 5.000000 4.499104e+00 5.500896e+00

ωN 1.000053 7.967040e-01 1.203402e+00

ωB 1.000012 9.202935e-01 1.079730e+00

ωC 1.000001 9.090420e-01 1.090960e+00

ωT 4.565639 7.928902e-02 9.051989e+00

ωJ 1.132316 -2.311281e+01 2.537744e+01

Left and right interval borders are presented in columns marked “a” and “b”
respectively.
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related to large confidence intervals of parameter esti-
mates. For example, very large confidence interval for
both parameters THT and ωHkb can be explained by 52%
correlation between these parameters. In the same way
93% correlation between TKK and TKJ explains large
confidence intervals for these parameters.
It should be noted that the gene network topology

revealed in this work is to a large extent in agreement with
experimental evidences [14], however several disparities
exist. In our model Bcd activates Kr in some networks and
represses in the others. It was shown that in bcd mutant
mothers Kr expression is not reduced but expands ante-
riorly [23]. This fact leads to proposal that high concentra-
tions of Bcd repress Kr [23,24], however this effect was
later explained by the absence of the anterior gt and hb
domains [25]. The activating effect of Bcd on Kr is sup-
ported by the fact that Kr expression in reporter con-
structs is activated by Bcd [26,27]. The finding that Kr is
still expressed in embryos from bcd mutant mothers has
been explained by general transcription factor activation
[28] or low levels of Hb [24,29]. Our analysis does not
allow us to make the unambiguous interpretation of the
mechanisms of Hkb, Tll and Cad action as these TFs
repress and activate target genes in much the same num-
ber of networks. It is believed that high concentrations of
Cad at the posterior of the embryo activate gap genes.
However at about 10 - 15 minutes before gastrulation Cad
expression domain refines into a narrow posterior stripe
[2]. The posterior hb domain is completely absent in tll
mutants [30,31], that suggests activation of posterior hb by
Tll. Some data indicates that Hkb does repress hb, Kr and
gt. For example, in hkb mutant embryos the posterior hb
domain is unable to retract from the posterior pole [32].
Besides, in embryos mutant for the maternal gene vasa
(vas), tll and hkb the Kr domain expands further posterior
than in those mutant for vas and tll alone [33]. Finally, in

embryos mutant for tll the posterior domain of gt expands
less to the posterior pole that in tll;hkb double mutants
[34]. An explanation for the model failure to provide
unambiguous prediction of the mechanism of Cad, Tll and
Hkb action can be found in our analysis of parameter
identifiability. This analysis showed that many parameters
defining gap gene regulation by Hkb, Cad and Tll are non-
identifiable (see Table 3 Table 4 and Figure 3) and there-
fore we cannot draw any conclusion about these
interactions.
Prediction of gap expression in Kr mutants and reporter
constructs
We use parameters estimated from wild-type expression
data to predict in silico gap gene expression patterns in
Kr mutants and reporter constructs.
To simulate Kr null mutants we set the maximum

synthesis rates RK
u and RK

v for Kr to zero and fed the
concentration profiles of TFs from mutant embryos to
the model. Null mutation in Kr leads to significant
decrease in gap gene expression levels in cycle 14A.
Also, the posterior Gt domain exhibits a large shift, and
positions of posterior Gt and Kni domains overlap [17].
Our model reproduces these features correctly: posterior
Gt domain shifts anteriorly and coincides with abdom-
inal Kni domain and the expression levels of gap genes
hb, gt, and kni are reduced (Figure 4).
To model gap gene expression driven by reporter con-

structs we take as input only those TFBS that overlap
with CRE contained in a reporter. The CRE coordinates
were taken from RedFly database [35]. The following
reporter constructs were used: gt_(-3), Kr_CD1,Kr_730,
kni_223+64 and kni_kd . The gt_(-3) construct contains
CRE that drives the reporter gene expression in the gt
posterior domain, kni_kd contains CRE that reproduces
kni posterior expression and both Kr_CD1 and Kr_730
are expressed in the central Kr domain [26,36,35]. The
kni_223+64 construct contains CRE that conducts the
posterior kni expression [37]. As is evident from Figure 5
the model is able to correctly predict the spatial features
of expression in all constructs: the positions of predicted
expression patterns coincide well with the positions of
expression domains in constructs, as well as with the
positions of corresponding gap gene endogenous
domains. It should also be noted that enzymatic qualita-
tive method used for staining precludes the comparison
of expression levels predicted in silico and driven by
constructs.
These results convincingly demonstrate that our

model is able to correctly predict expression patterns in
null mutants and reporter constructs from fits to wild-
type data only. This provides an independent proof of
model correctness and opens a way for its application
for deciphering the mechanisms of transcriptional regu-
lation and gene expression, as will be discussed below.

Table 4 Two- and three-dimensional subsets of T-matrix
elements with collinearity indices higher than 4

Parameter combinations Collinearity index

TKK TKJ 4.08

THT ωJ 1.47

TKC TKJ ωC 7.86

TKK TKC ωC 7.17

TKC TKJ KC 6.61

TKK TKC KC 6.13

TKJ KC ωC 5.81

TKK TKC TKJ 5.58

TKK TKJ KC 4.88

TKK TKJ ωC 4.85

The collinearity index for the parameter combination THT and ωHkb does not
exceed threshold, however these parameters show high correlation (Pearson
correlation coefficient 52%) that explains their large 95% confidence intervals.
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Contribution of individual TFBS to gap gene expression
Functional genomics studies of animal regulatory
regions lead to the hypothesis that transcription factors
bind to a majority of genes over a quantitative series of
DNA occupancy levels and that the weak regulatory
interactions may be of biological significance [38]. Here
we use our model to corroborate this idea. Specifically
we tried to find the answer on three questions. Are
TFBS of small functional impact still important for the
model output? Does the correlation between the func-
tional significance of TFBS and its binding affinity exist?
Are functional important sites dispersed through regula-
tory region or predominately located within CREs?
To estimate the functional impact of an individual

TFBS, i.e. its influence on the overall quality of model
output, we define the regulatory weight (RW) of TFBS
wr as

wr = (RSSref − RSSmut)/RSSref ,

where RSSref is the residual sum of squares error
between the wild type expression data and the model solu-
tion for the full set of annotated sites, and RSSmut is the
same quantity calculated with the site of interest excluded.
We have calculated the RW for each annotated site and

for each gap gene regulatory region. In bioinformatics
PWM models are generally used to calculate the BS affi-
nity. We found that the RWs of TFBS show very weak
correlation with their PWM score (Spearman’s rank corre-
lation coefficient r = 0.15, P = 3.5 × 10−6; Pearson correla-
tion coefficient r = 0.17, P = 2.7 × 10 −7). This suggests
that the influence of a TFBS on the phenotype is to a great
extent explained not by the binding strength per se but by
the way the binding sites are involved in the gene regula-
tory network.

Figure 4 In silico predictions of gap gene expression patterns in Kr− mutants. Parameters were fitted using wild type data only. The
model correctly reproduces the characteristic features of gap gene expression in mutants, namely the decrease of gap gene expression levels
and the anterior shift of gt domain.
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In Figure 6 we plot the RW of TFBS relative to their
position in a regulatory region. Some sites overlap with
the reporter construct CREs, while others do not. A
number of sites from both these categories have high
impact on the model solution, however the majority of
sites have relatively low individual impact.

Consequently, we arranged the sites in the order of
increasing RWs and investigated how the removal of a
different number of sites with the lowest RW influences
the quality of model solution, which we evaluated by
calculating the relative RSS score. As it is evident from
Figure 7 the removal of as little as 10 TFBS with

Figure 5 In silico prediction of gap gene expression patterns in reporter constructs. The construct gt_(-3) contains CRE that drives the
reporter gene expression in the gt posterior domain, kni_kd contains CRE that reproduces kni posterior expression, both Kr_730 and Kr_CD1 are
expressed in the Kr central domain. Both kni_223+64 and kni_kd constructs contain CRE that conducts the posterior kni expression [37].
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smallest RW results in 10% corruption of the model
output. As a number of removed sites increases the
model quality rapidly deteriorates. This in silico experi-
ment demonstrates that sites with low RW are also
important for the model output.
To study the spatial arrangement of the functionally

important sites we constructed a new set of sites by fil-
tering out the sites outside CREs (Table 5). We use this
set and parameters obtained by fitting to the full set of
TFBS to simulate gap gene expression patterns. As it is

evident from Figure 8 the exclusion of sites located out-
side CREs worsens the quality of model output (rms =
34.28 as opposed to rms = 28.42 with full set of sites),
but does not lead to the full pattern corruption.
By visual examination of the plot (Figure 6) we

selected the threshold value wr equal to 0.005 and
further analyzed the sites with wr exceeding this thresh-
old. The hb regulatory region contains 11 such sites for
Hb and Bcd (see Table S1 in Additional File 1). Two
CREs are identified in this region. The hb anterior

Figure 6 Plot of the regulatory weights of TFBS relative to their position in a regulatory region. The binding sites for different TF are
shown in different color. The transcription start site is at zero position. Results for hb regulatory region are presented relative to TSS of the
longest transcript. Sites within CRE are shown as triangles, sites outside CRE are drawn with circles.
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activator that is both necessary and sufficient for ante-
rior hb expression is located about 200 bp upstream of
the P2 promoter [39,40] and contains several weak and
strong binding sites for Bcd [39,41] and Hb [42]. Late
zygotic expression in the posterior cap and stripe, as
well as PS4 is driven from both P1 and P2 promoters
under control of the hb upstream enhancer located
about 3 kb upstream of the P1 promoter [43,44]. This
element is regulated by Hb and has several predicted Tll
and Kr TFBS [44,43]. We found that 2 and 4 of 11 sites
fall within anterior activator and upstream enhancer
correspondingly (see Table S1 in Additional file 1).
Interestingly both of the anterior activator sites overlap
with strong Bcd sites annotated and verified by DNase I
footprinting (Table 6).
The Kr regulatory region contains 10 sites for Gt, Kni,

Tll and Cad with RW exceeding the theshold. All these
sites fall within different CREs in the region (see Table

S2 of Additional File 1). Both Gt and Tll sites within the
Kr_730 CRE overlap with annotated DNase I footprint
sites (Table 6). The Kr expression in the central domain
is produced by Kr_730 or Kr_CD1 elements
[26,27,45,46].
We identified 28 sites with RW exceeding the thresh-

old for Bcd, Hb, Kr, Kni and Gt in the gt regulatory
region. The (gt_(-1)) CRE drives gt expression in both
anterior and posterior domains, while three other CREs
reproduce reporter gene expression in the posterior (gt_
(-3)) and different anterior domains (gt_(-6), gt_(-10))
[47,36,48]. Only 5 of identifed sites are located outside
of CREs (see Table S3 of Additional file 1).
The kni regulatory region contains several CREs: kni_

(-5) produces anterioventral expresssion, kni_223+64
drives expression in the abdominal region and consists
of two discrete sub-elements, kni_(+1) produces expres-
sion in both regions. In kni_223+64, the 223-bp sub-ele-
ment contains one Hb and six Cad TFBS and drives
Cad-dependent reporter expression, while the 64-bp
sub-element has six binding sites for Bcd and mediates
Bcd-dependent expression in the anterior part of the
embryo. Interestingly, the anterior expression of the 64-
bp element becomes repressed when Hb binds to the
223-bp element [37]. We found 19 sites with RW
exceeding threshold for Bcd, Hb, Cad, Kr, Kni and Tll
in kni regulatory region (see Table S4 of Additional file
1). Only 6 of these sites are located outside the kni
CREs. It is important to note that two sites within kni_
(223) sub-element overlap with Cad annotated sites con-
firmed by DNase I footprint assays (Table 6).

Conclusions
To model the regulatory mechanisms underlying the
formation of gap gene expression domains we followed
the formalism proposed in [49] and developed a two-
layer model, in which firstly the activation level of each
target gene in each embryo nucleus and at each time
moment was calculated and at the next step mRNA and
protein concentrations for this gene were computed. For
calculation of the activation level, we adapted and modi-
fied the thermodynamic approach in the form proposed
in [4]. We calculate mRNA and protein concentrations
by means of differential equations. This innovative
approach allowed us to connect the DNA-level informa-
tion to the system dynamics and thus to overcome a
serious limitation of the pure thermodynamic-based
models which are static by their nature.
We further modified the method proposed in [49] by

replacing the regulatory parameters aA and bR by the
genetic inter-connectivity matrix Tab and introduced the
delay parameter τ in our differential equations to
account for the average time between events of tran-
scription initiation and corresponding protein synthesis.

Figure 7 Impact of site removal on the quality of model
output. The sites were removed in increasing order of their
regulatory weights.

Table 5 Total number of sites used in the model

hb Kr Gt kni

Hb 88(23) 82 (64) 80(53) 62(50)

Kr 18(8) 10(7) 34(26) 11(7)

Gt 22(5) 24(21) 32(23) 14(11)

Kni 22(7) 16 (13) 29(21) 13(8)

Bcd 31(12) 14 (12) 45(34) 22(19)

Cad 28 (13) 22(20) 30(23) 17(13)

Tll 18(5) 20 (16) 23 (19) 18 (14)

Hkb 14(2) 4(4) 20 (13) 6 (13)

Columns correspond to target genes, rows to TFs. The number of sites
present in known CREs is given in brackets.
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This makes it possible to translate the elementary regu-
latory events at the DNA level to the level of gene
interactions.
Our modeling approach has clear limitations. The pro-

moter state is calculated by using methods of statistical
thermodynamics, while the actual expression products
result from this promotor state following the dynamics
prescribed by the differential equations. This combina-
tion of intrinsically static and dynamical methods in one
model is only consistent when there is an evident separa-
tion of the timescales of corresponding processes, the
equilibration process of TF-DNA binding in the nucleus
and the production process of transcribed mRNA and
translated protein molecules. Taking into account the
complex nature of transcription in eukaryotes, we believe
that this assumption is a reasonable approximation for

Drosophila genes. One indication for the length of tran-
scription time specific for gap genes is in the fact that the
gap gene expression products appear only in late cleavage
cycles during the early Drosophila development partially
because early cycles are too short for appropriate mRNA
maturation [2]. On the other hand, the assumption about
equilibrium states of the enhancer binding configurations
is also only an approximation. There are clear data show-
ing that such processes as nonspecific binding of TF to
DNA and the facilitated diffusion of nonspecifically
bound TF to a specific site play their role [50]. Despite
the thermodynamic approach proved its efficiency in
multiple applications, its proper extension for modeling
more dynamic binding configurations seems promising.
The model takes as input the affinities of predicted

TFBS together with spatial TF concentration data. The

Figure 8 Model solution for sites within CREs as compared to gene expression data from the FlyEx database. The parameters were
obtained by fitting to the full set of TFBS.

Table 6 Sites with regulatory the weight wr > 0

Gene Coordinates TF word wr RedFly ID RedFly coord. RedFly sequence

Kr 21110739..49 Tll AGAAGTCAAA 0.008 TF000549 21110733..51 GCAATTAAGAAGTCAAATT

Kr 21110829..41 Gt TTCTTGCGTCAT 0.038 TF000554 21110829..44 ATTCTTGCGTCATAAA

Kr 21112818..30 Gt ATTTTACGTAAC 0.010 TF000555 21112818..33 AATTTTACGTAACATT

kni 20690608.. 18 Cad AACCATAAAA 0.018 TF000807 20690608..21 TAACCATAAAAATT

kni 20690581..91 Cad AGTCATAAAG 0.015 TF000806 20690584..94 TCATAAAGTCA

hb 4520486..93 Bcd GGATTAG 0.021 TF001047 4520483..96 TTCTGGATTAGAGC

hb 4520381..88 Bcd GGATTAG 0.021 TF001045 4520377..89 TCAAGGGATTAGA

Kozlov et al. BMC Genomics 2014, 15(Suppl 12):S6
http://www.biomedcentral.com/1471-2164/15/S12/S6

Page 12 of 17



output of the model are spatial and temporal patterns of
four gap genes hb, Kr, gt, and kni in the form of protein
concentration profiles over about one and a half hour of
development.
We used four-fold cross validation test and fitting to

random dataset to validate the model and proved its suf-
ficiency in data description. The identifiability analysis
showed that most model parameters except of some
parameters describing regulation by Tll, Hkb and Cad
are well identifiable.
We demonstrated that our model is able to correctly

predict expression patterns in Kr null mutants and five dif-
ferent reporter constructs from fits to wild-type data only.
This provides an independent proof of model correctness
and opens a way for its application for deciphering the
mechanisms of transcriptional regulation and gene
expression.
We used our model in two ways. Firstly, at the level of

gene interactions we reconstructed the gap gene net-
work topology and demonstrated that the basic features
of this topology are in agreement with previous model-
ing results and data from literature [14].
Secondly, at the DNA level we studied the impact of

individual TFBS on the model output. We measured
this impact by calculating the site regulatory weight as a
normalized difference between the residual sum of
squares error for the set of all annotated sites and the
set, from which the site of interest was left out. We
found that the regulatory weights of TFBS show very
weak correlation with their PWM score. This suggests
that the influence of a TFBS on the phenotype is to a
great extent explained not by the binding strength per
se but by the way the binding sites are involved in the
gene regulatory network. We also demonstrated that
sites with low regulatory weight are important for the
model output. This result corroborates the hypothesis
about the biological significance of weak regulatory
interactions [38]. Our in silico experiments also showed
that functional important site are not exclusively located
in CREs but are rather dispersed through regulatory
region. It is of importance that some of the sites with
high functional impact in hb, Kr and kni regulatory
regions coincide with strong sites annotated and verified
in Dnase I footprint assays.

Methods
Transcription factor and gene expression data
We used protein concentrations of transcription factors
(referred to as TF in the text) Bcd, Cad, Hb, Gt, Kr,
Kni, Tll and Hkb from FlyEx database (http://urchin.
spbcas.ru, [5]) as inputs to the model. This database
contains data on segmentation gene expression at the
protein level and at discrete time points of cycle 13 and
eight time classes (T1-T8) of cycle 14A. To estimate

unknown parameters we used the expression patterns of
gap genes hb, Kr, kni and gt from the same database.
Model predictions were tested using gap gene expres-
sion patterns from Kr− embryos obtained from Kr1 loss-
of-function allele [17], as well as reporter constructs
driving reporter gene expression from the Kr_CD1,
Kr_730, gt_(-3), kni_kd and kni_223+64 CREs (see RED-
Fly database [35]).

Sequence data
For each of four gap genes hb, Kr, kni and gt we pre-
dicted binding sites for Bcd, Cad, Hb, Gt, Kr, Kni, Tll and
Hkb in the region spanning 12 Kbp upstream and 6 Kbp
downstream of the transcription start site. Transcription
factor binding sites were predicted with position weight
matrices (PWMs) [51], which were used to calculate the
log-odds score of a site [52]. The PWMs were described
in [53] and can be found at http://www.autosome.ru/
iDMMPMM/ (see also the Additional file 1). The PWM
thresholds were selected as in [54].
We took in the model the TFBS overlaping with the

DNase I accessibility regions, which correspond to open
chromatin. It was recently shown that in open chroma-
tin regions predictions of transcription factor binding
sites based on DNA sequence and in vitro protein-DNA
affinities alone achieve good correlation with experimen-
tal measurements of in vivo binding [55]. The result of
TFBS prediction, as well as positions of the DNase I
accessibility regions and known CREs from the REDFly
database are presented for Kr gene in Figure 9 for all
other genes in Additional File 1. The total number of
TFBS for each TF and each gap gene considered in the
model is shown in Table 5.

The model
To model the regulatory mechanisms underlying the
formation of gap gene expression domains we adapted
the formalism proposed in [49] and developed a two-
layer model, in which firstly the promoter occupancy
(activation level) of each target gene in each embryo
nucleus and at each time moment was calculated. The
second layer of the model is based on differential equa-
tions and considers both mRNA and protein synthesis.
For calculation of promoter occupancy we adapted the

thermodynamic approach in the form proposed in [4]:

Ea
i (t) =

∑
σ Wa

i (σ , t)Qa(σ )∑
σ Wa

i (σ , t)Qa(σ )+
∑

σ Wa
i (σ , t)

,

where s is a molecular configuration of the regulatory
region for gene a, Qa(s) is the statistical weight of the
interaction between TFs and bound basal transcriptional
machinery (BTM), and Wa

i (σ , t) is the statistical weight
of configuration s for nucleus-time coordinate (i, t),
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that depends on the concentration vb
i (t) of all TFs regu-

lating gene a in nucleus i at time moment t (see [4] for
details).
When cooperative binding is absent, we can write

the statistical weight of a configuration s as

W(σ ) =
∏

i

q(Si)
σi

, where σi takes values 0 or 1 depend-

ing on whether site Si is occupied by its TF in the con-
figuration or not. q(Si) is the strength of site i
computed as

q(S) = K(Smax)vTF exp[LLR(S) − LLR(Smax)]

where vTF is TF concentration, LLR( ) is the log-odd
score of a site, computed based on the known PWM of
the TF and the background nucleotide distribution, Smax

is the strongest TFBS and K(Smax) is its binding affinity
constant.
In presence of cooperative binding, the statistical

weight of a configuration is multiplied by a factor ω.

W(σ ) =
∏

i

q(Si)
σi

∏
(i,j)|i<j

ωij(dij)
σiσj

where ωij(dij) denotes the contribution to statistical
weight due to interaction between the TFs bound to
sites Si and Sj, ωij is cooperativity constant, d represents
the distance between the TF binding sites.
The statistical weight of the interaction between TF

and bound BTM Q(S) is the product of the terms corre-
sponding to each bound TF in the configuration. He
and coathors [4] assumed that each TF is either an acti-
vator or repressor and proposed and “short-range”
mechanism for repression based on the existing experi-
mental work on a few well-characterized or synthetic
CREs. A bound activator A interacts with the bound
BTM with statistical weight aA >1.

We assume that a bound repressor R does not directly
interact with the BTM, but acts via short-range repression
mechanism presumably making DNA in its “neighbor-
hood” (defined by a range parameter dR) inaccessible to
binding by any other TF. This configuration with statistical
weight scaled by a factor of bR competes with those with
the chromatin accessible to activators, thus effectively
reducing the occupancy of activators. The parameter bR
represents the strength of the repressor and may be inter-
preted as the equilibrium constant of the reaction that
changes the chromatin state from accessible to inaccessi-
ble. There is no repression effect when bR is close to 0
while all activator sites are shut down in the neighborhood
in the case of bR close to ∞.
In our model we consider that a TF can be activator for

one target gene and repressor for another. Therefore we
replaced the regulatory parameters aA and bR by the
genetic inter-connectivity matrix Tab, which characterizes
the action of TF b on gene a. The size of the matrix is Ng

× (Ng + Ne), where Ng is the number of gap genes in the
model (Ng = 4) and Ne is the number of external regula-
tory inputs (bcd, cad, tll and hkb genes, which are not
regulated by gap genes, Ne = 4). Consequently, bR is trans-
lated into negative components of the Tab matrix and posi-
tive ones become a A in order to calculate the activation
level. This is done for each target gene in each nucleus
and for each integration time step.
In the simplest approximation, the target gene expres-

sion level va
i (t) is proportional to its activation level Eα

i (t).
We introduced the delay parameter τ to account for the
average time between events of transcription initiation
and corresponding protein synthesis, as the model is
fitted to gene expression data at the protein level.
The second layer of the model is based on differential

equations and considers both mRNA and protein synthesis.
The equation for mRNA concentration ua

i (t) of target gene

Figure 9 Prediction of binding sites in Kr’s regulatory region. The panels present predicted binding sites for eight TFs. The light-gray boxes
denote the DNase accessibility regions, and the dark-gray bars mark positions of the RedFly CREs that drive gene expression in the blastoderm.
The transcribed region of the locus is marked in red. Only the sites overlapping with the DNase accessibility regions were included in the model.
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a in nucleus i includes production, diffusion and decay
terms, and the equation for protein concentration va

i (t)
describes protein synthesis, diffusion and degradation:

dua
i /dt = Ra

uEa
i (t) + Da

u(n)[(ua
i−1 − ua

i ) + (ua
i+1 − ua

i )] − λa
uua

i , (1)

dva
i /dt = Ra

vua
i (t − τ a

v ) + Da
v(n)[(va

i−1 − va
i ) + (va

i+1 − va
i )] − λa

vv
a
i , (2)

where n is the cleavage cycle number, Ra
v and Ra

u are
maximum synthesis rates,Da

v, Da
u are the diffusion coeffi-

cients, and λa
v and λa

u are decay rates for protein and
mRNA of gene a. The decay rates are related to the
mRNA and protein half-lives τ a

1/2 by λa = ln 2/τ a
1/2. The

diffusion term was added to the equation for mRNA to
smooth the resulting model output as it was too “spiky”
without this term. The parameter τ a

v is the delay parameter.
We model the dynamics of gap gene expression in

cleavage cycles 13 and 14A and in one dimension along
the central midline of the embryo. The cycle 14A is
divided into eight temporal classes of 6.5 min each. The
number of nuclei along the A-P axis is doubled when
going from cycle 13 to 14A.
Model fitting
The model was fitted to the protein concentration data
for gap genes hb, Kr, gt, and kni from the FlyEx data-
base. Parameter values were optimized by the differen-
tial evolution (DEEP) method, described in [18,19].
The total number of optimized parameters in model

(1)-(2) is 68. This includes 32 regulatory parameters Tab,
4 basal machinery constants, 8 binding affinity con-
stants, 8 cooperativity constants, 4 range parameters for
short range repression, 4 delay parameters and 8 decay
rates. The diffusion constants and synthesis rates were
fixed during the optimization.
We used the residual sum of squared differences

between the model output and data (RSS) as the main
objective function.

RSS =
∑

∀g,n,t:∃datag
n(t)

(
vg

n(t) − datag
n(t)

)2
rms =

√
RSS

D

where g, n and t are gene, nucleus and time point
respectively and D is the number of available experi-
mental observations.
As was explained in [20], RSS can lead to counter-

intuitive evaluations of the quality of fit and, therefore,
we used the weighted Pattern Generation Potential pro-
posed in this work as the second objective function:

wPGP = 0.5 + 0.5 ∗ (penalty − reward)

where

reward =

∑
i

ri ∗ min(ri, pi)∑
i

ri ∗ ri

and

penalty =

∑
i

(rmax − ri) ∗ |pi − ri|∑
i

(rmax − ri) ∗ ∑
i

(rmax − ri)

were pi and ri are respectively predicted and experi-
mentally observed expression in nucleus i, rmax is the
maximum level of experimentally observed expression.
The third objective function penalizes the squared

values of the regulatory parameters Tab:

Penalty =
∑
∀a,b

(Tab)
2

This function limits the growth of regulatory para-
meters, which have very wide ranges.
Consequently, the combined objective function is

defined by:

Error = RSS + 5 ∗ 104 ∗ wPGP + 0.001 ∗ Penalty,

where the weights were obtained experimentally.

Parameter identifiability
The parameter identifiability analysis was performed as
described in [17]. The analysis finds non-identifiable
parameters by calculating asymptotic confidence inter-
vals [56-58]. The (1 - a)-confidence intervals for the
parameter estimates θ are calculated in the vicinity of
model solution as follows:(

θ − θ̂
)T

J(θ)TJ(θ)
(
θ − θ̂

) ≤ m

N − m
S(θ̂)Fα,m.N−m

where the Jacobian J(θ) = ∂RSS(θ)/∂θ is the so called
sensitivity matrix of size N × m, Fa, m,N−m is an a-quantile
of F-distribution with m and N - m degrees of freedom.
The confidence intervals of smaller size correspond to

more reliable parameter estimates. In the case when the
sign of the parameter estimate provides the most impor-
tant feature, the estimate is assumed identifiable if the
confidence interval is bounded away from zero.
The confidence intervals are overestimated for

strongly correlated parameters. Correlation of para-
meters leads to computational errors since the sensitiv-
ity matrix is ill-conditioned.
Another method to study interrelations between para-

meters is the collinearity analysis [59]. The method is
applied to reveal the so-called near collinear columns of
the sensitivity matrix, namely the matrix of partial deri-
vatives of the model solution with respect to the para-
meter vector. Identifiability of a parameter subset is
estimated by collinearity index defined as

γk =
1√
λk

, (3)
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here lk is the minimal eigenvalue of the submatrix of
the Fisher information matrix. High values of collinear-
ity index mean that the subset of parameters is poorly
identifiable because at least two parameters in the subset
are interrelated. More details on the methods can be
found in [17].

Additional material

Additional file 1: Supporting information. Positional weight matrices
used to predict TFBS, positions of predicted binding sites in the
regulatory regions of gap genes and lists of the binding sites with
regulatory weight.
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