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The role of regulatory necrosis
in traumatic brain injury
Zhenyu Nie, Liming Tan, Jie Niu and Bing Wang*

Department of Neurosurgery, The Second Affiliated Hospital, University of South China, Hengyang,
China

Traumatic brain injury (TBI) is a major cause of death and disability in the

population worldwide, of which key injury mechanism involving the death

of nerve cells. Many recent studies have shown that regulatory necrosis

is involved in the pathological process of TBI which includes necroptosis,

pyroptosis, ferroptosis, parthanatos, and Cyclophilin D (CypD) mediated

necrosis. Therefore, targeting the signaling pathways involved in regulatory

necrosis may be an effective strategy to reduce the secondary injury after TBI.

Meanwhile, drugs or genes are used as interference factors in various types

of regulatory necrosis, so as to explore the potential treatment methods for

the secondary injury after TBI. This review summarizes the current progress

on regulatory necrosis in TBI.
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Introduction

Traumatic brain injury (TBI) is a common traumatic disease and a serious factor
causing death and disability in adults worldwide. Each year, more than 27 million
new TBI cases are diagnosed around the world, imposing a huge burden on society
and families (Jiang et al., 2019; Ponsford et al., 2022). TBI is a relatively complex
disease, which will lead to structural damage and functional defects through primary and
secondary injury mechanisms. Secondary injury occurs after primary injury, resulting
from a cascade of metabolic, cellular and molecular events, and will eventually lead to
brain cell death, tissue damage and atrophy (Ng and Lee, 2019). However, the cellular
pathophysiological changes occurring in brain after TBI are mainly based on four major
factors, namely excitotoxicity, cytokines, reactive oxygen species (ROS), and cell death
(Ladak et al., 2019). In recent years, more and more studies have shown that some cell
death is regulated by a certain kind of mechanism called regulatory necrosis, including
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necroptosis, pyroptosis, ferroptosis, parthanatos, and
Cyclophilin D (CypD) mediated cell necrosis (Galluzzi
et al., 2018). The details of regulatory necrosis in TBI and its
differences in various features are provided in Table 1.

Regulatory necrosis has been found in many diseases in
central nervous system, such as traumatic brain injury, spinal
cord injury, epilepsy, Alzheimer’s disease (AD), Parkinson’s
disease (PD), stroke, etc. (Liu et al., 2015; Sekerdag et al., 2018;
Weiland et al., 2019; Hu et al., 2020; Dionísio et al., 2021). In
Alzheimer’s disease, pTau can cause neuronal death by inducing
necroptosis (Dong et al., 2022), while introducing the gene
of amyloid precursor protein (App) can enhance necroptosis
(Pang et al., 2022). In PD, fibrillar alpha-synuclein promotes the
activation of neurotoxic astrocytes through RIP kinase signaling
pathway (Chou et al., 2021). This review focuses on the role and
the current studies of regulatory necrosis in the secondary injury
after TBI, which may provide new targets for the treatment of
craniocerebral injury.

The necroptosis involved in
traumatic brain injury

Necroptosis is induced by the combination of related
ligands with Tumor Necrosis Factor (TNF) family death domain
receptors, pattern recognition receptors, and virus sensors. It
is a regulated cell death mode independent of caspase activity,
which is mediated by mixed lineage kinase domain-like protein
(MLKL) by activating receptor interacting protein kinase 1
(RIPK1)/receptor interacting protein kinase 3 (RIPK3) (Galluzzi
et al., 2018). The process of necroptosis is characterized by cell
swelling and the loss of plasma membrane integrity (Holler et al.,
2000; Cho et al., 2009; Murphy et al., 2013; Grootjans et al., 2017;
Degterev et al., 2019).

Previous studies have reported that necroptosis is involved
in TBI (Liu et al., 2015; Yuan et al., 2019). Necroptosis
would occur after a controlled cortical impact (CCI) in mice.
RIPK3 is highly expressed in the hippocampus of CCI-TBI
mice. Knockout of RIPK3 gene can inhibit oxidative stress,
inflammation and apoptosis after TBI through AMPK signaling
pathway (Liu Z. et al., 2018). The mice with RIPK3 gene
knockout and RIPK1-deficient improved cognitive function
within 3 months after TBI, demonstrating that the loss of
RIPK1/RIPK3 could prevent progressive neuronal death and
improve cognitive memory function (Wehn et al., 2021). But
Wu et al. (2021) noted that the knockout of RIPK3 and
MLKL in CCI mice model indicates RIPK3 is a disease driver
independent of necroptosis mechanisms, while MLKL and the
drug therapy of necroptosis may have no clinical effect on
the patients with cerebral contusion. In PD animal model, the
knockout of RIPK3 and MLKL can reduce the degeneration of
dopaminergic neuron, improving the motion performance of

mice (Oñate et al., 2020). The contribution of necroptosis to TBI
needs to be further confirmed.

As the role of necroptosis in TBI has already been well
recognized, many relevant studies started their research on
the mechanisms that affected RIPK1/RIPK3/MLKL. Recently,
Carsten Culmsee et al. found that mice with the knockout of
tumor-suppressor cylindromatosis (CYLD) gene have relieved
nerve damage after TBI. As a key regulator of deubiquitinase,
cell proliferation and inflammation, the down-regulation of
CYLD can increase the ubiquitination of RIP1, inhibit the
formation of RIPK1/RIPK3 complex, and reduce necroptosis
to protect neuronal cells (Ganjam et al., 2018). The 2-
benzofuranyl-imidazoline (2-BFI) is an effective analgesic. In
recent studies, 2-BFI treatment could significantly improve the
neurological dysfunction and brain edema after TBI, of which
mechanism is to reduce the level of receptor interacting proteins
(RIPK1), (RIPK3), and MLKL (Ni et al., 2019). Other studies
have shown that TNF Alpha induced protein 3 (TNFAIP3, also
known as A20) can inhibit the synthesis of protein complexes
composed of RIPK1, RIPK3, and MLKL, and thus reducing
necroptosis in TBI, while Nec-1 and melatonin can reduce
necroptosis and inhibit HMGB1, RAGE and proinflammatory
cell factors in an A20 dependent manner (Bao et al., 2019).
When MLKL maps to the site of damaged membrane bubble,
it will recruit transport complex III (ESCRT-III) component
(Gong et al., 2017; Guo and Kaiser, 2017), including the
charged multivesicular body protein 4b (CHMP4B), which
can alleviate the cell membrane damage caused by p-MLKL
and the necroptosis level of microglia to a great extent. The
transcription factor FOXO1 enhances the transcription of
CHMP4B by binding to the promoter region in microglia. Stable
knockdown of FOXO1 can reduce the expression of CHMP4B,
thereby increasing the level of necroptosis after microglia
damage, and further reducing the pro-inflammatory effect of
microglia while improving the recovery of neural function
after TBI (Zhao et al., 2020). According to current studies,
the immediate-early gene (IEG) encoding the protein activity-
regulated cytoskeletal (Arc) is a brain-specific postsynaptic
density (PSD) protein. Arc can reduce the traumatic injury
(TNI) in cortical neurons by inhibiting necroptosis. The arc
silencing can activate the metabotropic glutamate receptor-
1 (mGluR1) -mediated ER stress-calcium overload pathway
and the RIP1-dependent necroptosis (Chen et al., 2020). As a
AMPAR antagonist, perampanel has recently been reported as
a neuroprotective factor in hemorrhagic and ischemic stroke
models, while Wang et al. found that perampanel can also act
as a protective factor in the TBI-in vitro model, reducing RIPK1
and RIPK3 expression and subsequently alleviating necroptosis
through the activation of Akt/GSK3β signaling (Chen et al.,
2021b).

In fact, studies have shown that hydrogen or hydrogen-
containing saline can modulate neuronal death. Hu et al.
(2022) found that hydrogen-rich saline inhibits necroptosis
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TABLE 1 Main morphological features, key regulators, inducers, and inhibitors of necroptosis, pyroptosis, ferroptosis, parthanatos, and CYPD-dependent necrosis.

Regulated
necrosis

Main morphological features Key regulators Inducers Inhibitors

Necroptosis Loss of cytoplasmic membrane integrity, secretion of DAMP;
swelling of cell bodies and organelles, chromatin fragmentation,
nucleus disintegration

RIPK1, RIPK3, RIP1,
RIP3, and MLKL

TNF-α,Fas, TRAIL, IFN,
TNFR, TLR, and
z-VAD-fmk

Nec-1, CYLD, 2-BFI, A20, CHMP4B, Arc,
Hydrogen-rich saline, Perampanel, and HT

Pyroptosis Cell swelling, cell membrane pore formation, release of bubble-like
protrusions; cell membrane rupture, release of cell contents, DNA
breakage; chromatin condensation, intact nuclei

NLRP3, ASC, Caspase-1,
AIM2, GSDMD, IL-1β,
and IL-18

ATP, LPS, PRR, HMGB1,
and HIF-1α

Ac-YVAD-CMK, Ac-FLTD-CMK, PGAM5, VX765,
JC124, NEK7, 2-BFI, ACE2, Dexmedetomidine,
Artesunate, Resveratrol, Rhein, CORM-3, H2, and
Ghrelin

Ferroptosis Cellular mitochondria shrink in size and become smaller, with
increased membrane density and reduced cristae. Insignificant
morphological changes in the nucleus

Fe, GPX4, ROS, GSH,
P53, and SLC7A11

Erastin, Erastin
derivatives, RSL3,
Glutamate, PEBP1, and
15LO

Ferrostatin-1, Liproxstatin-1,
Deferoxamine, Ferristatin II, Baicalein, Prokineticin-2,
Polydatin, Ruxolitinib, Tetrandrine, Melatonin, and
SIRT2

Parthanatos Loss of cell membrane integrity, intranuclear chromatin
condensation, DNA breakage, and production of large amounts of
DNA fragments; irreversible 1ψm dissipation, ATP and NADH
depletion

PARP-1, PAR, AIF, and
MIF

PAR polymer, AIFsol
(soluble AIF)

PARP-1 inhibitors, DPQ, GPI 6150, PJ34, INO-1001,
Ghrelin, TSG, OLA, and Iduna

CYPD-
dependent
necrosis

Mitochondrial membrane potential damage; mitochondrial
swelling, mitochondrial matrix expansion; massive intracellular
vacuoles, outer membrane rupture

CypD, p53, and mPTP CypD, VDAC (anion
channel)

CsA, NIM811, Resveratrol, SIRT1, and BDNF

TRAIL, TNF-related apoptosis-inducing ligand; IFN, interferon; TNFR1, TNF-receptor 1; TLR, toll-like receptors; A20, TNF-inducible protein 3; CHMP4B, multivesicular body protein 4b; Arc, activity-regulated cytoskeletal; Perampanel, an (AMPAR)
antagonist; HT, hypothermia treatment.
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and neuroinflammation based on the ROS/heme oxygenase-
1 (HO-1) signaling, reducing neuronal death after TBI. As a
research hotpot, Nec-1 is often used to verify the contribution of
necroptosis. For example, Nec-1 can alleviate brain tissue injury,
motor dysfunction and spatial learning impairment after CCI in
mice, and has an anti-inflammatory effect in acute brain injury
(You et al., 2008). Mu et al. (2021) found that Nec-1 can protect
neuronal cells and oligodendrocytes by inhibiting the nuclear
transposition of cellular AIF induced by the pro-apoptotic
protein called Bcl-2/adenovirus E1B 19-kDa interacting protein
3 (BNIP3). At the same time, changes in external environment
can also affect necroptosis. The hypothermia (HT) treatment
can significantly reduce the upregulation of RIPK-1 and protect
injured CNS from tissue damage and inflammation by targeting
necroptosis through TNF signaling (Liu et al., 2016; Zhang et al.,
2017) after TBI. The controlled decompression (CDC) surgery
can reduce brain injury, and Chen et al. (2021a) stated that
performing CDC for 2 or 3 h in vitro and for 20 or 30 min in vivo
can exert neuroprotective effects. CDC can inhibit neuronal
necroptosis through the TREK-1-mediated intracellular Ca2+

overload and the depression of RIPK3 activation. As indicated
by Nec-1, necroptosis can affect acute neuronal injury, and the
activation of RIPK1 and RIPK3 are both observed in the rat
model of liquid impact brain injury and MCAO model with TBI
(Liu et al., 2016; Ni et al., 2018). Interestingly, post-traumatic
hypothermia (33◦C) also reduces brain damage after stroke,
resulting in decreased levels of RIPK1, RIPK3, and MLKL (You
et al., 2008). Thus indicates that there may exist common target
for the treatment of TBI and stroke by improving necroptosis.
In conclusion, these studies have emphasized the potential
therapeutic significance of necroptosis related therapy for TBI.
The possible signal pathways of necroptosis involved in TBI are
summarized in Figure 1.

The pyroptosis involved in
traumatic brain injury

Pyroptosis is mediated by Gasdermin D (GSDMD),
the formation of plasma membrane pores as well as the
extracellular release of inflammatory cytokines. In typical
caspase-1 inflammatory pathway, caspase-1 is activated by
apoptosis related CARD containing spotted protein (ASC) or
pyridine domain 3 (NLRP3) in Nucleotide oligomerization
domain (NOD) like receptor family, and processed into
inflammatory cytokines such as IL-1β, IL-18 which can
finally induce the release of inflammatory factors through the
activation of GSDMD, resulting in cell death (Shi et al., 2017;
Hu et al., 2020; Irrera et al., 2020; Zhou et al., 2022).

Therefore, most studies have been designed to explore the
potential role of pyroptosis in TBI based on the regulation
of inflammasome, such as caspase-1, NLRP1, NLRP3, AIM2,
etc. Up to now, many of these studies have confirmed the

contribution of pyroptosis to TBI by targeting inflammasomes.
In the animal model of TBI, the caspase-1 plays a critical
role, of which inhibition can reduce the level of IL-1β, IL-18,
and GSDMD, and finally reduce the neuroinflammation and
neuronal damage after TBI (Liu W. et al., 2018). Blocking the
increasing level of phospho-Tau by IL-1R1−/− in cortex and
cerebellum suggests that inflammasome activation can drive
Tau phosphorylation, while the aberrantly phosphorylated Tau
may also contribute to neuronal IL-1β production and impaired
proteostasis in feed forward loops, leading to neuronal death
(Wu L. et al., 2022). The inflammasome plays a dominant role
in the development of neuroinflammation after TBI, as NLRP3-
GSDMD is dominant in the regulation of neuroinflammation
and neuropathology after TBI. The level of GSDMD and
N-GSDMD reach the peak 3 days after TBI, equivalent to the
level of NLRP3 inflammasome. After TBI, GSDMD is mainly
located in microglia cells, indicating that GSDMD may involve
in the polarization of microglia cells. GSDMD-KO can alleviate
the neuropathological changes (synaptic protein loss, microglia
activation, astrocyte increase, dendritic damage and neuronal
death) caused by TBI to a great extent (Du et al., 2022). The
inhibition of GSDMD is conducive to a better prognosis, as
the inhibition of inflammasome can prevent the neurological
dysfunction in patients with TB1, PD, AD, subarachnoid
hemorrhage, vascular dementia, etc. (Wnuk and Kajta, 2017;
Ising et al., 2019; Rui et al., 2020; Poh et al., 2021). After
TBI, NLRs, and AIM2 inflammatory corpuscles are activated
in the cerebral microvascular endothelial cells (BMVECs) in
cerebral cortex. As caspase-1 inhibitors, Ac-YVAD-CMK and
Ac-FLTD-CMK can block the cleavage of GSDMD and ASC
oligomerization by inhibiting caspase-1, which can reduce
pyroptosis (Ge et al., 2018; Wang et al., 2021). Pgam5 is a
mitochondrial protein that promotes the activation of microglial
inflammasome after TBI, reduces the amount of pyroptosis-
related molecules, promotes the polymerization of ASC and the
activation of caspase1, and ameliorates the neuronal damage
and dysfunction in TBI (Chen et al., 2021e). VX765, a known
caspase-1 inhibitor, can inhibit pro-inflammatory cytokines
against pyroptosis through HMGB1/TLR4/NF-κB pathway (Sun
et al., 2020).

Pyridine domain 3 inflammasome is an intracellular
multiprotein complex which can activate the release of
inflammatory factors in TBI, causing cell pyroptosis (Irrera et al.,
2017). Many researchers have found that NLRP3 inhibitors can
inhibit cell death and play a neuroprotective role in TBI. JC124
is a specific NLRP3 inflammatory inhibitor, which is developed
from the structural optimization of sulfonylurea drugs. It can
block the aggregation of ASC, inhibit the activation of caspase-
1 and protect brain from TBI (Kuwar et al., 2019). NIMA-
associated kinase 7 (NEK7) is an important vector for NLRP3
inflammasome activation. Liu et al. have demonstrated that
the NEK7 knockdown can inhibit the activation of NLRP3
inflammasome and caspase-1 through K+ outflow and reduce
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FIGURE 1

The necroptosis involved in traumatic brain injury (TBI). After TBI occurs, the RIPK1/RIPK3/MLKL pathway is activated, in which the Nec-1, Mel,
2-BFI, CYLD, and CHMP4B can alleviate the necroptosis and protect the neural function by inhibiting the RIP1 and RIP3. Hydrogen-rich saline
can inhibit the RIP1 and RIP3 through the ROS/HO-1 pathway. While RIP1 can inhibit the oxidative stress and the apoptosis which occurred after
TBI through the AMPK signal pathway. Perampanel can inhibit the RIPK1/RIPK3/MLKL pathway through the AKT/GSK3β pathway, thereby
alleviating the necroptosis.

posttraumatic nerve injury (Chen et al., 2019). After TBI, the
NLRP3 inflammasome inhibitor 2-BFI will induce inflammation
and play an important role in BBB destruction and brain edema
(Ni et al., 2019). Meanwhile, HIF-1α will recruit and activate
microglia during the release of inflammatory factor, leading to
the NLRP3 inflammasome-mediated cell pyroptosis (Yuan et al.,
2021). Angiotensin converting enzyme 2 (ACE2) is an enzyme
that catalyze the convert of angiotensin II to angiotensin,
exerting neuroprotective effect. As proved by Meng Liang Zhou
et al., ACE2 can reduce the mitogen activated protein kinase and
NF in TBI- κ Phosphorylation of B, leading to the reduction of
activated NLRP3 and caspase-3, thereby alleviating cell death
(Li T. et al., 2022). As another effector molecule induced
by the activation of NLRP3 inflammasome, high mobility
group box 1 (HMGB1) is also involved in a typical damage-
associated molecular pattern (DAMP), which is associated
with the initiation process of NLRP3 inflammasome (Frank
et al., 2015). Zhou et al. showed that NLRP3 inflammasome
can impair the memory function in late TBI stages mainly
through the upregulation of HMGB1 (Tan et al., 2021).
Researchers have also studied some related drugs and found
that dexmedetomidine, artesunate, and resveratrol can inhibit

the activation of NLRP3 inflammasome, and thus presenting
an anti-inflammatory function (Gugliandolo et al., 2018; Zheng
et al., 2018; Zou et al., 2018).

In addition, some natural products and gas molecules can
also inhibit pyroptosis to improve the prognosis of brain injury
such as Rhein, which protects the neurological dysfunction after
TBI by inhibiting neuronal cell pyroptosis (Bi et al., 2020).
Carbon monoxide releasing molecule-3 (CORM-3) is a water-
soluble exogenous carbon monoxide involved in the two-way
interaction between intestinal and brain, which can inhibit
cell death and improve brain injury (Zhang et al., 2021). In
terms of the complications after TBI, it has been reported
that molecular hydrogen (H2) can improve the acute lung
injury (ALI) after TBI in rats by reducing pyroptosis (Li T.
T. et al., 2022). Meanwhile, as a neuroendocrine hormone
and a new gastrointestinal hormone which can block NF-
κB signaling pathway, ghrelin can improve the inflammasome
induced focal necrosis and reduce the TBI induced ALI (Shao
et al., 2020). Another study also showed that microglia and
infiltrating CD11b+ leukocytes, which include macrophages
and neutrophils, can actively participate in the innate immune
response to penetrating brain injury (PBBI) and pyroptosis,
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which would lead to cell loss (Lee et al., 2019). These studies
reported that pyroptosis signaling pathway might be a novel
therapeutic target for TBI. The possible signal pathways of
pyroptosis involved in TBI are summarized in Figure 2.

The ferroptosis involved in
traumatic brain injury

Ferroptosis is an iron dependent regulatory form of cell
death driven by lipid peroxidation. It is characterized by the
accumulation of intracellular iron and lipid ROS, the reduction
of glutathione (GSH) level, and the inactivation of glutathione
peroxidase 4 (GPX4) (Dixon et al., 2012; Stockwell et al., 2017;
Yu et al., 2017; Chen et al., 2021d). Ferroptosis has been
reported to be involved in TBI (Wenzel et al., 2017; Tang
et al., 2020; Geng et al., 2021; Yao et al., 2021). Meanwhile,
lipid peroxidation also plays an important role in the traumatic
injury of nerve tissue (Anthonymuthu et al., 2018). In the
TBI animal model, iron overload, the increased expression of
transferrin, the accumulation of lipid ROS and mitochondrial
atrophy associated with iron metabolic pathway further verified
the existence of ferroptosis. While the treatment of ferroptosis
with the inhibitor Fer-1 can reduce neuronal death and improve
long-term cognitive and motor function (Xie et al., 2019). TfR1
is a recognized marker of ferroptosis. Researchers reported that
ferristatin II (an iron absorption and TfR1 inhibitor) can inhibit
the formation of ferritin by reducing Fe3+ and iron positive
deposits, leading to the alleviation of the neuronal damage
caused by TBI (Cheng et al., 2022).

In terms of the lipid metabolism pathway, some scholars
have reported that in animal models of TBI, the expression
levels of 15-HpETE-PE and 15LO2, GPX4 levels and enzyme
activity are decreased in cerebral cortex and hippocampus,
proving the existence of PEBP1/15LO-driven ferroptosis in
TBI (Wenzel et al., 2017). Lipoxygenase (LOXs) is considered
to be a key factor of ferroptosis. It inhibits 12/15-LOX
while also reducing infarct size and improving behavioral
parameters in ischemic stroke, which confirms the feasibility
of 12/15-LOX inhibitors in the treatment of stroke (Karatas
et al., 2018). It is reported that the redox lipomics method
with liquid chromatography tandem mass spectrometry (LC-
MS/MS) identify the oxidation of phosphatidylethanolamine
(PEoX) and the reduction of glutathione levels. After the
identification of PEoX as a predictive biomarker in ferroptosis
by gas cluster ion beam secondary ion mass spectrometry
(GCIB-SIMS) imaging and cluster ion beam, mapping the
distribution of PEoX in cortical/hippocampal neurons after
traumatic brain injury with a spatial resolution of 1.2 mm
at single cell/subcellular level can help researchers visualize
lipid peroxidation (Sparvero et al., 2021). At the same time,
the baicalein administration (a 12/15-lipoxase inhibitor) can
significantly reduce ferroptosis in TBI (Kenny et al., 2019).

Moreover, baicalin also plays a neuroprotective effect against
the seizures after TBI by inhibiting ferroptosis (Li et al., 2019).
In addition, it is reported that prokineticin-2, as an important
secretory protein, can participate in the pathogenesis of acute
and chronic nervous system diseases. It reduces ferroptosis and
protect nervous function through the ubiquitination of Fbxo10,
the degradation of long chain acyl-CoA synthetase 4 (ACSL4)
and the inhibition of lipid peroxidation (Bao et al., 2021).

In addition, there are some molecular compounds and
drugs that involved in the mechanism of GPX4 inhibition that
can cause ferroptosis. These compounds and drugs include
polydatin, ruxolitinib, and tetrandrine. Among them, polydatin
generally plays an anti-inflammatory effect, which can improve
the activity of GPX4 enzyme and reduce MDA accumulation
and lipid peroxidation deposition (Huang et al., 2021). As
an inhibitor of janus kinase (JAK) 1 and 2, ruxolitinib is
used to treat bone marrow fibrosis, which has an inhibitory
effect on ferroptosis, and can also alleviate brain edema and
nerve deformation (Chen et al., 2021c). Tetrandrine is a
natural bisbenzylisoquinoline alkaloid that can ameliorate TBI
by activating autophagy to reduce ferroptosis (Liu et al., 2022).
Meanwhile, carotenoids can inhibit ferroptosis from I/R by
increasing the expression of GPX4 (Guan et al., 2019). Selenium
(Se) effectively inhibits GPX4-dependent ferroptosis, thereby
protecting neurons and reducing cerebral infarction (Alim et al.,
2019). Regulating the inhibition of ferroptosis by GPX4 may be
an effective treatment for patients with ischemic stroke and TBI.

Some non-coding RNAs also exert function in the process
of ferroptosis. The miR-212-5p can regulate Ptgs2 to inhibit
ferroptosis and protect injured brain (Xiao et al., 2019).
Melatonin is a neuroprotective factor which can mitigate lipid
peroxidation through circPtpn14/miR-351-5p/5-LOX signaling.
It can also antagonize ferroptosis and relieve ER stress in TBI
(Wu C. et al., 2022). Referring to the protective mechanism of
melatonin, Rui et al. (2021) found that melatonin could inhibit
the neuronal FTH mediated ferroptosis after TBI. Meanwhile,
p53 is another factor involved in ferroptosis, of which possible
target is SLC7A11 (Jiang et al., 2015). Sirtuin 2 (SIRT2)
is a member of nicotinamide adenine dinucleotide (NAD+)
dependent protein deacetylase family which has neuroprotective
effects on TBI by inhibiting the p53 mediated ferroptosis
(Gao et al., 2021). To sum up, inhibiting ferroptosis can
probably improve the damage caused by TBI. The possible signal
pathways of ferroptosis involved in TBI are summarized in
Figure 3.

The parthanatos involved in
traumatic brain injury

Parthanatos is a novel form of programmed cell death
based on DNA damage and PARP-1 activation. In this process,
the DNA repairment of poly ADP-PARP1 is over activated
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FIGURE 2

The pyroptosis involved in traumatic brain injury (TBI). After TBI occurs, the caspase-1 is mainly activated by NLRP3, AIM2, ASC, and other
inflammasomes. The activated caspase-1 includes the IL-1β/18 lysed from the pro IL-1β, and the N-terminal segments of the GSDMD
(GSDMD-NT) lysed from the Gasdermin D (GSDMD). The 2-BFI, JC124, Dex, ACE2, Artesunate, HIF-1α, and PGAM5 can alleviate the pyroptosis
by inhibiting the inflammasomes. The VX765 can exert the neural protect function through the HMGB1/TLR4/NF-κB pathway. The Rhein,
CORM-3, and H2 can inhibit the pyroptosis as well. The RS can activate the SIRT1 to inhibit the activation of NLRP3, thereby relieving the TBI. As
the inhibitors of the Caspase-1, the Ac-YVAD-CMK and Ac-FLTD-CMK can inhibit the lysis of GSDMS and the oligomerization of ASC to alleviate
the pyroptosis.

with the accumulation of intracellular poly ADP ribose (PAR)
polymer, resulting in the depletion of NAD+ and ATP. PAR also
combines with mitochondrial apoptosis which can induce the
release of factor AIF to cell membrane. Combined macrophage
migration inhibitory factor (MIF) can move to nucleus and
split the genomic DNA into large fragments, causing chromatin
condensation and fragmentation, and further leading to cell
death (Virag and Szabó, 2002; Yu et al., 2006; Wang et al., 2011;
Fatokun et al., 2014).

Multiple lines of evidence can support a certain role of
parthanatos in TBI (Fatokun et al., 2014; Galluzzi et al., 2018).
Secondary damage caused by oxidative stress after TBI will lead
to DNA strand breakage, the over activation of PARP-1, and
neuronal death. In some studies, the functional prognosis of
TBI was improved by inactivation of PARP. This protective
effect was confirmed by the use of a new PARP inhibitor
named GPI 6150 (Virag and Szabó, 2002). PJ34 and INO-
1001 are the other two structural PARP inhibitors except

benzamide, which can reduce cell death and the microglia
activation of primary cortical neurons exposed to n-methyl-
n’-nitro-N-nitrosoguanidine (MNNG). They can also reduce
reactive oxygen species neuroinflammation, and protect the
neurons in cerebral cortex and thalamus. While neither of
them can improve cognitive performance in morris water maze
(MWM) test, nor can they reduce the loss of nerve cells
in hippocampus (Stoica et al., 2014). INO-1001 can exert a
neuroprotective effect in the rat TBI model by preventing NAD+

depletion (Besson et al., 2005; Clark et al., 2007). Meanwhile,
the inhibition of NF-B-dependent gene transcription by PARP
inhibition will prevent microglial activation. The inhibitor
should be administered within 20 h after TBI, which will
alleviate inflammation and improve histological and functional
outcomes (d’Avila et al., 2012). Ghrelin also has the functions
about improving sensormotor and reflex function and reducing
cleaved PARP-1 levels in cortex, the PARP-1-dependent cell
death, and the mortality after TBI (Qi et al., 2012). It is
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FIGURE 3

The ferroptosis involved in traumatic brain injury (TBI). The ferroptosis generally occurs after TBI, which can be targeted to improve the
prognosis of TBI. The ferroptosis can be alleviated by the inhibition of the Xc-system and GPX4. The Mel can reduce the fenton reaction by
inhibiting Ferritin. The Polydatin, Ruxolitinib, Tetrandrine can all alleviate the ferroptosis by mitigating the lipid peroxidation. While the SIRT2 can
mitigate the lipid peroxidation through the inhibition of P53. The Prokineticin-2 can promote the ubiquitination of Fbxo10 to accelerate the
degradation of Acsl4 and inhibit the lipid peroxidation. The miR-212-5p can inhibit the lipid peroxidation through Ptgs2. And the PEBP1/15LO
can drive the occurrence of ferroptosis.

reported that tetrahydroxystilbene glucoside (TSG) is an active
component of the traditional Chinese herbal medicine called
polygonum multiflorum, which has neuroprotective effect. Its
specific mechanism may be explicated as the reduction of
oxidative stress and neuroinflammation and the inhibition of
PARP1 to negatively regulate Ras/JNK signaling pathway (Cao
et al., 2020). A large number of studies have focused on the
pathway about transporting PARP inhibitors. Nanostructured
lipid carriers (RBCNLCs) encapsulated by red blood cells
(RBC) were used in brain neuron mitochondria together
with C3 and ss31 peptides (C3/SS31-RBCNLCs). The high-
concentration delivery of PARP inhibitor olapali (Ola) to
brain mitochondria by C3/SS31-RBCNLCs-Ola has effectively
improved mitochondrial function (Sun et al., 2022). Various
lines of evidence suggested that the inhibition of PARP1 has a
protective effect, as some studies found that PARP1 inhibition in
ShRNA could promote axon regeneration, while the inhibition
of other PARP isoforms would reduce axon regeneration with no

improvement of motor function (Wang et al., 2016). The timing
of pharmacological inhibition and the direction of inhibitor
selection also need to be further investigated.

In addition to directly inhibiting PARP-1, aiming at
PAR/MIF or NAD+ depletion pathway is also an option to
improve the prognosis of TBI. It has been reported that
the intranasal delivery of NAD+ can increase NAD+ levels
in hippocampus and reduce the TBI induced hippocampal
neuronal death (Won et al., 2012). Furthermore, MIF can
mediate the TBI-induced neurodegeneration, neuronal death,
and neurobehavioral dysfunction via its nuclease activity, while
it shows no pro-inflammatory effects (Ruan et al., 2021). Recent
studies demonstrated that iduna is a newly discovered ubiquitin
E3 ligase and an endogenous regulator of parthanatos, which
can reduce PARP activation and nuclear translocation of AIF
to prevent parthanatos, indicating that ubiquitin-proteasome
pathway may also play a role in parthanatos (Xu et al., 2019).
At the same time, iduna may promote docosahexaenoic acid
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(DHA) through Wnt/MDM2 pathway and reduce the damage of
TBI cell and mitochondrial dysfunction (Shi et al., 2022). Based
on these reports, targeting PARP1-dependent parthanatos may
be a potential strategy for the treatment of secondary injury after
TBI.

The cyclophilin D-mediated
necrosis involved in traumatic
brain injury

Cyclophilin D (CypD) is a member of cyclophilin
family with various biological functions which can cause
mitochondrial dysfunction through promoting the opening
of mitochondrial permeability transitionpore (mPTP). For
example, the loss of mitochondrial membrane potential, ATP
depletion, mitochondrial swelling, and final mitochondrial
outer membrane rupture can all induce the CypD pathway-
dependent cell necrosis (Baines et al., 2005; Schinzel et al., 2005;
Yamaguchi et al., 2005; Alam et al., 2015).

Evidence suggests that in the secondary damage generated
after TBI, Cyclosporin A (CsA) can inhibit the opening of
mPTP by interacting with CypD, resulting in the alleviation of
mitochondrial dysfunction and neuronal damage in a TBI rat
model (Sullivan et al., 2005; Kim et al., 2014; Springer et al.,
2018). Studies have shown that the mice lacking CypD coding
gene Ppif can retain mitochondrial function for 6 h after injury
with fewer loss of subacute cortical tissue and hippocampal cells
within 18 days after injury. As an effective inhibitor of CypD,
CSA has many benefits about its usage on disease treatment
(Readnower et al., 2021). There are many CSA related studies,
some of them reported the function of CSA about suppressing
mPTP opening that can maintain mitochondrial membrane
potential and calcium balance in isolated mitochondria, and
alleviate acute mitochondrial dysfunction after TBI (Sullivan
et al., 1999). However, synaptic mitochondria will suffer
more damage than non-synaptic mitochondria 24 h after
CCI. While the intraperitoneal injection of CSA (20 mg/kg)
at 15 mins after injury can improve synaptic and non-
synaptic respiration to a significant extent, especially in the
synaptic groups enduring more severe damage (Kulbe et al.,
2017). As a non-immunosuppressive CSA analog, NIM811 as
well as CSA can significantly reduce lipid peroxidation and
protein nitrating damage of mitochondria 12 h after TBI.
The neuroprotection provided by nim811 is dose-dependent
with the most appropriate dose of 10 mg/kg. This dose can
improve cognitive function and reduce mitochondrial damage
(Mbye et al., 2008; Readnower et al., 2011). In preclinical
experiments, positive improvements in brain metabolism and
mitochondrial function were observed in TBI models in large
animals, validating the neuroprotective effects of cyclosporine
(Karlsson et al., 2019). At the same time, researchers have

employed some research on the intervention of CypD. For
example, CypD knockout can improve the abnormalities of
excitatory synapses, while inhibiting CypD can reduce the
synaptic overexcitation after TBI (Sun and Jacobs, 2016). But the
knockdown of CypD was unable to reduce the pathology within
axon initiation node (AIS), suggesting that axonal interval is
regulated under different mechanism (Hanell et al., 2015).

Other studies have focused on the regulation of Cypd/mPTP
in drugs or targeted molecules to improve mitochondrial
function and produce protective effects. (1) Resveratrol can
reduce mPTP opening by inhibiting the ROS mediated function,
and protect the TBI mitochondrial function of GSK3 (Lin
et al., 2014). (2) With an neuroprotective activity in p38 MAPK
pathway, SIRT1 has been reported to protect mitochondria
from damage (Yang et al., 2017). (3) Treatment of recombinant
human erythropoietin or carbamylated erythropoietin can
reduce mPTP opening caused by TBI, thereby improving
mitochondrial disorders (Millet et al., 2016). (4) In rat brain
mitochondria (RBM), the oxidative phosphorylation capacity
(OXPHOS) can evaluate the respiratory effect of mitochondria.
Etofoxine can restore mitochondrial oxidative phosphorylation
and improve cognitive recovery after TBI (Palzur et al., 2021).
(5) Brain-derived neurotrophic factor (BDNF) can inhibit
the opening of MPTP, promote the accumulation of pCREB
in mitochondrial intima and matrix and the synthesis of
mitochondrial complex V, while alleviate the metabolic defects
of neurons after mechanical injury (Xu et al., 2018). To sum
up, the role of CypD-mediated necrosis in TBI can provide
therapeutic implications for mitochondrial dysfunction after
TBI.

Discussion

Necroptosis, pyroptosis, ferroptosis, parthanatos, and CypD
mediated necrosis are all important to the secondary injury
after TBI. Several different types of regulatory necrosis can be
triggered by nerve cells under death-inducing stimuli. However,
under various complex pathophysiological mechanisms in TBI,
these kinds of regulated necrosis may be interrelated and coexist
with each other, or be alterable in cells with ever-changing
levels. For example, (1) necroptosis may play a major role
in the early stage after CCI, but other cell death pathways
such as autophagy, apoptosis, pyroptosis, and ferroptosis are
associated with the subsequent pathological process (Ganjam
et al., 2018). (2) Silencing of RIPK1 can alleviate TBI by
inhibiting inflammation and autophagy in neurons through NF-
κB signaling pathway (Liu et al., 2020). (3) Nec-1 can prevent
BNIP3 from integrating into mitochondria by modifying the
binding site of BNIP3 on mitochondria. Therefore, Nec-1 can
effectively inhibit the collapse of mitochondrial membrane
potential induced by BNIP3 and reduce the opening efficiency
of mPTP (Mu et al., 2021). Autophagy is significantly enhanced
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FIGURE 4

The relationships among all the regulatory necrosis involved in traumatic brain injury (TBI). The necroptosis can promote the apoptosis and
inhibit the autophagy through the NF-κB pathway. The PEBP1 can interact with RIP3 or 15LOX to initiate the necroptosis and the ferroptosis.
The Tetrandrine can inhibit the ferroptosis through the inhibition of autophagy. Meanwhile, the autophagy can inhibit the pyroptosis through
the JAK1/STAT1 pathway. As an inhibitor of the necroptosis, the Nec-1 can concurrently inhibit the BNIP3 and decrease the open efficiency of
mPTP, thereby reducing the parthanatos. The Ghrelin also has anti-inflammatory properties, which can alleviate the pyroptosis, and furthermore
alleviate the parthanatos by reducing the PARP-1.

in TBI and ischemic stroke. The knockout of BNIP3 in mice
can inhibit mitosis through the interaction of BNIP3 and
LC3, with the manifestations of increased autophagy, decreased
apoptosis and reduced cerebral infarction, indicating that the
silencing of BNIP3 may be conducive to the neuroprotection
after stroke (Shi et al., 2014). Meanwhile, Nec-1 can also
inhibit the activation of necrotizing apoptosis as well as cell
apoptosis and autophagy, while reducing the tissue damage
and functional defects caused by TBI (Wang et al., 2012).
(4) Autophagy activation can inhibit cell death in a mouse
model of moderate traumatic brain injury through IL-13 and
JAK1/STAT1 pathways (Gao et al., 2020). Inactivation of RIPK3
K51A kinase can enhance ferroptosis, causing worse outcomes
after TBI. As a regulator of cell death, PEBP1 can inhibit the
activity of pro-metabolic RIP3, and activate 15LOX to trigger
pro-ferroptotic HpETE-PE signaling (Lamade et al., 2022). All
these kinds of regulatory necrosis may occur simultaneously.

Interestingly, there are interactions between different types
of cell death. Some reports showed that some inhibitors or
hormones could be sensitive to another by blocking any way
of cell death. For example, tetrahydropyrrole can improve TBI

by regulating autophagy and reducing ferroptosis (Liu et al.,
2022). It has been shown that treatment with 2-BFI could
reduce both necroptosis and pyroptosis, thus exerting a role of
neurofunctional protection (Ni et al., 2019). In some hormone
treatments, ghrelin can reduce the level of cleaved PARP-1 in
cortex, the PARP-1 dependent cell death and the mortality after
TBI, while improving the sensorimotor and reflex functions. Its
protective effect is related to its anti-inflammatory properties
and pyroptosis (Shao et al., 2020). Upregulation of NIX reduces
neuronal apoptosis and brain water content by increasing
mitophagy in TBI rat model (Ma et al., 2019). Inhibition of
autophagy and apoptosis and reduction of neuronal death
using intranasal WNT3α therapy in TBI mice model can
reduce the death of neurons (Zhang et al., 2018). In clinical
stroke, Dl-3n-butylphthalide (Dl-NBP) has neuroprotective
effects with anti-inflammatory, antioxidant, anti-apoptotic
and mitochondrial protective functions. Dl-NBP treatment
improves motor recovery after TBI by inhibiting the activation
of autophagy and consequently blocking connexin loss and
neuronal apoptosis (Wu et al., 2020). Therefore, regulatory
necrosis may occur simultaneously with mutual transformation
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and interaction to some extent. The relationships among all the
regulatory necrosis involved in TBI are summarized in Figure 4.

Secondary injury following TBI is a critical factor which
affects prognosis. The cell death is an important cause of
secondary injury and there is increasing number of researchers
who have found that various regulatory necrosis could
contribute to the development of TBI, providing many new
perspectives for us to understand and treat TBI. Therefore,
the intervention of regulatory necrosis related pathway may
be an effective strategy to reduce the secondary injury after
TBI, and the relationships among different necrosis are worthy
of further study.
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