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In-vivo longitudinal recordings require reliable means to automatically discriminate

between distinct behavioral states, in particular between awake and sleep epochs. The

typical approach is to use some measure of motor activity together with extracellular

electrophysiological signals, namely the relative contribution of theta and delta frequency

bands to the Local Field Potential (LFP). However, these bands can partially overlap

with oscillations characterizing other behaviors such as the 4Hz accompanying rodent

freezing. Here, we first demonstrate how standard methods fail to discriminate between

sleep and freezing in protocols where both behaviors are observed. Then, as an

alternative, we propose to use the smoothed cortical spindle power to detect sleep

epochs. Finally, we show the effectiveness of this method in discriminating between sleep

and freezing in our recordings.

Keywords: sleep spindles, behavioral state classification, freezing, sleep, cortical oscillations, local field potential

oscillations

1. INTRODUCTION

One of the main ambitions of systems neuroscience is to understand the relationship between
the activity of the nervous system and animal behavior. To this end, a fruitful approach is to
record neural activity as animals perform specific tasks as well as during natural behavior. Indeed,
monitoring brain activity across a wide range of training-dependent and spontaneous behavioral
states is crucial in the study of potential mappings between neural activity and behavior (Krakauer
et al., 2017). Moreover, contrasting the neurophysiology of active vs. inactive states (such as rest),
helps disentangle the neural activity underpinning cognitive functions such as learning from those
controlling motor behavior and perception. In particular, the neurophysiology of sleep examines
endogenous activity taking place when the brain is disengaged from the external world and
self-organized computation emerges (Buzsáki et al., 2014).

In electrophysiological studies, neural activity can be recorded for many hours, and in some
cases days or weeks, across many behavioral states (e.g., Wilson and McNaughton, 1994; Hirase
et al., 2001; Lin et al., 2006; Benchenane et al., 2010; Hengen et al., 2016; Dhawale et al.,
2017; Girardeau et al., 2017; Chung et al., 2019; Todorova and Zugaro, 2019). Matching specific
neural processes to particular behaviors requires reliable automated means to distinguish between
different behavioral states, such as wakefulness vs. sleep, but also between rapid eye movement
(REM) sleep and non-REM sleep, also known as slow-wave sleep (SWS).

State of the art automated brain state scoring techniques rely on motor activity as well as neural
recordings, taking advantage of the fact that active awake behavior and REM are characterized by
oscillations in the theta frequency band (7–8.5Hz), while SWS is dominated by slower rhythms
in the delta range (1–4Hz). The most common approach for classifying sleep stages consists of
sampling animal movement (using video recordings, inertial sensors, or electromyography) to
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detect immobility periods, and then dividing the resulting epochs
into REM and SWS based on the relative power of theta vs. delta
oscillations in the electroencephalography or local field potential
(LFP) recordings. This technique has been used for more than
40 years (Gottesmann et al., 1971; Kohn et al., 1974; Johns et al.,
1977) and is still very popular today (e.g., Todorova and Zugaro,
2019; Sosa et al., 2020; Wang et al., 2020; Tingley et al., 2021).

A limitation of this approach is the assumption that
all immobility corresponds to rest, uniquely composed of
its sub-states: quiet wakefulness, SWS, and REM. However,
certain behavioral paradigms may involve immobility which
should not be equated to resting. In particular, immobility
is also the main feature of freezing behavior (Blanchard
and Blanchard, 1969), a widely used index of fear typically
employed to probe for learning in fear conditioning (Fanselow
and Poulos, 2005), a very popular paradigm in rodent
behavioral research. This presents a problem for studies
addressing the role of sleep in emotional regulation and
fear memory consolidation, a research focus likely to become
more and more popular since sleep neurophysiology is
finally crossing paths with the investigation of emotional
learning (Trouche et al., 2020).

In order to correctly discriminate between sleep and freezing
in a behavioral protocol involving both behaviors, we developed
a method based on spindle oscillations in cortical recordings.
Spindle oscillations are characteristic of SWS (Steriade et al.,
1993; Fernandez and Lüthi, 2020), which constitutes 90% or
rodents sleep (Brankack et al., 2010). Here, after illustrating
how standard approaches, by construction, cannot discriminate
between freezing and sleep/rest states, we show how these can
be disentangled by the smoothed spindle power. Finally, we
validate that this approach was effective in detecting sleep and
freezing epochs interspersed in a fear conditioning and extinction
paradigm. The algorithm we propose requires solely the LFP
from a single neocortical channel and a readout of the animal
motor activity and is therefore a simple and effective solution to
determine behavioral states in freely moving animal recordings.

2. RESULTS

2.1. Standard Approach Fails to Distinguish
Sleep From Freezing
As a case study, we analyzed data recorded from rats performing
both freezing and sleeping behaviors. The rats underwent amulti-
day fear conditioning and extinction protocol, and rest sessions
were recorded in a familiar non-anxiogenic environment before
and after each training session (Figure 1A).

We first used standard methods to detect freezing and
sleep. Freezing is typically defined as all immobility periods
longer than a particular threshold (0.5–2 s; e.g., Bagur et al.,
2018; Moberly et al., 2018; Gründemann et al., 2019; Jercog
et al., 2021; Ressler et al., 2021). Nonetheless, standard
sleep-scoring algorithms assume that all such immobility
corresponds to rest states. Therefore, these techniques label
most immobility periods as both sleep and freezing. Indeed,
while in some cases immobility periods correspond to sleep

(see the left part of Figure 1B; Supplementary Video 1), a
freezing period may also last for long periods of time (right
part of Figure 1B; Supplementary Video 2). This makes the
standard approach to sleep detection unsuitable for data
involving freezing.

Our recordings included the local field potential (LFP) from
the hippocampus (HPC) and medial prefrontal cortex (mPFC).
As expected, theta and delta oscillations displayed a marked
difference between REM and SWS epochs (Figure 2C). However,
the theta/delta ratio did not help separate SWS from freezing,
because in both of these epochs delta power dominated over theta
power (Figure 1B). This is likely due to the overlap between the
delta frequency band and the frequency band of the respiratory-
driven cortical oscillation around 4Hz associated with freezing
(Ciatipis et al., 2014; Karalis et al., 2016; Lockmann et al., 2016;
Biskamp et al., 2017; Moberly et al., 2018; Bagur et al., 2021;
Karalis and Sirota, 2022). On the other hand, power in the spindle
band (9–17Hz) was high in sleep epochs and low in freezing
(Figure 1B), suggesting that spindle power may be an exclusive
marker for SWS.

2.2. Smoothed Cortical Spindle Power to
Detect SWS
To develop a method to separate freezing and sleep, we
took advantage of the lack of overlap between the spindle
frequency and the slower 4Hz oscillation associated with
freezing. On the fine timescale, spindle power increases
particularly during individual spindles, which are distinct
thalamocortical events occurring in SWS. However, spindle
events are common in SWS, and therefore the smoothed
spindle power is relatively constant as it joins multiple
spindle events (Supplementary Figure 1). Indeed, the
smoothed spindle power during immobility periods follows
a bimodal distribution (Supplementary Figure 2), allowing
the separation between SWS and non-SWS immobility periods
as they are characterized by high and low smoothed spindle
power, respectively.

The pipeline we developed (see Section 4 for details)
starts by detecting all periods of immobility (Figure 2A). We
then classify immobility periods with high spindle power
as SWS (Figure 2B). Since REM periods do not occur in
isolation but are nested within SWS cycles (McCarley, 2007),
we label as REM sleep those epochs where HPC theta
power is higher than HPC delta power, on the condition
that they closely follow SWS (Figure 2C). In the absence of
HPC recordings the algorithm can detect REM using the
theta/delta ratio of the cortical LFP used to detect SWS
(Supplementary Figure 3).

The remaining immobility periods are considered non-
sleep immobility states (Figure 2D). These include the periods
of quiet wakefulness prior to falling asleep, which must be
disentangled from freezing. We therefore classify these SWS-
preceding immobility periods as quiet wakefulness epochs, and
the remaining immobility is labeled as freezing (Figure 2D).
Contrary to a compounded use of the standard approaches for
sleep and freezing detection, this method is designed to guarantee

Frontiers in Neural Circuits | www.frontiersin.org 2 March 2022 | Volume 16 | Article 783768

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org
https://www.frontiersin.org/journals/neural-circuits#articles


Pompili and Todorova Discriminating Sleep From Freezing

FIGURE 1 | Neural and behavioral activity during rest vs. freezing (A) Overview of the behavioral protocol. Each day, animals were exposed to a resting environment (a

familiar non-anxiogenic flowerpot) and to two testing environments (A,B). In habituation sessions (2 days, left), animals were exposed to context A and context B and

to the auditory stimuli employed in the protocol. This was followed by fear conditioning (2 days, middle) where the presentations of the conditioned stimulus (CS+) in

context A were coupled with the delivery of aversive footshocks. In the following days of the protocol (6–12 days, right), the animals underwent contextual fear

extinction in context A as well as cued fear extinction in context B (see Section 4). (B) Example neural activity recorded during sleep in the resting environment (left,

see Supplementary Video 1) and during freezing in context A (right, Supplementary Video 2) in the first day of extinction training. Time stamps corresponding to

those overlaid in Supplementary Video frames are shown on top. (Top) Animal speed as measured by head movements; red dotted line: threshold used to detect

immobility; gray shadings: immobility periods. (Middle) Spectrograms of the LFP recorded in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Vertical

dashed lines: The boundaries of example intervals represented on the bottom. (Bottom) mPFC and HPC LFP signal recorded in the intervals marked above. Blue: raw

recorded LFP; red: filtered LFP in the delta, 4Hz, theta, and spindle frequency bands; black: instantaneous amplitude of the filtered LFPs.

zero overlap between different behavioral states, in particular
between freezing and sleep.

2.3. Effective Detection of Sleep and
Freezing
To validate our scoring pipeline, we analyzed data from a multi-
day fear conditioning and extinction dataset. The results of
the algorithm were consistent with behavior to be expected in
our protocol. Regardless of the day, in rest sessions animals
spent most of the time sleeping, and freezing levels were
low (Figures 3A,D). In habituation sessions, in the first 3min
(baseline) of being placed in context A, animals tended to actively
explore the environment (Supplementary Video 3), and freezing
and sleep were mostly absent (Figure 3B). Conversely, in the
last 3min of these sessions, after the animal had remained
there for some time (each training session lasted 35min),
sleep was not uncommon (Figure 3C; Supplementary Video 4).

Following fear conditioning in context A, animals tended to
freeze there during baseline (Supplementary Video 2). Unlike
habituation training sessions, they did not sleep at the end of
conditioning ones (Figure 3C). Both of these tendencies (to
freeze during baseline and to remain awake until the end of
the session) gradually decreased over extinction (Figures 3B,C).
Indeed, an animal’s tendency to sleep in training sessions
appeared to be a good indicator of global fear levels in
our task (Figures 3C,E; Supplementary Figure 4). The epochs
detected by our approach are therefore consistent with: (1)
contextual freezing emerging only after conditioning and
decreasing over extinction training and (2) animals sleeping
(and therefore being calm) in the conditioning context only
at low fear stages of the protocol (before conditioning
and in late extinction).

The need for a method separating between sleep and
freezing is most pronounced in cases when it’s possible to
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FIGURE 2 | Scoring pipeline. Left: An example 30 min recording in the resting environment; right: an example 30 min recording in context A during the first day of

extinction. (A) Animal speed as measured by head movements. (B) (Top) Spectrogram of mPFC LFP activity; white dashed horizontal lines: boundaries of spindle

frequency band. Note the prominent spindle band activity recorded in the rest epoch but absent in the conditioning environment. (Bottom) Smoothed spindle band

power. Red dotted line: threshold used to detect SWS; blue shading: detected SWS periods. (C) (Top) Spectrogram of HPC LFP activity; white dashed horizontal

lines: boundaries of delta and theta frequency bands. Note that in the resting session theta-dominating periods immediately follow the high-spindle power SWS

periods depicted above. (Bottom) Theta/delta ratio; red dotted line: threshold used to detect REM sleep; yellow shading: detected REM sleep periods. (D) Detection

chart. (Top) All detected immobility, SWS and REM periods. (Middle) Immobility periods not identified as either SWS or REM sleep are labeled awake immobility

behaviors. (Bottom) Awake immobility periods immediately preceding SWS are classified as quiet wakefulness (green), and the remaining immobility is scored as

freezing (red). Note that freezing was the dominating behavior detected during the first 10 min of exposure to the conditioning context A.

observe both of these behaviors in the same sessions, which
can sometimes involve abrupt transitions between states. To
test the performance of our method in such a scenario,
we analyzed the moments when an animal slept when a
CS+ was being presented in cued fear extinction sessions.
Indeed, the unanticipated presentations of a strong sound can

wake up the sleeping animal. In the example in Figure 3F;
Supplementary Video 5, the first couple of CS+ presentations
induced freezing behavior, which was detected by our method
because smoothed spindle power remained low during these
immobility periods. After some minutes, the animal fell asleep,
which was accompanied by increased smoothed spindle power.
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FIGURE 3 | Scoring pipeline performance on a multi-day fear conditioning and extinction protocol. (A) Average time classified SWS, REM, quiet wakefulness, and

freezing during the rest sessions before exposure to the testing environments for each day of the behavioral protocol. (B) Same as (A) but for the first 3 min in the

conditioning context A. (C) Same as (A) but for the last 3 min in the conditioning context A. (D) Same as (A) but for rest sessions following exposure to the testing

environments. (E) Average time spent sleeping across auditory cued extinction training sessions in context B for all animals; red dashed vertical lines: CS+ onsets;

ochre dashed vertical lines: CS− onsets. (F) State scoring in a representative session of late extinction of cued fear involving both sleep and freezing (see

Supplementary Video 5). (Top) Animal speed as measured by head movements; red dashed vertical lines: CS+ onsets; ochre dashed vertical lines: CS− onsets.

Time stamps of CSs presentations corresponding to those overlaid in Supplementary Video 5 frames are indicated below the plots. Shaded area: periods classified

as freezing (red), quiet wakefulness (green), SWS (blue), and REM (yellow). Note how the animal did not freeze during CS− presentations, but the onsets of the first

three CS+ triggered freezing responses. (Bottom) Spectrogram of mPFC LFP activity; white squares: intervals of elevated sleep spindle power scored as SWS. The rat

started to sleep after the fourth CS+ presentation and from then on, every CS+ presentation woke him up, but he fell asleep again within 30–40 s.

Each subsequent CS presentation briefly woke the animal up,
resulting in sleep-wake-sleep transitions detected by our method.
The smoothed spindle power can therefore serve as a precise tag
for SWS.

Finally, while ground truth data for the internal state of
the animal is impossible to obtain, we compared the results of
the algorithm to the scoring by an expert observer, blind to
the algorithm results, who manually labeled 2 s video snippets
(n = 600) classified as either freezing or sleep by the algorithm
across five recording sessions from three different animals. The
freezing vs. sleep separation by this manual scoring agreed with
the algorithm classification 92% of the time.

3. DISCUSSION

Discriminating between freezing and resting states can be critical
in longitudinal recordings of emotional behavior. However,
traditionally, these behaviors have been studied separately, and
standard scoring methods using immobility and theta/delta ratio
cannot disambiguate between them. Unlike delta band power,
the smoothed spindle power in cortical LFP recordings can
correctly identify SWS epochs and separate them from freezing.
The remaining immobility periods can be scored as REM sleep,
quiet wakefulness, or freezing, depending on the theta/delta
ratio and their timing to detected SWS epochs. We applied

this approach to recordings of rats involving both freezing and
sleep as part of a fear conditioning and extinction protocol, and
our results are consistent with correct scoring of freezing and
sleep states.

The key advantage of the smoothed spindle power is that
while it is high in SWS, it remains low during freezing.
Basing the SWS detection on this signal alone thus avoids
confounding SWS and freezing, when other signals such as
delta power can respond strongly to both behaviors due to
the overlap between the delta band and the 4 Hz oscillation
(2–5 Hz respiratory-driven rhythmic activity; Moberly et al.,
2018). While the spindle band power is used by many sleep
classification algorithms (e.g., Gottesmann et al., 1977; Louis
et al., 2004; Liang et al., 2012; Supratak et al., 2017), its
contribution is often secondary to slow oscillations in the delta
band. Therefore, these algorithms can be used to score sleep
stages only after freezing has already been excluded, but they
were not designed to separate between sleep and freezing,
especially given their assumption that all immobility corresponds
to resting states.

Recently, Bagur et al. (2018) showed that sleeping and freezing
states can be disambiguated using oscillations recorded in the
olfactory bulb. This is a powerful method which resolves the
sleeping/freezing ambiguity. Using the neocortical smoothed
spindle power as proposed here can be an alternative in the
absence of such recordings from the olfactory bulb.
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Here, we introduced a technique to detect SWS periods
based solely upon the smoothed spindle band oscillatory
activity and we demonstrated its effectiveness in our data.
To our knowledge, this is the only automated approach
discriminating between freezing and resting immobility in
the absence of olfactory bulb recordings. Our algorithm is
straightforward to implement as it only requires recording
from a single neocortical electrode, and it could be of use
for future systems neuroscience research involving both fear
and rest behavioral states. Moreover, the lack of overlap
between the spindle band and breathing frequencies observed
in immobility (Herent et al., 2020) can help separate sleep
from other awake behaviors beyond freezing, permitting the
smoothed spindle power to serve as a simple method to detect
SWS in general.

4. MATERIALS AND METHODS

4.1. Recording of Neural Activity During a
Multi-Day Fear Conditioning and Extinction
Training Protocol and Peri-Training Rest
4.1.1. Animals
Five male Long-Evans rats (350–400 g at the time of
the surgery, 2–5 months old) were housed individually
in monitored conditions (21◦C and 45% humidity) and
maintained on a 12 h light–12 h dark cycle. In order to
avoid obesity, feeding was restricted to 13–16 g chow per
day, with water available ad libitum. To habituate the rats
to human manipulation, they were handled each workday.
All experiments conformed to the approved protocols and
regulations of the local ethics committee and the French ministry
of agriculture and the French ministry of higher education
and research.

4.1.2. Surgery
Rats were deeply anesthetized using a ketamine-xylazine mixture
(Imalgene and Rompun, 180 and 10 mg/kg, respectively)
and anesthesia was maintained with isoflurane (0.1–1.5% in
oxygen). Analgesia was assured by subcutaneous injection
of buprenorphine (Buprecaire, 0.025 mg/kg) and meloxicam
(Metacam, 3mg/kg). The animals were implanted bilaterally with
a custom built microdrive with 24–42 bundles of independently
movable twisted electrodes (12µm tungsten wires twisted
in groups of either six or eight wires and gold-plated to
200 k�) 0.5mm above the target brain regions. Electrode
bundle placement varied between rats. Nevertheless, in
all animals there were electrodes implanted in the medial
prefrontal cortex (sterotaxic coordinates: ±0.3–0.6mm
mediolateral and +2.5–4.8mm anterioposterior from bregma)
and dorsal hippocampus (±3.8–5mm mediolateral and
−5mm anterioposterior from bregma). During recovery
after surgery (minimum 7 days), the rats received antibiotic
(Marbofloxacine, 2mg/kg) and analgesic (Meloxicam,
3mg/kg) treatments via subcutaneous injections, and were
provided with food and water ad libitum. The recording

electrodes were then progressively lowered until they reached
their targets.

4.1.3. Behavioral Apparatus
After full recovery, rats were exposed to two testing environments
(context A and context B), and one resting environment. Context
A was a cubicle conditioning chamber (40×40×40 cm) with
gray plexiglass walls lined with ribbed black rubber sheets
and a floor composed of nineteen stainless steel rods [0.48 cm
diameter with 1.6 cm spacing connected to a scrambled shock
generator (ENV-414S, Med Associates, USA)]. It was mildly
scented daily with mint-perfumed cleaning solution (Simple
Green, Sunshine Makers). Context B was a stadium-shaped PVC
enclosure (30 cm side and 15 cm radius) with a black wooden
floor and walls lined with light brown pieces of rope rug. It
was mildly scented daily with a vanilla extract solution. The
resting environment was a cloth-lined plastic flowerpot (30 cm
upper diameter, 20 cm lower diameter, 25 cm high). Auditory
stimuli (conditioned stimuli, CSs) were delivered in either of the
two testing environments via a custom-made electronic system.
The stimuli were white noise (CS+) or 8 kHz pure tone (CS−)
250ms long pips repeated at 1Hz for the duration of 20 s at
80 dB.

4.1.4. Behavioral Protocol
Habituation took place on days 1 and 2. On day 1, CSs were
presented in one context and on day 2 they were presented
in the other (context order presentation was switched every
day and was counterbalanced across animals), habituating
the animals to the stimuli. On days 3 and 4, the animals
were fear conditioned in context A, where CS+ presentations
were coupled with foot shocks (1 s, 0.6mA, co-terminating
with CS+ presentations). Extinction training began on day
5, with CS presentations in context B and context exposure
(no CS presentations) in context A. Extinction training was
repeated every day until the rat was seen sleeping throughout
CS+ presentations.

Every day of the experimental protocol consisted of one
35 min session in each context. When introduced in the
contexts the animals were either presented with the auditory
CSs (after a baseline period of 3min, the animals were
presented to 16 CSs, 8 CS+, and 8 CS−, separated by
inter-trial intervals of random duration, range 120–240 s)
or received no auditory stimuli (context exposure sessions).
During habituation and fear conditioning, CS+ and CS− were
presented in pseudorandom order (no more than 2 consecutive
presentations of the same-type CS), while in extinction training,
4 CS− were presented first, followed by 8 CS+ and then
4 CS−. Before and after each session the animals were left
undisturbed for at least 2 h in the resting environment to record
sleep activity.

4.1.5. Data Acquisition and Processing
An inertial measurement unit (IMU, non wireless version of
the one described in Pasquet et al., 2016) recorded 3D angular
velocity and linear acceleration of the animals’ heads (sampled
at 300Hz). Animal behavior was also recorded by lateral video
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cameras (50Hz sampling rate) in contexts A and B (acA25000,
Basler). Brain activity was recorded wideband at 20,000Hz
using a KJE-1001 data acquisition system (Amplipex, Szeged,
Hungary). Neurophysiological and behavioral data were explored
with NeuroScope (Hazan et al., 2006). LFPs were derived from
wideband signals by downsampling all channels to 1,250Hz.
At the end of the experiments, recording sites were marked
with small electrolytic lesions (∼20µA for 20 s, one lesion per
bundle). After a delay of at least 3 days to permit glial scarring,
rats were deeply anesthetized with a lethal dose of pentobarbital
and intracardially perfused with saline (0.9%) followed by
paraformaldehyde (4%). Coronal slices (35µm) were stained
with cresyl-violet and imaged with conventional transmission
light microscopy (Supplementary Figure 5). Recording sites
were reconstructed by comparing the images with the stereotaxic
atlas of Paxinos and Watson (2013).

4.2. Data Analysis and Statistics
Data were analyzed using FMAToolbox (http://fmatoolbox.
sourceforge.net), Chronux (http://chronux.org/), and custom
written programs in Matlab (MathWorks, Natick, MA).

4.2.1. Scoring of Behavioral States With Standard

Approaches
In order to compare our proposed approach with standard
sleep and freezing detection protocols, we performed standard
behavioral scoring as follows. Automatic detection of immobility
was performed by applying a threshold detection routine to the
angular speed calculated from gyroscopic data as we described
previously (Pasquet et al., 2016).

4.2.1.1. Freezing Detection
Typically, the minimum duration of immobility to be classified
as freezing ranges between 0.5 and 2 s, and brief movements
of 0.1–0.2 s are ignored (e.g., Courtin et al., 2014; Jercog et al.,
2021). We therefore defined freezing as moments where the
animals remained immobile for more than 1.5 s, ignoring brief
movements of <0.2 s.

4.2.1.2. Sleep Detection
To identify sleep stages (NREM and REM), LFP data was
visualized using Neuroscope (Hazan et al., 2006) and a
hippocampal channel with clear theta oscillations during
exploration was identified. The signal from this channel was
filtered in the theta (6–9Hz) and delta (0.5–4Hz) bands.
Typically, only periods longer than 30–120 s are retained as
sleep and periods around brief movements of 0.5–1 s are merged
together (e.g., Drieu et al., 2018; Todorova and Zugaro, 2019).
Therefore, here, only the periods of immobility lasting longer
than 60 s were considered, and brief movements shorter than 1 s
were ignored. The time bins of theta/delta ratio of these periods
were clustered in two groups with k-means.

4.2.2. Scoring of Behavioral States With Spindle

Power

4.2.2.1. SlowWave Sleep Detection
Immobility was detected as above. LFP data was visualized using
Neuroscope (Hazan et al., 2006) and a channel with distinct

spindles during sleep (mPFC) was selected. The LFP signal was
filtered in the spindle band (9–17Hz), and the instantaneous
amplitude was estimated using the Hilbert transform. This
amplitude was then smoothed (Gaussian window of 14 s), and
immobility periods where the smoothed amplitude exceeded
a k-means identified threshold (Supplementary Figure 2) were
classified as SWS. Theminimum duration allowed for sleep bouts
and the maximum duration of small movements are parameters
that users are free to select. For the results presented here these
parameters were set to 30 and 1 s, respectively.

4.2.2.2. REM Sleep Detection
The remaining immobility periods where the ratio between the
theta (6–9Hz) and delta (0.5–4Hz) power of the HPC LFP signal
exceeded 1 and followed a SWS period were classified as REM.
The maximum delay by which REM periods can follow SWS
is a parameter set by the user. However, since SWS to REM
transitions are known to last up to 30 s (Datta andHobson, 2000),
we recommend allowing for at least 30 s.

In the absence of hippocampal LFP the algorithm can detect
REM periods using the theta/delta ratio of the cortical LFP used
to detect SWS, with the following adjustments. First, the cortical
theta/delta ratio is smoothed by Gaussian smoothing window,
with a window width of 8 s maximizing the correspondence to
the results obtained using HPC recordings. Then, because the
theta/delta ratio tends to be lower in the mPFC than in the
hippocampus, the threshold to detect REM epochs is determined
using the Otsu method (Otsu, 1979; which divides the theta/delta
values into two groups maximizing inter-class variance) rather
than the hard-coded threshold of 1 used for HPC recordings.
The resulting REM periods thus obtained by PFC recordings
matched the ones estimated by HPC recordings 93.45% of the
time (Supplementary Figure 3).

4.2.2.3. Quiet Wakefulness Detection
Animals don’t fall asleep in their freezing posture: at the
minimum, they would always readjust their heads and more
typically also curl up their bodies. This means that freezing and
pre-sleep immobility are interrupted by movement. Therefore,
other periods of immobility which preceded SWS by <2min
were classified as immobile wakefulness. This duration is a
parameter free to user selection, and reasonable choices would
fall within a range of 30 s to a few minutes.

4.2.2.4. Freezing Detection
All the remaining immobility was classified as freezing with a
minimum duration of freezing bouts and minimal interruptions
set respectively to 2 and 0.2 s. These parameters are free to user
selection in our code.

4.2.3. Analyses of Scoring Performance and Data

Visualization
To assess the optimal smoothing window of the spindle power, we
computed the effectiveness metric m of the k-means separation
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of the smoothed spindle power in two groups, as defined by the
proportion of inter-group variance and computed asm = 1− σi

σtot
,

where σi is the intra-group variance σtot is the total variance of the
smoothed spindle power.

To compute spectrograms, we employed an adapted version
of the wavelet transform code from http://paos.colorado.edu/
research/wavelets/.
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Supplementary Video 1 | Representative video of a rat sleeping in the resting

environment. The video corresponds to the time interval shown on the left side of

Figure 1B, part of the resting session immediately preceding the first contextual

extinction session. Note how the animal sleeps almost all the time with small

movements to adjust its posture.

Supplementary Video 2 | Representative video of a rat freezing in the

conditioning environment. The video corresponds to the time interval shown on

the right side of Figure 1B, that is the baseline period of the first contextual

extinction session. These are the first moments the animal enters this environment

since conditioning. Note how the animal freezes all the time in a stiff position and

only the movements associated to a deep respiration are visible.

Supplementary Video 3 | Representative video of an animal exploring the

conditioning environment. This corresponds to the first 30 seconds of exposure to

the conditioning environment on the fourth day of extinction. This is the same rat

of Supplementary Video 2 but after 3 sessions of contextual fear extinction.

Note how the animal does not freeze any more and explores the environment as

the contextual fear has been extinguished.

Supplementary Video 4 | Representative video of an animal sleeping in the

conditioning environment. This corresponds to 30 seconds in the conditioning

environment on the fourth day of extinction. Namely, the same session of

Supplementary Video 3 15 minutes later. Note how the animal sleeps, although

uncomfortably, on the rods of the floor. The reclined head adjusted on the

fore-paws is a good sleep marker.

Supplementary Video 5 | Video corresponding to the example session of

Figure 3F where both freezing and sleeping were detected. The timestamp

overlaid on video frames are on the same time scale of the x axis of the figure.

Note how the animal explores the environment during baseline, freezes after the

onsets of the first two CS+ presentations, but then gradually falls asleep. This rest

is systematically interrupted by CS+ presentations (only two episodes shown in

this video). All these transitions were captured by our technique as shown in

Figure 3F.
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