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The promoters of immediate early genes (IEGs) are rapidly activated in

response to an external stimulus. These genes, also known as primary response

genes, have been identified in a range of cell types, under diverse extracellular

signals and using varying experimental protocols. Whereas genomic dissec-

tion on a case-by-case basis has not resulted in a comprehensive catalogue

of IEGs, a rigorous meta-analysis of eight genome-wide FANTOM5 CAGE

(cap analysis of gene expression) time course datasets reveals successive

waves of promoter activation in IEGs, recapitulating known relationships

between cell types and stimuli: we obtain a set of 57 (42 protein-coding)

candidate IEGs possessing promoters that consistently drive a rapid but tran-

sient increase in expression over time. These genes show significant

enrichment for known IEGs reported previously, pathways associated with

the immediate early response, and include a number of non-coding RNAs

with roles in proliferation and differentiation. Surprisingly, we also find

strong conservation of the ordering of activation for these genes, such that

77 pairwise promoter activation orderings are conserved. Using the leverage

of comprehensive CAGE time series data across cell types, we also document

the extensive alternative promoter usage by such genes, which is likely to have

been a barrier to their discovery until now. The common activation ordering of

the core set of early-responding genes we identify may indicate conserved

underlying regulatory mechanisms. By contrast, the considerably larger

number of transiently activated genes that are specific to each cell type and

stimulus illustrates the breadth of the primary response.
1. Introduction
Human cells respond to a broad range of extracellular stimuli with a characteristic

burst of transcription within minutes at many sites across the genome, known as
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the immediate early response (IER). The IER has been observed

as an initiating event in many cellular processes, notably during

differentiation, in responses to cellular stress and in inflam-

mation. The earliest events in the IER involve the activation of

the promoters of a particular set of genes, known as immediate

early genes (IEGs). The promoters of IEGs are activated rapidly,

and their activation is transient in normal cells [1]. However,

IEGs are often dysregulated in cancers where they can

become continuously activated; accordingly, some of the best-

studied IEGs are known oncogenes [2]. For example, the

expression of the FOS proto-oncogene normally peaks within

60 min of a stimulus and subsides after 90 min [3], in contrast

with its continuous overexpression in many cancers.

IEGs possess unusually accessible promoters that allow

rapid transcriptional activation in response to a stimulus with-

out the requirement of de novo protein synthesis. Various

features are thought to discriminate IEGs such as the shorter

transcripts they generate and enrichments of certain transcrip-

tion factor (TF) binding sites at their promoters [4]. However,

current knowledge about IEGs is derived mainly from studies

of individual genes or pathways, and often considers a specific

cell type and stimulus. This means that comparison across

studies can be confounded by experimental and technical vari-

ation, and a comprehensive catalogue of IEGs remains elusive.

There is also controversy about the regulatory mechanisms

governing the response of even relatively well-studied IEGs

[5]. Beyond the induction of protein-coding IEG promoters,

the features and underlying mechanisms of the IER are even

less well understood. Some studies have implicated altered pat-

terns of IEG splicing as playing important roles in the IER [6],

while others have suggested a prominent role for lncRNA acti-

vation [7] and transcribed enhancers [8]. Approximately 20% of

known IEGs are TFs, including some of the best characterized:

EGR1–EGR4, FOS, FOSB, FOSL1, JUN, JUNB and MYC.

The FANTOM5 cap analysis of gene expression (CAGE)

data offer a number of advantages for expression profiling

because they are based upon single-molecule sequencing to

avoid PCR, digestion and cloning biases. They provide up to

single base-pair resolution of transcription start sites (TSSs)

and promoter regions, and provide a sensitive, quantitative

readout of transcriptional output accounting for the alternative

promoters of each gene. The output of individual promoters is

not confounded by splicing variation, and many novel lowly

expressed transcripts including non-coding RNAs (ncRNAs)

can be readily detected (see http://fantom.gsc.riken.jp/5/).

CAGE data are thus ideally suited to studying the strong burst

of transcription at promoters seen in IERs. FANTOM5 data

include eight CAGE time course datasets employing unusually

dense sampling at time points within 300 min of stimulation, for

a variety of stimuli treating a variety of cell types. These hetero-

geneous datasets, produced using a common experimental

platform, should be fertile ground for novel insights into the

IER, but a comprehensive meta-analysis has not been performed

until now.

Many previous approaches to time series analysis of

expression data have been based upon differential expression

between successive time points, or have clustered genes accord-

ing to the similarity of their expression profiles over time [9].

Both of these approaches present problems for the analysis of

CAGE data. Differential expression between time points pro-

vides poor sensitivity for lowly expressed transcripts

(possessing too few reads to generate significant differences in

expression), and presents serious difficulties when comparing
expression profiles from datasets with somewhat different

sampling points over time. Clustering approaches often rely

upon arbitrary thresholds (e.g. based upon cluster size or signi-

ficant enrichment of functional annotation terms) and, by

definition, will miss transcripts that cannot be assigned to a

cluster but may nevertheless show dynamics of interest.

Hence, we refine a previously successful Bayesian model selec-

tion algorithm to classify promoter responses to pre-defined

mathematical models [7].

Here, we perform extensive meta-analyses of promoter

activity in the human IER, encompassing unusually diverse

cell types and stimuli, to rigorously classify IEGs and estimate

the core IEG repertoire active across cellular responses. We

show that computational classification of the temporal activity

patterns of promoters provides a potent basis for meta-analyses

across time courses, exposing the combined activity of known

IEGs and compelling new IEG candidates in the IEG core reper-

toire. We also show that the timing of the peak expression of a

core set of transiently activated genes has a conserved order.

This surprising outcome indicates a previously unidentified

regulatory mechanism that is shared among cell types and

common to diverse stimuli.
2. Results
We considered eight densely sampled, and well-replicated,

FANTOM5 CAGE time course datasets obtained following

diverse stimuli: calcification in an osteosarcoma cell line in

response to osteocalcin (SAOS2_OST), differentiation of adi-

pose-derived primary mesenchymal stem cells in response to

a drug mixture (3-isobutyl-1-methylxanthine, dexamethasone

and rosiglitazone) (PMSC_MIX), differentiation of primary

lymphatic endothelial cells in response to VEGF (PEC_VEGF),

MCF7 breast cancer cell line responses to EGF1 (MCF7_EGF1)

and to HRG (MCF7_HRG), primary aortic smooth muscle

cells response to IL1b (PAC_IL1B) and FGF2 (PAC_FGF2),

and primary monocyte-derived macrophage cells activation

in response to LPS (PMDM_LPS). Thus, we included a variety

of primary and cell line samples, tracking responses to a range

of stimuli: growth factors, hormones, drugs, pro-inflammatory

cytokines and bacterial endotoxin (figure 1a). These diverse

data provided a potent resource to discover core features

of the IER conserved across cell types and stimuli. All TSSs

for protein-coding transcripts were represented by conser-

vatively selected CAGE read clusters (at least 10 TPM)

following Arner et al. [10]. As expected, the responses of

known IEGs often showed characteristic expression peaks

early in the time series datasets—as exemplified by FOS and

JUN—though even for these well-established IEGs, we

observed substantial variation in the magnitude, timing and

duration of peaks across cell types and stimuli (figure 1b).

These observations illustrate the challenges presented in IEG

detection, even when studying known IEGs using a uniform

experimental platform.

Optimizing and refining the approach developed by Aitken

et al. [7] (see Material and methods), we defined four mathemat-

ical models representing archetypical expression profiles of

interest over time—peak, linear, dip and decay (electronic sup-

plementary material, figure S1)—and assessed the fit of each

model to the expression profile of each gene using nested

sampling to compute the marginal likelihood, log Z [7].

Where sufficient evidence exists (given the variation between
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Figure 1. Time course datasets demonstrating the immediate early response. (a) Schematic of the eight time course datasets considered. Horizontal lines indicate
the time span and symbols show the sampling times. Time zero corresponds to inactivated or quiescent cells in all cases. (b) The time course expression profile of
FOS (i) and JUN (ii) in all eight datasets. Cage cluster expression (mean TPM of three replicates) is plotted against time. (c) The extent to which the classification of a
TSS as a peak is unique to one dataset (3515 TSS) or shared between two or more datasets.
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replicates), the algorithm returns a classification of an input

transcript to a model, and also computes relevant parameters of

the fitted models (e.g. time and magnitude of peak expression).

These parameter estimates provide a reliable basis for compari-

sons across time series datasets, even with different sampling

densities [7], as they are not restricted to sampling times or

expression values at those times.

2.1. Cap analysis of gene expression time series meta-
analysis reveals a core complement of transiently
activated promoters

Across the eight time series datasets, we considered all CAGE

clusters corresponding to the TSSs of known Ensembl [11]
transcripts, encompassing between 10 513 (corresponding to

7706 Ensembl genes) and 14 376 (8951 genes) protein-coding

CAGE TSSs, depending on the dataset, and between 1202

(692 genes) and 1640 (858 genes) ncRNACAGE TSSs (electronic

supplementary material, table S1). Between 15 and 42% of

protein-coding CAGE TSSs, and between 15 and 33% of non-

coding TSSs were confidently classified to one of the four

models, depending on the dataset (electronic supplementary

material, figure S2 and table S2). The remainder could not be

rigorously classified to a single model and were omitted from

further analysis. The peak model had the highest number of

assignments in all the datasets for both protein-coding and

ncRNA genes; for example, of 12 132 total Ensembl protein-

coding genes tested, we found 8785 Ensembl genes (72%) to

peak in at least one of the datasets. By contrast, few genes
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Figure 2. Broad trends in peak expression times across datasets. (a) Identi-
fication of the peak time parameter (tp) of FOS estimated from the
PMDM_LPS time series ( filled symbols indicate the median TPM; unfilled
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were classified to the peak model in multiple datasets, with

only 42 such genes shared across at least seven datasets

(figure 1c), underlining the high variability of transcriptional

responses seen for the same promoters across time series.

These 42 genes constituted our ‘robust’ set of candidate

IEGs (genes, TSSs and peak times listed in electronic sup-

plementary material, File S1). We also defined a less stringent

‘permissive’ set of 1304 candidates shared across at least four

out of eight datasets.

We then explored the overlap in peaking genes outside of

the robust set (electronic supplementary material, table S3)

and found that, for each dataset, at least 8% of peaking

genes are shared with another dataset (range 8–16%) and

up to 52% of peaking genes are shared (range 19–52%).

The intersections between sets of three datasets became smal-

ler consequently. Notably, approximately 50% of peaking

genes are shared between datasets where the cell type is the

same (MCF7 and PAC).

Our model fitting approach provided parameter estimates

for all promoters assigned to the same model, providing a

straightforward and intuitive basis for meta-analysis. For

example, comparison of the peak times (tp) (figure 2a) for all

promoters classified as peaks in at least four datasets (the per-

missive set) readily demonstrated common patterns across

datasets (figure 2b). Waves of promoter activation were evident,

with certain promoters, particularly known IEGs, activated in

the same early time window in multiple datasets. Hierarchical

clustering of the datasets based on these peak class promoters

(9% of all promoters assayed) also recapitulated known

relationships between cell types and stimuli (figure 2b). The

two datasets derived from the same breast cancer cell line

(MCF7_EGF1 and MCF7_HRG) and stimulated with different

ligands of the same ErbB receptor family clustered together as

might be expected. We observed similar behaviour for the

two primary aortic cell samples exposed to a growth factor or

activated by a pro-inflammatory cytokine (PAC_FGF2 and

PAC_IL1B, respectively). Thus, similarities in promoter acti-

vation dynamics (reflected in tp parameter estimates) between

datasets may reflect underlying commonalities in their

underlying biology.

The extent of alternative promoter usage across the robust

set of IEGs and candidate IEGs is shown in figure 3 (see also

electronic supplementary material, figure S3). Candidate

IEGs show slightly greater variability in the TSSs they acti-

vate across datasets compared with known IEGs, with a

greater median number TSS found to peak (3.5 compared

with 2 for known IEGs). In addition, known IEGs tend to pos-

sess TSSs that are successfully classified to the peak model

across a larger number of datasets (mean proportion of data-

sets classified as peak per TSS for known IEGs in the robust

set ¼ 4; candidate IEG mean proportion ¼ 2.5). Thus, known

IEGs tend to possess smaller numbers of alternative TSSs that

also tend to show discernible peaks in the majority of the

time series datasets. It is possible that these relatively stereo-

typical transcriptional characteristics of known IEGs may, in

some cases, have led to their status as well-established IEGs.

Similarly, the increased variability seen for the TSSs of candi-

date IEGs could have led to a failure to detect their IEG-like

behaviour in former studies.

We investigated the nature of our promoter classifications

by testing the enrichment of known IEGs (see Material and

methods) within each class, for each dataset. The peak class

was enriched for known IEGs in all datasets (electronic
supplementary material, figure S4 and table S4), but failed

to reach statistical significance in PMSC_MIX (OR¼ 1.3, p ¼
0.2). Peaking genes shared across datasets were generally

associated with significant enrichments of known IEGs

(table 1), with the permissive set (shared across four or more
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Figure 3. Promoter usage across time series datasets. For representative genes, bar charts show the number of datasets where each TSS peaks to illustrate the
diversity of TSS usage and commonality of the peaking response. Known IEGS are shown in blue, TFs in yellow and other genes in green. FOSB has a single TSS that
peaks in eight datasets, JUN has three TSS each peaking in four or more datasets and XBP1 has six TSS that peak in between one and six datasets.

Table 1. Enrichment of known IEGs for genes classified to the peak model in multiple datasets. Enrichment (expressed as odds ratios) and p-values for genes
classified across different numbers of time series datasets.

shared datasets

IEGs enrichment

no. CAGE TSSs
(median)no. genes no. IEGs

no. CAGE TSSs (across
eight datasets)

no. IEG CAGE TSSs
(across eight datasets) OR p-value

1 – 8 (all peaking genes) 8785 204 102 496 913

— — 1

2 – 8 5270 171 71 384 853 6.3 2.2 � 10216 1

3 – 8 2882 128 45 360 751 5.9 2.2 � 10216 2

4 – 8 1304 86 24 616 590 5.9 2.2 � 10216 2

5 – 8 507 56 11 528 433 7.4 2.2 � 10216 3

6 – 8 182 35 4896 299 10.3 2.2 � 10216 3

7 – 8 42 13 1376 124 12.6 2.2 � 10216 4

8 5 2 264 18 8.3 4.6 � 10211 5
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datasets) expected to contain higher numbers of false positives

than the robust set (seven or more datasets). Genes possessing

TSSs assigned to the peak class showed enrichments for gene

ontology (GO) processes associated with transcription, cell acti-

vation, cell proliferation, cell differentiation and cancer-related

terms such as cell death and apoptosis (FDR , 0.05; Material

and methods) [12,13]. These terms were also consistent with

previous studies of IEGs [4] as genes in the robust set showed

enrichment for 285 GO terms, over 30% (88) of which were
shared with the list of 773 GO terms of all known IEGs

(electronic supplementary material, table S5).
2.2. Novel non-coding RNA candidates in the
immediate early response

We next applied our classification to promoters driving

the expression of non-coding transcripts and found peak



Table 2. Non-coding genes peaking in at least seven out of eight datasets. The short descriptions of the molecular function are from the genecard database
[15].

gene ID
no. of shared
datasets description (PubMed ref.)

LINC00478

(MIR99AHG)

7 it has a role in cell proliferation and differentiation and it is considered a regulator of oncogenes in

leukaemia (PMID: 25027842)

LINC00263 7 regulation of oligodendrocyte maturation (PMID: 25575711)

LINC-PINT 8 putative tumour suppressor (PMID: 24070194)

LINC00963 7 involved in the prostate cancer transition from androgen-dependent to androgen-independent and

metastasis via the EGFR signalling pathway (PMID: 24691949)

LINC00476 8 uncharacterized lincRNA

LINC00674 7 uncharacterized lincRNA

STX18-AS1 7 uncharacterized lincRNA

DLEU2 7 critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1 (PMID:19591824)

MiR-29A 7 the expression of the miR-29 family has antifibrotic effects in heart, kidney and other organs; miR-29s

have also been shown to induce apoptosis and regulate cell differentiation (PMID: 22214600)

MiR-3654 7 involved in prostate cancer progression (PMID: 27297584)

MiR-21 7 oncogenic potential (PMID: 18548003)

AL928646 7 uncharacterized ncRNA

SCARNA17 7 scaRNA involved in the maturation of other RNA molecules (PMID: 12032087)

SNORD65 7 belongs to the small nucleolar RNAs, C/D family; involved in rRNA modification and alternative splicing

(PMID: 26957605)

SNORD82 7 belongs to the small nucleolar RNAs, C/D family; involved in rRNA modification and alternative splicing

(PMID: 26957605)
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promoters driving the expression of 20 ncRNA genes (across at

least seven datasets), constituting the robust set of ncRNA

candidate IEGs. These included promoters associated with

the cellular splicing machinery, such as small nuclear RNA

multi-gene families (U1, U2 and U4), which are part of the

spliceosome, and SCARNA17, a small nuclear RNAwhich con-

tributes to he post transcriptional modification of many

snRNPs. Kalam et al. [14] have shown that macrophage infec-

tion with Mycobacterium tuberculosis results in the systematic

perturbation in splicing patterns, and our results suggest

more general roles for alternative splicing in the IER. However,

multigene families, such as these small nuclear RNAs, present

particular challenges for reliable sequence read mapping.

Although probabilistic approaches to mapping ambiguously

mapped reads were developed in FANTOM5 [10], we have

chosen to conservatively remove these genes from the robust

set, leaving a group of 15 non-coding genes with a median of

five peaking TSS (table 2; electronic supplementary material,

figures S5 and S6).

Three miRNAs are present in the robust set (table 2) includ-

ing the oncogene miR-21 which was previously reported to

show IEG-like behaviour in the PAC_FGF2, PAC_IL1B and

MCF7_HRG time series [7]. Here, we find similar behaviour in

the MCF7_EGF1, PEC_VEGF, PMSC_MIX and SAOS2_OST

datasets. This extends previous studies reporting that the

miR-21 mature transcript is upregulated on EGF treatment in

MCF10A [16] and HeLa [17] cells. miR-29A has been associated

with the viability and proliferation of mesenchymal stem cell and

gastric cancer cells [18,19] and DLEU2 is a putative tumour sup-

pressor gene that hosts two miRNAs, miR-15A and miR-16-1
which are known to inhibit cell proliferation and the colony-

forming ability of tumour cell lines, and to induce apoptosis

[20–22]. Seven lncRNAs also appear in the robust set (table 2),

and among them, LINC00478 is particularly interesting, as it

has already been reported to show IEG-like behaviour [7], is

implicated in breast cancer and hosts an intronic cluster of

miRNAs comprising let-7c, miR-99a and miR-125b [23].

Although poorly characterized, LINC00263, LINC-PINT and

LINC00963 are thought to be involved in biological processes

often triggered by IEGs, such as cell maturation, cell proliferation

and the expression of growth factor receptors [24–27].

2.3. Known immediate early gene promoters
show conserved temporal order of activation
across datasets

Having established common patterns of peak gene induction at

similar times across datasets (figure 2b), we hypothesized that

IEGs may also be induced in a conserved order over time. To

our knowledge, the extent of conserved ordering in gene induc-

tion is unstudied in general, and in the IER, it is of particular

interest for two main reasons. First, the presence of conserved

gene orderings, in addition to common gene classifications,

provides an additional test for functional similarity between

datasets. Second, strongly conserved ordering may suggest

the existence of conserved regulatory mechanisms governing

the induction of these genes. To analyse the relative order of

activation across the eight datasets, we compared the peak

time of each gene to that of all others in the peak class. If the
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relative temporal order of two genes was conserved in at

least seven of the eight datasets, the ordering for this pair was

considered conserved and represented by an edge in the

conserved activation network (figure 4).

We found 77 pairs of genes showing conserved ordering in

their activation, involving 40 of the 57 genes in the robust set.

FOS was the first gene to be activated (lacking a predecessor

in the ordering) and SDC4, EHD1 and TMEM185B were the

last. The number of conserved temporal connections observed

overall is statistically significant (p , 5 � 1023) by comparison

with the distribution of expected connections, given 1 000 000

permuted datasets (Material and methods). This appears to

reflect a conserved coordination in promoter activation

during the IER and further supports the candidacy of the

novel IEGs detected. Many genes in this network are known

to participate in well-studied pathways active in the IER such

as the MAPK signalling pathway as we now discuss.

2.4. Known immediate early genes and candidate
immediate early genes participate in common
signalling pathways

Having shown that the peak model described the behaviour of

known IEGs, we speculated that the other genes assigned to

this model might include novel candidate IEGs. Of the 42

genes in the robust set, more than two-thirds (29 genes) are

not known to be IEGs and can therefore be considered to be
candidate novel IEGs (henceforth candidate IEGs). Pathway

analysis [28] recovers many known relationships among

known IEGs as expected, centred on heavily studied IEGs

such as FOS and JUN. However, the same analysis suggests

that more than half (17) of candidate IEGs also participate in

common pathways with known IEGs, involving a densely

inter-connected network of 83 significantly over-represented

pathways (electronic supplementary material, table S6), includ-

ing signalling cascades known to mediate the IER, such as the

Ca2þ-dependent pathways and the mitogen-activated protein

(MAP) kinase network [29,30].

The dynamics of the expression of peak-classified genes can

be visualized by a scatterplot of fold change against peak time

(electronic supplementary material, figure S7). These quantitat-

ive features along with the conserved temporal orderings

described above show FOS as the earliest peaking IEG, EHD1

as the last, with an array of conserved orderings subsequent

to, and prior to the peaking of these genes, respectively

(selected genes plotted in figure 5). The TSSs of known IEGs

CAGE tend to show the greatest fold changes (electronic sup-

plementary material, figure S8a; Wilcoxon p , 2.2 � 10216);

however, some candidate IEGs promoters show notably similar

timing (electronic supplementary material, figure S8c; Wil-

coxon p ¼ 0.89). The time of peaking is significantly earlier

for known IEGs relative to the other protein-coding promoters

in only three time series: PMDM_LPS, MCF7_EGF1 and

PEC_VEGF. Fold changes in peak ncRNA promoters tend to

be lower than for known IEGs (electronic supplementary
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material, figure S8b; Wilcoxon p , 0.05), but they occur

earlier than known IEGs (electronic supplementary material,

figure S8d, Wilcoxon p , 0.05 for all datasets).

Among the candidate IEGs in the robust set, XBP1 is

especially noteworthy. This gene encodes a TF and is relatively

short in length (6 kb compared with the mean of 58 kb for

all Ensembl protein-coding genes), consistent with the IEG arche-

type [1]. XBP1 is a highly conserved component of the unfolded

protein response (UPR) signalling pathways, activated by uncon-

ventional splicing upon endoplasmic reticulum (ER) stress or

non-classical anticipatory activation [31–33], and regulates a

diverse array of genes involved in ER homeostasis, adipogenesis,

lipogenesis and cell survival [34,35]. Interestingly, genes in the

robust set are significantly enriched for the GO term

GO:003497 response to ER stress (FDR , 0.05, all tested genes as

the background), and four of the five genes in the robust set

sharing this term peak in conserved order across the datasets.

Furthermore, we found a significant enrichment (FDR , 0.05)

of the XBP1 binding motif in the promoter regions (see

Material and methods) of the robust set of genes (electronic

supplementary material, figure S9).
3. Discussion
Exploiting the precision of FANTOM5 CAGE times series data,

we discover a robust set of 42 protein-coding genes driven by

promoters showing rapid and transient activation in response

to multiple stimuli. This set contains 13 previously known

IEGs and 29 candidate IEGs, which are likely to be core com-

ponents of the IER. Applying our approach to the CAGE

TSSs of ncRNAs, we also discovered a set of 15 ncRNAs peak-

ing across at least seven datasets, comprising miRNAs and

lncRNAs, suggesting regulatory roles for particular miRNAs

and lncRNAs species in the IER [7].

FOS expression has long been considered to lead the IER

after cell stimulation [36,37]. Our results on the IER conserved
activation network support this, but also similarly conserved

relationships extending to an additional 39 coding and non-

coding genes. Furthermore, we observed many known and

novel IEGs in this network known to be involved in a range

of signalling pathways active in the IER, such as the MAPK

and the EGF/EGFR signalling pathways. This suggests the

variable constellations of genes involved in the IER to any

particular stimulus may be underpinned by a deeper level of

conservation in the regulation of the IER across stimuli.

One of the most interesting candidate IEGs, XBP1, can be

rapidly activated by alternative splicing minutes after cell

stimulation with mitogenic hormones, activating peptides

such as LPS and cytokines [31–33]. This key event of the

induced UPR pathway is a conserved eukaryotic response to

cellular stress, and is thought to cooperate in the regulation of

IEG expression [32]. However, the dynamics of XBP1 promoter

induction in the context of the IER have not been studied pre-

viously. Interestingly, we found a significant enrichment for

XBP1 TF binding sites in the promoter regions of 11 genes in

the IER conserved activated network. The presence of XBP1

and XBP1-responding genes in this network suggests this

gene may act as an important link between the IER and the

UPR pathway.
4. Material and methods
4.1. Datasets
The eight datasets used (figure 1) are the most densely sampled

human time series produced by the FANTOM5 Project, with all

time points represented by three replicates [38]. Detailed infor-

mation on the generation of these datasets is available from

Arner et al. [10], including CAGE library preparation, quality

control, sequencing and qRT–PCR validation, as well as proto-

cols for CAGE read clustering and TSS detection. All CAGE

clusters representing TSSs of protein-coding genes were
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conservatively thresholded to more than 10 TPM (tags per

million), while CAGE clusters corresponding to ncRNA were

thresholded to greater than 2 TPM, allowing for their generally

lower expression levels. FANTOM5 data downloads, browsers

and genomic tools are available from the project website

(http://fantom.gsc.riken.jp/5/).
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4.2. Model-based classification of transcription start site
expression profiles

To classify time series data for each CAGE-defined TSS,

we refined a previously published method [7] which fits differ-

ent mathematical models (kinetic signatures) to individual

expression profiles, assessing the best fit using nested sampling

[39] to compute the marginal likelihood, log Z. All time series

were normalized such that the medium minimum and

maximum across the time series was set to 0 and 10, respectively.

The kinetic signatures considered are: linear, decay, dip

and delayed peak (electronic supplementary material, figure

S1). The peak kinetic signature considered in the previous

method was modified to allow a delay before expression

starts to increase in exponential fashion (td). Parameter ts is

the time duration of the initial increase in expression, p1 is

the expression at time 0, and p2 is the increase in expression

at the time of peaking, tp ¼ td þ ts.

d ¼ log(0:3Þ
ts

, ð4:1Þ

y ¼ p1; t � td, ð4:2Þ
y ¼ p1 þ p2ð1� ed(t�td)Þ; td , t � td þ ts ð4:3Þ
and y ¼ p1 þ p2ð1� ed(t�td)Þ � p2ð1� ed(t�td�ts)Þ; t . td þ ts:

ð4:4Þ

However, an alternative rate d ¼ logð0:1Þ=td was also used to

model the slower dynamics of transcripts peaking later in

time, and the best fitting model selected during the decision

step. Normalizing the data such that expression lies in the

range 0–10 allowed the prior ranges of parameters to be

restricted to plausible values that applied to all time series.

The fit of models to data was improved as a result. To account

for any impact on the log Z calculation, we generated syn-

thetic time series datasets using parameter values drawn at

random from the prior ranges to generate one replicate, and

generated two other replicates by adding and subtracting

(respectively) a given amount of noise to the first. Model fit-

ting was applied to 1000 such datasets per model (using the

same noise values for each model on each of the 1000 iter-

ations) and we observed an advantage for each of the more

complex models in comparison with the linear model that

was consistent over the range of log Z values obtained for

the linear model. To offset this effect for each complex

model, the advantage (mean difference plus two standard

deviations observed in synthetic data) was subtracted from

the log Z values calculated for CAGE TSS data when

making the categorization decision.
4.3. Transcription factor binding site identification
We assessed the enrichment of transcription factor binding site

(TFBS) motifs in the JASPAR database [40] (January 2017

release) for all CAGE TSS assigned to genes in the robust set

relative to those assigned to the 12 132 genes tested across all
the datasets. Motif matches (FDR � 0.05) were sought in flank-

ing 400 bp windows centred on the middle of each CAGE TSS

analysed), using FIMO [41] from the MEME package (v. 4.11.2

patch 2). Enrichment of each motif in the robust set relative to

the total set was assessed with Fisher’s exact tests, correcting

for multiple testing (FDR � 0.05).

4.4. Pathway and gene ontology enrichment
Functional and pathway enrichments were assessed using

GORILLA [13] and INNATEDB [28], respectively (FDR � 0.05),

using the total 12 132 genes analysed across the eight datasets

as the background set.

The list of 234 known IEGs [10] was assembled from 20

published human and mouse datasets from the literature; it

is expected to contain few false positives but does include a

number of IEGs only reported in cells and/or responses not

examined in this study. To compute the enrichment of

known IEGs in each dataset, we compared the proportion

of peaking CAGE TSSs assigned to IEGs with the proportion

of peaking CAGE TSSs assigned to candidate IEGs. For the

enrichment of known IEGs in each set of shared peaking

genes, we compared the proportion of peaking CAGE TSSs

assigned to the IEGs shared in each group of shared genes

with the proportion of peaking CAGE TSSs assigned to

IEGs in the remaining tested genes. The odds ratio and the

p-value were assigned using Fisher’s exact test.

4.5. Network conservation
A total of 57 protein-coding and non-coding candidate IEGs

(corresponding to known Ensembl genes) were considered

for construction of the conserved activation network. For

genes with multiple peaking CAGE TSS, we chose the earliest

peaking CAGE TSS (smallest tp) in each dataset, then the rela-

tive pairwise order of each gene was computed with respect

to all the other genes in the robust set. For example, if in data-

set-1, gene-A peaks before gene-B (tp gene-A , tp gene-B), and

this order is observed in six or more of the other seven data-

set, the temporal precedence is defined to be conserved.

Applying this procedure to all 57 coding and non-coding

genes of the robust set, we discovered 40 genes temporally

connected by 77 conserved relative orderings (figure 4). The

significance of the number of temporal connections observed

was measured relative to null distribution, constructed by

permuting tp for all the CAGE TSSs 1 000 000 times; with

the proportion of permuted datasets with at least as many

conserved orderings as the observed taken as an empirically

derived p-value. The observed value (77) was observed or

exceeded in 4516 out of 1 000 000 permutations, indicating

that the number of temporal connections was statistically

significant (p , 5 � 1023).
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