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Abstract: Stroke is a major cause of death worldwide, leading to serious disability. Post-ischemic
injury, especially in the cerebral ischemia-prone hippocampus, is a serious problem, as it contributes to
vascular dementia. Many studies have shown that in the hippocampus, ischemia/reperfusion induces
neuronal death through oxidative stress and neuronal zinc (Zn2+) dyshomeostasis. Glutathione
(GSH) plays an important role in protecting neurons against oxidative stress as a major intracellular
antioxidant. In addition, the thiol group of GSH can function as a principal Zn2+ chelator for the
maintenance of Zn2+ homeostasis in neurons. These lines of evidence suggest that neuronal GSH
levels could be a key factor in post-stroke neuronal survival. In neurons, excitatory amino acid
carrier 1 (EAAC1) is involved in the influx of cysteine, and intracellular cysteine is the rate-limiting
substrate for the synthesis of GSH. Recently, several studies have indicated that cysteine uptake
through EAAC1 suppresses ischemia-induced neuronal death via the promotion of hippocampal
GSH synthesis in ischemic animal models. In this article, we aimed to review and describe the role of
GSH in hippocampal neuroprotection after ischemia/reperfusion, focusing on EAAC1.
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1. Introduction

Stroke is one of the most frequent causes of death worldwide and a major cause of
serious disability. Lifestyle factors that have been shown to increase the risk of stroke
include smoking; lack of physical activity; being overweight; and increased intake of
salt, alcohol, and fat. These factors also impact on outcomes in patients with stroke.
According to a systematic analysis from 2016, there were 80.1 million prevalent cases of
stroke, 5.5 million deaths, and 116.4 million disability-adjusted life years resulting from
stroke globally that year [1]. In recent years, although the rate of deaths due to acute
ischemic stroke has declined because of the introduction of new therapeutic strategies
and specialized care, ischemic stroke survivors continue to suffer from disabilities [2]. In
particular, ischemia-induced damage to the hippocampus, the main brain structure related
to learning and memory [3], is recognized as a serious problem, as it leads to cognitive
impairment [4].

The pathophysiological mechanisms underlying ischemia-induced hippocampal dam-
age have been studied intensively. Oxidative stress, a hallmark of brain ischemia, has been
identified as a major factor. It results from the increased generation of reactive oxygen
species (ROS) and reactive nitrogen species, which lead to apoptosis and necrosis of neu-
rons [5,6]. Another factor is the disruption of zinc (Zn2+) homeostasis in the hippocampus.
Zn2+ levels are maintained at a constant level in the adult mammalian brain, including
the hippocampus, in which Zn2+ participates in normal physiological brain functions,
such as learning and memory [7]. However, ischemia/reperfusion disrupts neuronal Zn2+

homeostasis, resulting in neuronal cell death within the hippocampus [8]. Therefore, not

Int. J. Mol. Sci. 2021, 22, 7765. https://doi.org/10.3390/ijms22157765 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-4697-0593
https://doi.org/10.3390/ijms22157765
https://doi.org/10.3390/ijms22157765
https://doi.org/10.3390/ijms22157765
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22157765
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22157765?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 7765 2 of 10

only oxidative stress but also the disruption of neuronal Zn2+ homeostasis are recognized
as important therapeutic targets for the treatment of ischemia-induced hippocampal injury.

Glutathione (GSH) is the most abundant low molecular weight thiol compound within
cells, and it plays a crucial role in cell defense not only against oxidative stress but also
against the disruption of Zn2+ homeostasis. In neurons, GSH levels are predominantly
regulated by excitatory amino acid carrier 1 (EAAC1), which can transport cysteine, a
substrate for GSH synthesis. Accumulating evidence indicates that EAAC1 gene deletion
exacerbates ischemia-induced hippocampal damage via impaired Zn2+ homeostasis as well
as oxidative stress [9], and that diurnal fluctuations in EAAC1 levels affect susceptibility
to ischemia-induced neuronal cell death in the hippocampus [10]. These findings suggest
that neuronal GSH levels regulated by EAAC1 are crucial in this context. In this review, we
focus on EAAC1 expression in the hippocampus and discuss the role of GSH in regulating
oxidative stress and zinc homeostasis, which are primary pathological findings following
brain ischemia. Furthermore, we describe how EAAC1 was demonstrated to orchestrate
GSH levels, thus conferring neuroprotection within the hippocampus, and how these
molecules are subject to the circadian rhythm.

2. Protective Roles of Glutathione (GSH) in Ischemia-Induced Hippocampal Injury
2.1. Anti-Oxidative Role of GSH in Ischemia-Induced Oxidative Stress

Cerebral ischemia leads to a marked increase in oxidative stress resulting from the
generation of ROS, such as superoxide, hydrogen peroxide, and hydroxyl radicals [5]. Ox-
idative stress can rapidly damage many components of the cell, including lipids, proteins,
and DNA, whereby it contributes to the progression of neuronal cell death after ischemic
stroke [11–13]. Therefore, oxidative stress is recognized as one of the major mediators of
cerebral ischemia/reperfusion-induced hippocampal injury [6,14,15].

GSH is a major endogenous component of the cellular antioxidant defense. It is ca-
pable of scavenging various ROS directly. Research has demonstrated that the order of
GSH reactivity towards the radicals is •OH > •OCH3 > •OOH > •OOCCl3 > •OOCHCH2 >
•OOCH3, and that the rate constants range from 2.02 × 104 M−1 s−1 to the diffusion limit
(7.68 × 109 M−1 s−1) [16]. These findings indicate that GSH is an excellent free radical
scavenger. On the other hand, GSH is also known to act as a substrate for a number of
glutathione peroxidases to detoxify ROS [17]. During these reactions, GSH is oxidized and
converted into glutathione disulfide (GSSG), which is subsequently reduced to GSH by
glutathione reductase [18]. However, cellular GSH levels can be lowered by the export
of GSSG when the production of the latter exceeds the capacity for recycling to the for-
mer, indicating that this antioxidative defense system cannot offset oxidative stress [19,20].
Indeed, many studies have demonstrated that the brain content of endogenous GSH is
depleted during ischemia/reperfusion [21–23], and that treatment with GSH or glutathione
monoethyl ester, a cell-permeable derivative of GSH, ameliorates ischemia-induced ox-
idative damage, including DNA and lipid oxidation in the hippocampus [24,25]. These
observations suggest that maintaining neuronal GSH levels is an important constituent in
protecting neurons against oxidative stress in the post-ischemic hippocampus (Figure 1).

Interestingly, Won et al. demonstrated that the GSH levels in CA1 pyramidal neurons
were decreased during the first few hours of ischemia/reperfusion, accompanied by in-
creased superoxide levels; conversely, the prevention of ischemia/reperfusion-induced
increase in superoxide production using an inhibitor of nicotinamide adenine dinucleotide
3-phosphate oxidase, a major source of ROS, was found to suppress the decline in GSH
in post-ischemic neurons [26]. On the other hand, they also showed that mice in which
neuronal GSH levels were maintained by treatment with N-acetyl cysteine (NAC), a
cell-permeable precursor of GSH, exhibited a reduction in neuronal oxidative stress and
neuronal cell death in the hippocampus following ischemia/reperfusion [26]. These find-
ings indicate that the depletion of neuronal GSH is both a result and a cause of neuronal
oxidative stress following ischemia/reperfusion. In contrast, changes in the levels of GSH
in post-ischemic glial cells, such as astrocytes and microglia, remain to be elucidated.
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Astrocytes play an important role in the synthesis of neuronal GSH by supplying precursor
molecules [27]. Therefore, it is necessary to clarify the role of glial GSH in neuronal survival
in the post-ischemic hippocampus.
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Figure 1. Mechanisms of GSH protection against hippocampal neuron damage following brain is-
chemia. The abbreviations are as follows: cysteine (Cys), glutamate (Glu), glycine (Gly), excitatory 
amino acid carrier 1 (EAAC1), glutathione (GSH), glutathione disulfide (GSSG), GSH reductase 
(GR), GSH peroxidase (GPx), reactive oxygen species (ROS). 
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Figure 1. Mechanisms of GSH protection against hippocampal neuron damage following brain
ischemia. The abbreviations are as follows: cysteine (Cys), glutamate (Glu), glycine (Gly), excitatory
amino acid carrier 1 (EAAC1), glutathione (GSH), glutathione disulfide (GSSG), GSH reductase (GR),
GSH peroxidase (GPx), reactive oxygen species (ROS).
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2.2. GSH Protects Neurons from Ischemia-Induced Disruption of Intracellular Zn2+ Homeostasis

Zn2+ is involved in hippocampal injury following brain ischemia. In the mammalian
brain, most of the Zn2+ is bound to specialized Zn2+ proteins—for example, metallothionein
and transcription factors [28]. A smaller part of it is concentrated in the presynaptic vesicles
in a subset of glutamatergic neurons throughout the forebrain, especially in the hippocam-
pus [29–31]. Therefore, the intracellular free Zn2+ concentration in the hippocampus is
considered to be very low under normal physiological conditions [28]. However, the stored
Zn2+, along with the protein-bound portion, is massively released during ischemia and
the onset of reperfusion, subsequently accumulating within hippocampal neurons [32–38].
The prevention of this process using Zn2+ chelators, including calcium disodium ethylene-
diamine tetraacetate and clioquinol, has been shown to protect hippocampal neurons from
ischemia-induced neurodegeneration [8,39], suggesting that the ischemia-induced disrup-
tion of neuronal Zn2+ homeostasis contributes to neurodegeneration in the hippocampus.

The thiol moiety of GSH has a high affinity for Zn2+ through non-enzymatic conju-
gation. Treatment with GSH protects neurons against Zn2+ accumulation-induced cell
toxicity [40]. The replenishment of GSH using NAC reduces Zn2+ accumulation and
neurodegeneration in the post-ischemic hippocampus [41]. These findings suggest that
GSH acts as an intrinsic factor that buffers intracellular Zn2+ concentrations to prevent the
ischemia-induced disruption of Zn2+ homeostasis; in addition to its antioxidative activity,
this mechanism protects neurons (Figure 1).

In contrast, Zn2+ binds and inhibits glutathione reductase and peroxidase, the major
enzymes of the glutathione redox cycle [42,43]. Chen and Liao demonstrated evidence
indicating that Zn2+ entry into neurons causes a decrease in intracellular GSH levels and
eventually triggers neuronal cell death [40]. GSH can suppress the ischemia-induced
disruption of Zn2+ homeostasis, but this function may be affected by the accumulation of
Zn2+ in neurons.

3. Neuroprotective Effects of EAAC1

EAAC1, a member of the sodium-dependent excitatory amino acid transporter (EAAT)
family, is localized on neuronal plasma membranes and is highly abundant in the cerebral
cortex, hippocampus, and striatum [44–46]. EAAC1 was originally identified as a neuronal
high-affinity glutamate transporter [47]. Although research has shown that it contributes
only modestly to the clearance of glutamate from the synaptic space, which is primarily
performed by astrocytic glutamate transporters, such as glutamate-aspartate transporter
and glutamate transporter 1 [48,49], accumulating evidence indicates that EAAC1 can
bind to extracellular cysteine and mediate its transport into presynaptic terminals or
postsynaptic dendrites more effectively than other EAATs can [50–54]. Neurons in the
hippocampus of EAAC1-deficient mice exhibit decreased GSH levels, increased oxidant
levels, and vulnerability to oxidative stress. These changes are abrogated by treating the
animals with NAC, suggesting that EAAC1 is the major route for neuronal cysteine uptake
and contributes to neuronal GSH synthesis [9,55].

Recently, the role of EAAC1 in neuronal resistance to ischemia was demonstrated.
EAAC1-deficient mice subjected to transient cerebral ischemia were found to exhibit
exacerbated neuronal injury in the hippocampus and cortex and a corresponding increase
in ROS production [9,56,57]. Furthermore, it was revealed that EAAC1 gene deletion
results in an increase in the basal levels of cytosolic and vesicular Zn2+ in hippocampal
and cortical neurons and causes an elevation in ischemia-induced Zn2+ accumulation. The
treatment of EAAC1-deficient mice with Zn2+chelators or NAC reduces ischemia-induced
neuronal injury, ROS production, and Zn2+ accumulation [9,56]. EAAC1 expression was
demonstrated to be increased in the hippocampus and cortex as early as 8 h after transient
forebrain ischemia [58]. Together, these findings suggest that EAAC1-dependent GSH
synthesis via cysteine uptake is one of the major defense mechanisms against neuronal
injury in the hippocampus following brain ischemia.
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In addition, the loss of the EAAC1 gene has been shown to evoke other pathological
alterations in the post-ischemic hippocampus. One example is adult hippocampal neuroge-
nesis. Over the last few decades, it has become clear that this process, which originates
from neural progenitor cells, occurs continuously in the subgranular zone of the dentate
gyrus [59], and newly formed neurons functionally integrate into the existing neural cir-
cuitry within the hippocampus [60]. Several studies have shown that the proliferation
of neural progenitor cells is increased in the subgranular zone and peaks around 7 days
following ischemic injury, suggesting its potential role in neural repair after stroke [61–63].
However, Choi et al. found that EAAC1 was expressed in mature and immature neurons in
the subgranular zone and that EAAC1-deficient mice exhibited a decrease in their overall
level of neurogenesis, including cell proliferation, neuronal differentiation, and survival
after ischemia, as compared with wild-type controls [64]. Another pathological alteration
in post-ischemic EAAC1-deficient mice is the integrity of the blood–brain barrier. The
ischemia-induced leakage of serum IgG into the hippocampal parenchyma and disorga-
nization of the diameter and density of the blood vessels were found to be aggravated in
EAAC1-deficient mice; these changes were suppressed by NAC treatment [57]. Given that
EAAC1 is primarily expressed in mature and immature neurons, these findings suggest
that EAAC1-dependent GSH synthesis functions as a direct and/or indirect protective
system against ischemic brain injury. However, further studies are needed to determine
how EAAC1-mediated GSH synthesis in neurons can protect blood–brain barrier integrity.

4. Neuroprotective Role of GSH and Time-of-Day Variations in Ischemic Injury

Circadian rhythms play an important role in the regulation of many biochemical, phys-
iological, and behavioral functions. Accumulating evidence indicates that stroke occurrence
follows circadian rhythms, with a higher frequency in the morning (06:00–12:00) [65–69],
which is mediated by diurnal variations in blood pressure, body temperature, and blood
coagulation [65,70,71]. In contrast, several studies examining the daily variation in the
susceptibility of the brain to ischemic stroke yielded different results. They revealed that
the mortality rate associated with ischemic stroke is higher during sleep at night than
during wakefulness [71,72], although the underlying mechanisms remain unclear.

Recently, using a mouse model of ischemic stroke, Beker et al. demonstrated that
transient brain ischemia at night resulted in reduced neuronal cell death, brain swelling,
and neurological deficit scores, and that the expression of circadian proteins was altered in
response to ischemic injury [73]. Furthermore, mice subjected to transient global ischemia
during the light phase have greater numbers of degenerating hippocampal neurons [74].
Considering that mice are nocturnal, these findings suggest that the daily variation in the
susceptibility of the brain to ischemic stroke in mice is correlated with that in humans.

Our recent study demonstrated that ischemia-induced Zn2+ accumulation and neu-
ronal cell death vary with the time of day in the hippocampus in mice. When transient
global ischemia was induced by clipping the bilateral common carotid arteries at two
different time points (at 09:00, 4 h after the beginning of the light phase, and at 23:00, 4 h
after the beginning of the dark phase), dense intracellular Zn2+ accumulation was observed
in the hippocampal CA3 and hilar regions, but not in CA1 (Figure 2A). Mice subjected to
global ischemia at 23:00 had remarkably less Zn2+ accumulation in the hilus than those
manipulated at 09:00 (Figure 2A). Interestingly, mice subjected to transient global ischemia
at 23:00 also exhibited a significant decrease in the number of degenerating neurons in the
hilus compared to their 09:00 counterparts (Figure 2B). Accumulating evidence suggests
that intracellular Zn2+ accumulation is a trigger for neuronal death with features of necro-
sis and apoptosis in cell cultures and in the brain after transient ischemia [75,76]. These
findings provide evidence that Zn2+ accumulation induced by transient global ischemia is
a crucial part of the time-of-day variation in ischemia-induced hilar neurodegeneration.
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transient brain ischemia at 23:00 compared to that at 09:00. (B) Fluorescent images showing neuro-
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Figure 2. Reduced ischemia-induced Zn2+ accumulation and neuronal injury in response to increased
GSH levels via elevated EAAC1 protein expression at 23:00. (A) Representative images showing
TSQ fluorescence (indicative of Zn2+ accumulation) in the hippocampus 72 h after transient brain
ischemia. Zn2+ accumulation was observed in the CA3 and hilar but not the CA1 region in ischemic
mice. Notably, the hilar Zn2+ accumulation was remarkably reduced in mice subjected to transient
brain ischemia at 23:00 compared to that at 09:00. (B) Fluorescent images showing neurodegeneration
by Fluoro-Jade B staining in the hippocampus 72 h after transient brain ischemia in the CA3 and
hilar but not in the CA1 region in ischemic mice. In the hilus, Fluoro-Jade B fluorescent signals
were remarkably reduced in mice subjected to transient brain ischemia at 23:00 compared to those
at 09:00. (C) Representative images depicting double immunofluorescence staining for glutathione
adduct with N-ethylmaleimide (GS-NEM, represents GSH levels; green) and DAPI (blue) in the hilar
region. GSH levels were significantly higher in the hilus at 23:00 than at 09:00. (D) EAAC1 protein
expression was analyzed by Western blotting. EAAC1 protein levels in the hippocampus were
significantly increased at 23:00 compared to at 09:00. * p < 0.05, relative to the hippocampus harvested
at 09:00 (Mann-Whitney U test). (E) Representative images highlighting TSQ fluorescence in the
hilar region 72 h after ischemia in mice pretreated with L-aspartic acid β-hydroxamate (LAβHA), a
selective EAAC1 inhibitor, at 23:00. Ischemia-induced Zn2+ accumulation was significantly increased
in LAβHA-pretreated mice.
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Interestingly, the EAAC1 protein levels exhibit a diurnal variation, peaking in the
mouse mesencephalon during the night; this is regulated by post-translational mechanisms
via microRNA miR-96-5p [77]. Given that GSH is involved in the maintenance of Zn2+

homeostasis in neurons, it can be hypothesized that neural levels of GSH are subject to
the time-of-day variation in ischemia-induced hilar neurodegeneration. Indeed, the hilar
levels of GSH were found to be higher in normal mice at 23:00 than at 09:00 (Figure 2C)
and, intriguingly, the EAAC1 protein expression followed a similar pattern (Figure 2D).
The treatment of mice with a selective EAAC1 inhibitor before ischemia at 23:00 resulted
in aggravated Zn2+ accumulation in the hilus (Figure 2E). These findings suggest that
increased EAAC1 expression and GSH synthesis in the hilus of mice at 23:00 may confer tol-
erance to transient global ischemia via an increase in the hilar GSH content [10] (Figure 2).
On the other hand, abnormal protein expression and activity of glutathione peroxidase
were observed in the brains of mice with age-related neurodegenerative diseases such as
Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease [78]. Neuronal
cysteine uptake by EAAC1 was inhibited by soluble amyloid oligomers [79], and aberrant
EAAC1 accumulations were observed in the hippocampal neurons of Alzheimer’s disease
patients [80]. It seems that neuronal aging may participate in the dysfunction of GSH
metabolism in the hippocampus via altered glutathione peroxidases and EAAC1. Recently,
it was revealed that aging modifies the temporal pattern of glutathione peroxidase expres-
sion and activity in the hippocampus [81]. Taken together with that the prevalence of stroke
in elderly patients has been increasing in recent years; therefore, investigating whether neu-
ronal aging affects the time-of-day variation in ischemia-induced hilar neurodegeneration
is expected.

5. Conclusions

Neuronal GSH plays an important role in protecting neurons from cell damage after
transient global brain ischemia by ameliorating hippocampal oxidative stress and the
disruption of Zn2+ homeostasis. However, transient global ischemia results in decreased
levels of neuronal GSH in the hippocampus. While this decrease is caused by oxidative
stress and accumulated Zn2+, it is thought that the ischemia-induced decrease in neuronal
GSH causes further increases in ROS production and the disruption of Zn2+ homeostasis,
eventually leading to neuronal cell death and the impairment of hippocampal functions.
In addition, EAAC1 is responsible for the neuronal supply of cysteine, which is the rate-
limiting substrate for GSH synthesis. The expression levels of EAAC1, regulated by diurnal
fluctuations in the hippocampus, affect susceptibility to ischemic neuronal injury. Therefore,
the maintenance of intracellular GSH levels via EAAC1 is essential for neuronal survival
after brain ischemia and may be an important therapeutic target.
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