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ABSTRACT
Background Patients treated with immunotherapy are 
at risk of considerable adverse events, and the ongoing 
struggle is to accurately identify the subset of patients who 
will benefit. Tumor mutational burden (TMB) has emerged 
as a promising predictive biomarker but requires tumor 
tissue which is not always available. Blood- based TMB 
(bTMB) may provide a minimally invasive assessment 
of mutational load. However, because of the required 
sequencing depth, bTMB analysis is costly and prone to 
false negative results. This study attempted to design a 
minimally sized bTMB panel, examined a counting- based 
method for bTMB in patients with stage I to IV non- small 
cell lung cancer (NSCLC) and evaluated both technical 
factors such as bTMB and tissue- based TMB (tTMB) cut- 
off, as well as sample- related factors such as cell- free 
DNA input mass which influence the correlation between 
bTMB and tTMB.
Methods Tissue, plasma, and whole blood samples 
collected as part of the LEMA trial (NCT02894853) were 
used in this study. Samples of 185 treatment naïve 
patients with stage I to IV NSCLC were sequenced at the 
Roche Sequencing Solutions with a custom panel designed 
for TMB, using reagents and workflows derived from the 
AVENIO Tumor Tissue and circulating tumor DNA Analysis 
Kits.
Results A TMB panel of 1.1 Mb demonstrated highly 
accurate TMB high calls with a positive predictive 
value of 95% when using a tTMB cut- off of 16 mut/Mb, 
corresponding with 42 mut/Mb for bTMB. The positive per 
cent agreement (PPA) of bTMB was relatively low at 32%. 
In stage IV samples with at least 20 ng of cfDNA input, 
PPA of bTMB improved to 63% and minimizing the panel 
to a subset of 577 kb was possible while maintaining 63% 
PPA.
Conclusion Plasma samples with high bTMB values 
are highly correspondent with tTMB, whereas bTMB 
low results may also be the result of low tumor burden 
at earlier stages of disease as well as poorly shedding 
tumors. For advanced stages of disease, PPA (sensitivity) 
of bTMB is satisfactory in comparison to tTMB, even when 
using a panel of less than 600 kb, warranting consideration 
of bTMB as a predictive biomarker for patients with NSCLC 
eligible for immunotherapy in the future.

INTRODUCTION
The introduction of immune checkpoint 
inhibitors (ICI) has provided a significant 
survival benefit in up to 50% of patients with 
non- small cell lung cancer (NSCLC).1–3 Since 
patients treated with immunotherapy are at 
risk of considerable immune- related adverse 
events, the ongoing struggle is to accurately 
identify the subset of patients who benefit. 
Tumor mutational burden (TMB), defined 
as the total number of somatic mutations per 
coding area of a tumor genome, has emerged 
as a promising predictive biomarker. It is 
hypothesized that high TMB tumors are 
likely to generate more neoantigens to elicit 
stronger antitumor immune responses.4–6

High TMB tumors have been associ-
ated with an improved overall response 
rate, durable clinical benefit (DCB), and 
progression- free survival (PFS) in patients 
with NSCLC treated with ICI.7 8 Several trials 
showed no significant overall survival (OS) 
benefit in patients with TMB high (TMB- H) 
tumors,9–11 although a recent meta- analysis 
demonstrated an OS improvement in patients 
with TMB- H tumors receiving first- line ICI 
in comparison to platinum- based chemo-
therapy.12 These contradicting results may 
be explained by preanalytical and method-
ological issues including the use of different 
sequencing panels, different cut- off values 
for TMB and including different types of 
mutations in TMB algorithms.12–15 In 2020, 
the Food and Drug Administration (FDA) 
approved the FoundationOneCDx assay for 
tTMB assessment in patients with unresect-
able or metastatic TMB high solid tumors 
using a 10mut/Mb cut- off to decide in which 
patients to start pembrolizumab.16

TMB assessment typically relies on tumor 
tissue obtained by core needle biopsies or 
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surgical resection, which require invasive procedures with 
inherent risk of complications.17 Furthermore, biopsies 
may yield scant amounts of tissue, resulting in insufficient 
quality and quantity to provide DNA for complete molec-
ular analysis and TMB estimation.18 19 Blood- based TMB 
(bTMB) may provide an alternative for those patients 
who are not amenable to undergo invasive procedures, by 
allowing minimally invasive sampling. In addition, bTMB 
may defy spatial intratumoral heterogeneity between 
primary and metastatic lesions and prevent sampling bias 
by examining a pool of circulating tumor DNA (ctDNA) 
derived from all tumor sites.20 21

TMB is a continuous numeric variable, although for 
practical predictive use TMB is often categorized in TMB 
high versus low. bTMB thresholds are highly depen-
dent on the used sequencing panels and often based 
on their equivalence with tTMB cut- offs, resulting in 
different bTMB cut- offs ranging from 6, 10, 16 to 20 mut/
Mb.11 22–24 Previous studies have shown bTMB can also be 
used as a predictive biomarker in patients with metastatic 
NSCLC treated with ICI.11 23 However, bTMB assessment 
is hampered by both biological and technical challenges. 
Biologically, a low tumor burden can be due to early 
stage disease or poorly shedding tumors and when the 
level of ctDNA in plasma is low, tumor mutations may be 
missed.18 25 Technical challenges include TMB overesti-
mation when variants associated with clonal hematopoi-
esis of indeterminate potential (CHIP) are mistaken for 
tumor specific variants, whereas TMB underestimation 
may be the result of genomic alterations below detec-
tion limit.26 27 A larger panel size and increased depth of 
coverage are associated with more precise TMB estima-
tions, but also with increased healthcare costs.19

The aims of this research study were: (1) to establish a 
counting- based bTMB method which accurately reflects 
TMB in patients with all stages of NSCLC by comparing 
bTMB to tTMB using panel and whole exome sequencing 
(WES) approaches applied to tumor, plasma, and germ-
line DNA, (2) to determine the effect on the tTMB to 
bTMB correlation of sample- specific factors such as 
disease stage and cfDNA input as well as technical factors 
such as the bTMB and tTMB cut- off and the mutant variant 
allele frequency (AF) cut- off, and (3) to determine the 
minimum panel size required for a diagnostically useful 
positive predictive value (PPV) of bTMB classification in 
NSCLC.

METHODS
Study samples
Samples used in this study were derived from residual 
specimens from the Lung cancer Early Molecular Assess-
ment (LEMA) trial (NCT02894853). The original speci-
mens have been obtained from treatment naïve patients 
diagnosed with stage I- IV NSCLC, included in 10 hospi-
tals in the Netherlands from 2016 until 2020. This study 
included patients based on availability of residual spec-
imens from pre- treatment plasma, tumor tissue, and 

peripheral blood mononuclear cells (PBMCs) (n=183, 
online supplemental figure S1A). This research study was 
approved by the local institutional review board.

Approximately, 8–10 mL blood was collected per patient 
in either K2- EDTA tubes or Cell- Free DNATM Blood 
Collection Tubes (Streck, Omaha, USA). The blood 
samples collected within 14 days prior to tumor tissue 
collection were centrifuged at 1700 g for 10 min at room 
temperature. Plasma samples were then spun at 20 g for 
an additional 10 min and stored at −80°C. Time between 
plasma separation and storage was less than 120 hours.

Library preparation and next generation sequencing
Targeted NGS was performed on DNA isolated from 183 
formalin- fixed paraffin- embedded tissue (FFPET) speci-
mens, 178 plasma, and 170 whole blood samples using 
modified versions of the AVENIO Tumor Tissue and 
ctDNA Analysis workflows (online supplemental tables 
S1,S2).

Tumor tissue
Anatomic pathologists scored nucleated tumor cell percent-
ages and indicated the most tumor- dense regions for isola-
tion based on H&E stained slides. Depending on tumor size, 
5–10 FFPE slides of 10 µm were used for DNA isolation after 
microdissection. Immunohistochemistry testing for PD- L1 
expression was performed according to the local standard of 
care in the healthcare facility where subjects were enrolled. 
Various PD- L1 testing was performed using clones such as 
22C3, E1L3N, SP142, and SP263. The mass of DNA isolated 
from FFPET was measured using the Qubit High Sensitivity 
dsDNA kit, and the quality of DNA was assessed using a qPCR- 
based method.28 Eleven to 260 ng of DNA was available and up 
to 200 ng was used as input for library preparation. DNA was 
treated with Uracil N- Glycosylase and then fragmented using 
enzymatic fragmentation. UMI- containing adapters were 
ligated onto the DNA fragments, and the library was ampli-
fied with sample index containing PCR primers targeting 
the adapters. Half of the PCR product of each sample was 
captured with a ~2.2 megabase (Mb) panel designed for pan- 
cancer genotyping and a subset of samples was also captured 
with the ~1.1 Mb panel described below. Each library was 
amplified to produce a final sequencing library and libraries 
were pooled and sequenced on the NovaSeq with 2×150+2×8 
reads.

PBMCs
DNA was isolated from 20 uL of whole blood samples with 
a protease and bead- based method. The library prepara-
tion procedure for whole blood DNA was identical to the 
procedure for tumor tissue except no qPCR- based quality 
check was performed, and a consistent 50 ng of input 
DNA was used for library preparation.

Plasma
cfDNA was isolated from an average of 4.2 mL of plasma 
(median: 4 mL; range 1–6 mL). The mass of cfDNA was 
measured using the Qubit High Sensitivity dsDNA, and the 
quality of cfDNA samples was assessed using a qPCR- based 

https://dx.doi.org/10.1136/jitc-2021-004064
https://dx.doi.org/10.1136/jitc-2021-004064
https://dx.doi.org/10.1136/jitc-2021-004064


3Schuurbiers M, et al. J Immunother Cancer 2022;10:e004064. doi:10.1136/jitc-2021-004064

Open access

method.29 The qPCR- based method was used to adjust the 
calculated input mass of DNA (eg, if a sample was found to be 
33% high molecular weight DNA, and 75 ng of total DNA was 
added, it was considered 50 ng of cfDNA input). Up to 50 ng of 
cfDNA was used as input for library preparation. In practice, 
3–50 ng of cfDNA was used as input (mean: 27 ng; median 
24 ng). DNA was prepared for ligation and UMI- containing 
adapters were ligated onto the DNA fragments, followed 
by library amplification with sample- index containing PCR 
primers targeting the adapters. Half of the PCR product of 
each sample was captured with the lung TMB panel.

Lung TMB panel design
Approximately 300 kb of the panel was designed using 
known drivers and combined with a TMB module 
of ~800 kb in size to generate a 1.1 Mb targeted TMB 
panel. The approach for the TMB module used the 
CAPP- Seq monitoring panel design algorithm and relied 
on the prioritization of highly recurrent mutations 
present in TCGA cohorts of NSCLC.27 30 Two- third of the 
samples were used for training, and one- third was held 
out for testing the targeted regions. Successive subsets 
of the panel were used to measure the impact of panel 
size on TMB estimates. Seventeen panels were gener-
ated in- silico, with the smallest containing only medical 
content (300 kb) and the largest 1.1 Mb. Panels in the 
middle of the size gradient were constructed by gradually 
adding ~50 kb TMB module tiles per intermediate panel, 
ordered by mutation prevalence.

Variant calling and filtering method for TMB
Single nucleotide variants (SNVs) and short insertions 
and deletions (InDels) were called from sequencing 
data using AVENIO Tumor Tissue and ctDNA Analysis 
variant callers, which are based on the CAPP- Seq variant 
calling methods.27 31 32 For both tissue and plasma TMB, 
variants that recurred more than five times in the cohort 
of the same sample type sequenced by the same capture 
panel were removed. Driver and suppressor variants 
were filtered out, as were germline variants identified 
from public databases including ExAC, dbSNP, and 1000 
genomes. The following strategies were used: (1) in the 
absence of paired PBMC samples, variants were counted 
towards TMB after filtering based on an allele frequency 
(AF) of 5%–40% for tissue, and 0.3%–30% for plasma, 
(2) when paired PBMC samples were available, PBMC 
variants were filtered from the paired tissue sample when 
the AF was larger than 50% of the AF detected in tissue, 
or when the PBMC variant AF was larger than 30%. After 
filtering, variants with AF greater than 0.3% were counted 
towards TMB.

Tumor informed tumor burden assessment
Variants in the lung TMB panel genome regions that over-
lapped with matched plasma samples were used for tumor- 
informed tumor burden estimation (average four variants 
per patient, range 1–16 variants). The variant AF for each 
of these variants was calculated using barcode- deduped, 

background polished data as previously described, and 
the average of these AFs resulted in a mean AF for each 
sample.27 TMB was defined as the total number of exonic 
SNVs and InDels per Mb.

In-silico immunotherapy response prediction
Supplementary information was obtained from the Rizvi 
et al cohort which included 34 patients with NSCLC 
treated with monotherapy pembrolizumab.7 The median 
age of this cohort was 63 years and 83% of patients had 
an adenocarcinoma and 11% squamous cell carcinoma. 
Further details are available via cBioPortal: http://
www.cbioportal.org/study/summary?cancer_study_ 
id=luad_mskcc_2015. Table S3 of the original publica-
tion contains detailed clinical information of individual 
patients, including DCB, PFS in months and events 
(event or censure for PFS). Table S5 of the original 
publication contains the mutation list of WES using hg19 
build. Only SNV mutations were included, in total 9049 
mutations. SnpEff with genome version GRCh37.75 was 
used to annotate mutations, and 8708 nonsynonymous 
mutations were kept for TMB calculation after excluding 
annotations of synonymous_variant, non_coding_tran-
script_exon_variant, intron_variant, upstream_gene_
variant, non_coding_transcript_exon_variant, and 
downstream_gene_variant.

We intersected the mutation list with the tumor tissue, 
lung TMB and 577 kb panels after hg38 to hg19 conver-
sion. TMB calling for WES and the three panels was 
performed by first removing driver and suppressor muta-
tions and then limiting to variant AF >5%. To calculate the 
WES TMB score, a 32 Mb exome was assumed. A nonsyn-
onymous mutation count of 178 in WES was used in the 
Rizvi study to separate TMB high (TMB- H) and TMB low 
(TMB- L) values. Using our calculation, 19 patients of this 
cohort were TMB- H, and 15 patients were TMB- L.

Statistical analyses
The linear correlations were characterized by R squared, 
calculated with the ‘sklearn’ package in python, and 
Spearman’s rho, calculated with the ‘scipy’ package in 
python. Intergroup comparisons were performed using 
one- way ANOVA or unpaired two- samples Wilcoxon test 
with basic R packages. Since our reference (ie, tTMB) is 
known to contain uncertainty, the agreement between 
tTMB and bTMB will be assessed using positive and nega-
tive per cent agreement (PPA, NPA) terminology. The 
Kaplan- Meier survival analysis was performed with the R 
packages ‘survival’ and ‘survminer’, using the ‘log- log’ 
CI. AF for mutations was calculated as the number of 
deduped reads supporting that mutation divided by the 
deduped reads covering that genomic position.

RESULTS
Cohort characteristics
Paired tumor tissue and plasma samples obtained from 
183 patients with stage I- IV NSCLC were included in 
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this study. In this cohort, treatment naïve patients were 
diagnosed with stage I, II, III and IV NSCLC disease in 
26% (n=48), 14% (n=26), 20% (n=36), and 40% (n=73), 
respectively. Adenocarcinoma was a predominant histo-
pathological subtype across all stages and squamous 
cell carcinoma was found to be more common among 
patients with stage I- III disease than patients with stage 
IV disease (27% vs 11%). The clinical characteristics of 
the assessed cohort are represented in table 1 and online 
supplemental table S1.

Tissue based TMB assessment
First, a ~2.2 Mb panel designed for solid tumor genotyping 
was used to establish tissue- based TMB calls on 183 tumor 
tissue specimens using a hybrid- capture based approach 
optimized for FFPET (see Methods section). In total, 94% 
of samples (172/183) met the recommended sequencing 
depth requirements to enable sensitive variant detection 
at 5% AF (online supplemental figure S1B–D and table S2, 
3). Matched PBMCs were also analyzed, and the PBMC- 
based germline filtering method was compared with an 
AF and database- based germline filtering method (online 
supplemental figure S2A). For a subset of tissue samples 
with high mean variant AF, the PBMC- based germline 
filtering resulted in higher TMB values than the AF and 
database- based method, suggesting that the AF and data-
base method discards some true somatic variants from 
high purity tissue samples (online supplemental figure 

S2A). Therefore, in this study, only samples with paired 
germline were considered for TMB assessment (n=160).

Despite similar TMB distribution, the mean TMB 
from this dataset was higher than the TCGA lung dataset 
(13.9 vs 7.6) (figure 1A,B).18 This could be due to a 
higher sequencing depth in our approach with a mean 
unique depth of 1556 vs ~100–120 for TCGA, leading to 
a higher sensitivity for low AF (<10%) variants. Similar to 
other TMB studies in lung cancer cohorts, TMB was not 
associated with variant mean AF (online supplemental 
figure S2B).19 26 Hence, it was assumed that missing 
low AF variants will not lead to artificially lowered TMB 
values. Additionally, WES was performed in a subset of 
the samples (n=11) and a correlation was seen in TMB 
estimation between WES and the tumor tissue panel (R 
squared=0.65; Spearman’s rho=0.74; online supplemental 
figure S2C), confirming the ability of this panel to esti-
mate TMB. Also, in- silico comparison of panel content 
between the FDA- approved F1CDx panel and the tumor 
tissue panel showed good correlation (R squared=0.99, 
Spearman’s rho=0.99; online supplemental figure S2D).

As previously described by others,26 TMB values were 
not associated with disease stage (figure 1C, online 
supplemental figure S2F) and no correlation was seen 
between TMB values and PD- L1 expression or tumor 
histology (online supplemental figure S2E,G). Higher 
TMB values were found in patients with a smoking history 

Table 1 Demographic and baseline characteristics from patients with NSCLC in this study

All patients
N=183

Stage I–III
N=110

Stage IV
N=73

Median age in years, range 66 (39–90) 68 (40–90) 63 (39–87)

Sex, n (%) Male 91 (50) 59 (54) 33 (45)

  Female 92 (50) 51 (46) 40 (55)

Smoking status, n (%) Active 59 (32) 30 (27) 29 (40)

  Former 88 (48) 60 (54) 28 (38)

  Never 10 (6) 3 (3) 7 (10)

  Unknown 26 (14) 17 (16) 9 (12)

Tumor histology, n (%) Adenocarcinoma 129 (70) 72 (65) 57 (78)

  Squamous cell carcinoma 38 (21) 30 (27) 8 (11)

  NOS 11 (6) 4 (4) 7 (10)

  Other 5 (3) 4 (4) 1 (1)

Tissue origin, n (%) Primary tumor 130 (71) 101 (92) 29 (40)

  Lymph nodes 24 (13) 8 (7) 16 (22)

  Metastasis 22 (12) 1 (1) 21 (29)

  Pleural fluid 7 (4) 0 (0) 7 (9)

PD- L1 status, n (%) <1% 80 (44) 43 (39) 37 (51)

  1%–50% 44 (24) 33 (30) 11 (15)

  >50% 43 (24) 22 (20) 21 (29)

  Unknown 16 (8) 12 (11) 4 (5)

NOS, not otherwise specified ; NSCLC, non- small cell lung cancer.
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in comparison with never smokers (online supplemental 
figure S2H,I). No difference was seen in TMB values 
and tumors with or without mutations in EGFR, BRAF, 
KRAS, or STK11 (p>0.1) (online supplemental figure 
S3A–C,F). However, tumors with TP53 mutations showed 
significantly higher TMB than those without (p=0.0014), 
a similar trend was also seen in tumors with KEAP1 muta-
tions (p=0.057) (online supplemental figure S3D,E).

To evaluate the panel design and filtering methods, an 
in- silico assessment was performed with the published 

WES data from the clinical NSCLC cohort by Rizvi et 
al.7 We adopted a WES- based categorical cut- off of 10 
mutations/Mb suggested by a TMB harmonization study 
across multiple institutions. An in- silico intersection was 
applied to the tumor tissue panel using the Rizvi cohort, 
resulting in a linear correlation between WES TMB and 
tumor tissue panel intersection TMB (online supple-
mental figure S4A). The WES cut- off was converted 
accordingly to a corresponding 9.4 mutations/Mb cut- off 
of the tumor tissue panel.15 Applying the WES cut- off, 8 

Figure 1 Tissue TMB assessment using a 2.2 Mb tumor tissue panel. (A,B) Histogram of TMB (mut/Mb) in tissue samples 
sequenced by tumor tissue panel filtered for germline variants (A; n=160) is compared with TMB (mut/Mb) from TCGA WES 
lung cancer adenocarcinoma and squamous cell carcinoma samples (B; n=1058). (C) TMB (mut/Mb) in tissue samples filtered 
for germline variants separated by stage of disease. (D) Comparison of TMB (mut/Mb) by in- silico validation of our tumor tissue 
panel in the Rizvi et al dataset which included patients with DCB (n=14) and NDB (n=16), p=0.04. Variant calls are restricted to 
variants overlapping with the tumor tissue panel that were present at >5%. The diamond symbol (♦) in the boxplot represents 
outliers. (E) Kaplan- Meier curve showing progression- free survival when using our tumor tissue panel for patients from the Rizvi 
et al cohort. The dataset is split in high vs low using a cut- off of 9.4 mutations/Mb as determined by variants present in the 
tumor tissue panel regions. DCB, durable clinical benefit; NDB, no durable benefit; NSCLC, non- small cell lung cancer; TMB, 
tumor mutational burden; WES, whole exome sequencing.
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samples were TMB- high and 26 were TMB- low, and with 
the tumor tissue panel cut- off, 11 were TMB- high and 23 
were TMB- low. Using the converted TMB cut- off in the 
tissue panel, a significant separation of patients with and 
without DCB (figure 1D; p=0.04), as well as prediction 
of PFS (figure 1E; HR=3.30) was seen which is similar to 
the performance of WES (online supplemental figure 
S4B, C; p=0.02 and HR=3.32). These analyses support the 
utility of this tumor tissue panel in identifying patients 
who benefit from ICI.

Panel design for plasma-based TMB assessment
High costs for NGS- based bTMB assays are driven by the 
required unique depth for ctDNA detection in plasma 
in combination with a broad panel size. In- silico analyses 
based on TCGA data showed specific variant enrichment 
per Mb in the panel, suggesting a smaller panel can be 
used to overcome the statistical sampling concerns and 
minimize variability (figure 2A). To minimize the cost 
per- sample, a smaller plasma panel targeted for lung 
TMB estimation was designed using the CAPP- Seq panel 
design algorithm, maximizing expected variants in the 
panel region (Methods section).27 The panel design 
started with a core of ~300 kb covering key content, 
followed by the addition of regions of ~50 kb at a time 
to maximize the number of NSCLC relevant variants 
covered, resulting in a final lung TMB panel of approxi-
mately 1.1 Mb, covering exonic regions of 965 genes. This 
Lung TMB panel is smaller compared with most of the 
commercially available panels that assess TMB including 
the 2.2Mb FoundationOne CDx panel covering 324 
genes, the 2.15Mb Guardant OMNI panel covering 500 
genes, the 1.97Mb TruSight Oncology 500 panel covering 
523 genes, and the 1.53Mb MSK- IMPACT panel covering 
468 genes.15

Plasma samples of 178 patients were analyzed with the 
lung TMB panel (1.1 Mb) using a hybrid- capture based 
approach optimized for cfDNA. Variants were called 

using a bioinformatic pipeline designed for cfDNA (see 
Methods section). In our cohort, 62% of plasma samples 
derived from patients across all stages and 70% of samples 
from patients with stage IV disease yielded at least 20 ng of 
cfDNA input. As expected, unique depth tracked closely 
with input mass of cfDNA and samples with more than 
30 ng of cfDNA input showed greater than 3000× depth, 
which is sufficient to enable highly accurate variant calling 
at 0.5% AF at most positions across the panel (online 
supplemental figure S5, table S4).

To evaluate this lung TMB panel with regard to clinical 
outcomes, a similar in- silico assessment was performed 
by calculating TMB intersected to the panel used for 
the Rizvi cohort.7 The 10 mutation/Mb WES- based cut- 
off corresponded to 19.3 mutations per Mb in the lung 
TMB panel. The lung TMB panel showed stronger sepa-
ration in comparison with WES between patients with and 
without DCB (figure 2B, p=0.002), as well as improved 
prediction of PFS (figure 2C, p=0.0039, HR=4.023). When 
considering only non- synonymous mutations and the cut- 
off described by Rizvi et al of 178 SNVs corresponding 
to 11.6 mut/Mb in the lung TMB panel, the lung TMB 
panel maintained significant separation for DCB and 
PFS (online supplemental figure S4D–G). These analyses 
lend further credence to the potential utility of a smaller 
panel designed specifically for lung TMB.

TMB high calls in plasma samples have high PPV
The TMB score is impacted by several factors including 
panel content and design, QC parameters such as 
coverage, tumor purity, contamination, and bioinfor-
matics analysis methods. Also, differences in sequencing 
depth can affect the detection rate of variants and conse-
quently TMB calculation. Since our tissue variant calling 
used a higher depth of sequencing and showed higher 
TMB values than previous approaches (figure 1A,B),33 
we used a TMB cut- off in which ~40% of samples were 
found to be TMB high in the tissue data which resulted 

Figure 2 In- silico lung cancer TMB panel assessment. (A) In- silico comparison of TCGA lung cancer data as determined from 
WES on the x- axis vs designed lung cancer TMB panels on the y- axis. Three panel subsets are shown with a size of 358 kb 
(red), 577 kb (blue), and the full 1130 kb (green). (B) Comparison of TMB by in- silico validation of the variants present in lung 
TMB panel in the Rizvi et al dataset which included patients with DCB (n=14) and NDB (n=16), p=0.002. The diamond symbol 
(♦) in the boxplot represents outliers. (C) Kaplan- Meier curve showing progression- free survival for patients from the Rizvi et 
al cohort. The dataset is split by high vs low TMB, using a cut- off of 19.6 mutations/Mb as determined by the lung TMB panel. 
DCB, durable clinical benefit; NDB, no durable benefit; NSCLC, non- small cell lung cancer; TMB, tumor mutational burden; 
WES, whole exome sequencing.
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in a cut- off of 16 mut/Mb for the tumor tissue panel. This 
method is in line with previously reported approaches, 
including the FDA- approved F1CDx assay, where a cut- off 
of 10 mut/mb resulted in a TMB high cohort of 44.2% 
and 43.8% of samples in CheckMate 227 and CheckMate 
568, respectively.34–36

To compare tumor tissue panel based TMB values with 
the TMB values from the lung TMB panel, a subset of 
tissue samples was recaptured with the lung TMB panel, 
and an equation relating TMB values between the two 
panels was determined (R squared=0.80; figure 3A). 
Based on the above- mentioned analysis, 16 mutations per 
Mb in the tissue panel were found to correspond to 42 
mutations per Mb in the lung TMB panel (figure 3A).

The concordance between categorical TMB values 
(TMB- H vs TMB- L) between plasma and tumor was 
assessed using a tTMB cut- off of 10–24 mutations/
Mb (table 2, figure 3B). The PPV for plasma TMB- H 
remained high (91%–100%) when tumor cut- offs were 
16 mut/Mb or below, corresponding with plasma cut- offs 
of 42 mut/Mb or below, demonstrating accurate TMB- H 
calls in plasma. The PPA of detecting TMB- H from 
plasma remained low across most thresholds (24%–32%). 
As previously reported by others studies, samples classi-
fied as TMB- H in tissue may show lower TMB values in 
plasma.11 37 38 This may be due to a low tumor burden 
at earlier stages of disease as well as poorly shedding 
tumor types, all of which lead to a lower ctDNA, a lower 

mutation count, and hence reduced sensitivity for variant 
detection.39

Factors that impact the positive per cent agreement of plasma 
TMB
Although the PPV of bTMB- H calls is high, PPA (or sensi-
tivity) is relatively low when all samples are considered. 
We next defined factors that drive bTMB PPA in NSCLC 
plasma samples and sought to determine whether there 
was a subset of tumor samples in which higher bTMB PPA 
could be achieved. Achieving high ctDNA PPA in general 
is challenged by small amounts of available cfDNA in 
specimens derived from early stage disease or tumors with 
low shedding rates. To answer the question, we looked at 
the impact of input mass and tumor burden on bTMB 
assessment.

First, increased input mass of cfDNA showed an 
improved correlation between tissue and plasma TMB 
(online supplemental figure S6A). Samples with less than 
20 ng of cfDNA input (38%) only rarely showed TMB- H 
values, regardless of the tissue TMB value, while samples 
with at least 20 ng of cfDNA input (62%) showed a correla-
tion with tissue TMB (figure 4A, R squared 0.00045–0.084 
vs 0.28). These data suggest using at least 20 ng of input 
cfDNA is important to ensure sufficient depth for low 
AF mutation calling. Previous studies have found similar 
results and also advice a minimum of 20 ng of cfDNA to 
accurately and reproducibly assess bTMB.11

Figure 3 Comparison of plasma TMB with tumor tissue TMB. (A) A subset of tumor tissue samples sequenced by the tumor 
tissue panel were recaptured with the lung TMB panel. The TMB values by the tumor tissue panel correlated with the lung TMB 
panel: TMB/Mb=2.28 * tissue panel TMB/Mb+5.84. (B) Tissue TMB measured by tumor tissue panel (mut/Mb) vs plasma TMB 
measured by lung TMB panel (mut/Mb) for all samples (n=143). The linear relationship between the tissue and lung TMB panels 
determined in (A) is shown in blue, and TMB cutoffs corresponding to 16 mutations/Mb in the tissue panel are shown with red 
lines. PPA of plasma TMB high calls (percentage of tissue TMB high samples called high in plasma) and positive predictive 
value of plasma TMB high calls (percentage of plasma TMB high samples called high in tissue) are shown. PPA, positive per 
cent agreement; PPV, positive predictive value; TMB, tumor mutational burden.

https://dx.doi.org/10.1136/jitc-2021-004064


8 Schuurbiers M, et al. J Immunother Cancer 2022;10:e004064. doi:10.1136/jitc-2021-004064

Open access 

Second, to define the relationship between tumor 
burden and TMB PPA, we used a tumor- informed 
approach to calculate tumor burden in plasma samples. We 
determined a list of true tumor- specific variants based on 
paired FFPET and PBMC per patient (n=143 with plasma, 
PBMC, and FFPET samples that passed sequencing QC 
metrics). In the patient’s corresponding plasma sample, 
we sought the mean AF of the known tumor specific vari-
ants. The correlation between tissue and plasma TMB 
was examined using different tumor- informed mean AF 
cutoffs (online supplemental figure S6B). Samples with a 
tumor burden greater than 0.1% mean AF (42%) showed 
sufficient correlation in TMB values between tissue and 
plasma, while those with a tumor burden below showed 
low correlation (R squared 0.32 vs 0.096, figure 4B).

Tumor burden is known to correlate with disease stage 
(online supplemental figure S7). In samples derived from 
patients with stage I, II, III, and IV disease, the PPA of 
bTMB increased from 0% (no bTMB- H results in stage I), 
11%, 35% to 54%, respectively. The strongest correlation 
between tissue and plasma TMB is seen in patients with 
NSCLC with stage IV disease, correlation decreases with 
stage III, and no correlation is found in the earlier stages 
(R squared of 0.45, 0.29, and 0.01, figure 4C).

Last, we examined the impact of sample filtering strate-
gies that combined input mass, tumor burden, and stage 
information (figure 4D, online supplemental figure 8, 
tables S7,8). When restricting to samples from patients 
with stage IV disease and with >20 ng cfDNA input, at a 
tissue TMB cut- off of 16 mutations/Mb, TMB- H showed 
a 100% NPA, 63% PPA, 79% NPV, and 100% PPV 
(figure 4E, online supplemental table S10).

Maintaining TMB performance while minimizing the 
sequencing panel
To examine whether a smaller panel would be able to 
determine TMB, subsets of the lung TMB panel were 
constructed ranging from 300 kb to 1.1 Mb. The panel 
subsets were formed by gradually adding ~50 kb tiles 
including only exonic regions from non- driver genes, 
in order of mutation prevalence (online supplemental 
table S6). A panel subset of at least ~577 kb maintained 
test performance in comparison to the 1.1 Mb lung 
TMB panel (figure 5A; R squared=0.48 and Spearman’s 
rho=0.66). Using the ~577 kb panel and a tissue TMB cut- 
off of 16 mut/Mb, the 557 kb panel maintained perfor-
mance in comparison to the 1.1 Mb panel with 95% NPA 
and 30% PPA (figure 5B vs figure 3B, online supplemental 
table S11 vs table 2). When restricting to stage IV samples 
with at least 20 ng cfDNA input, PPA increased to 63% 
(figure 5C and online supplemental table S12). These 
data show that, when designed to maximize expected 
variants in the panel regions, a panel approximately half 
the size of what has been previously described, is able to 
accurately call plasma TMB.

Finally, to assess whether the ~577 kb panel TMB is clin-
ically relevant, in- silico analyses of the data from Rizvi et al 
were reassessed with this panel subset. A significant differ-
ence in TMB values between patients with and without 
DCB was shown (figure 5D; p=0.006), and PFS was signifi-
cantly longer in patients classified as TMB- H with the lung 
panel subset (figure 5E; HR=7.32, 95% CI 3.14 to 17.06).

DISCUSSION
This study showed that by selectively designing a specific 
NSCLC panel for TMB, trustworthy plasma TMB- high 
results could be achieved with a PPV of 95%. However, 
the inherent challenge of low levels of cfDNA remained, 

Table 2 Different TMB cut- off values for tissue and plasma TMB high vs low in all samples (n=143) sequenced by tumor 
tissue panel and lung TMB panel

Tumor cut- off 
(mut/Mb)

Plasma cut- off 
(mut/Mb)

Both
high

Both
low

T- High
P- Low

T- Low
P- High

P- High 
PPA

P- High 
NPA

P- High 
PPV

P- High 
NPV

10 28 0.21 0.27 0.50 0.02 0.30 0.93 0.91 0.35

12 33 0.18 0.29 0.51 0.01 0.26 0.95 0.93 0.37

14 37 0.17 0.42 0.41 0.00 0.29 1.00 1.00 0.50

16 42 0.15 0.52 0.32 0.01 0.31 0.99 0.95 0.62

18 46 0.12 0.58 0.27 0.03 0.30 0.95 0.81 0.68

20 51 0.08 0.66 0.22 0.04 0.28 0.94 0.67 0.75

22 56 0.08 0.68 0.22 0.03 0.26 0.96 0.73 0.76

24 60 0.06 0.72 0.20 0.02 0.24 0.97 0.75 0.79

The detailed patient counts in 2 by 2 matrices are represented in online supplemental table S9.
Bold values indicate a tTMB cutoff of 16 mut/Mb which was used in the further analyses.
NPA, negative per cent agreement; proportion of tissue TMB low samples called low in plasma; NPV, negative predictive value; proportion of 
plasma TMB low calls called low in tissue; P, TMB values in plasma; PPA, positive per cent agreement; proportion of tissue TMB high samples 
called high in plasma; PPV, predictive positive value ; proportion of plasma TMB high samples called high in tissue; T, TMB values in tissue; 
TMB, tumor mutational burden.
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which may be explained by non- shedding tumors or low 
clinical tumor burden due to early stage disease. Inter-
estingly, PPA (sensitivity) of plasma TMB improved up 
to 63% in samples derived from patients with metastatic 
NSCLC.

To differentiate under which conditions a bTMB- L call 
can be trusted to accurately represent a TMB- L tumor, 
we assessed key features including input mass, tumor 
burden, and stage of disease. First, plasma samples with 
greater than 20 ng of cfDNA input were significantly 
more likely to accurately reflect tissue TMB, which is in 
line with previous research that typically recommends 
either 20 or 30 ng of input for cfDNA assays.11 40 In our 
study, 62% of samples across all stages and 70% of stage IV 
samples yielded at least 20 ng of cfDNA input. Although 
this yield is imperfect, tissue samples often fail to provide 
adequate DNA yield for TMB estimation as well due to 
insufficient sampling or poor tissue quality. In previous 

studies, 58%–63% of tissue samples provided sufficient 
DNA quantity for TMB estimation.36 40 To maximize the 
proportion of patients with sufficient cfDNA for NGS- 
based bTMB assessment, at least 4 mL of plasma should be 
isolated for each patient, and collection of more plasma 
may improve the PPA.

Second, tumor burden strongly correlated with the 
PPA of bTMB calling. Others have shown that a low 
AF <1% is associated with a higher rate of ctDNA tech-
nical discordance and a lower PPV.41 In this study, paired 
tissue samples enabled an accurate and sensitive method 
for tumor burden assessment using known tumor vari-
ants. When restricting to a mean AF of at least 0.1%, 
bTMB- H values showed a PPA of 64%. However, in the 
clinical setting, a paired tumor sample will typically not 
be available when assessing bTMB. Instead of AF, disease 
stage information may help us to determine the PPA of 
bTMB assessment. While TMB- H PPA across all samples 

Figure 4 cfDNA input, tumor burden and stage of disease impact PPA of blood- based TMB. (A) Impact of cfDNA input mass, 
divided into three categories (<10 ng, 10–20 ng, and 20–50 ng), on the correlation between tissue and plasma TMB after germline 
filtering. (B) Impact of mean AF on the correlation between tissue and plasma TMB after germline filtering. For each plasma 
sample, the mean AF in plasma of variants found in the tumor sample was used to estimate tumor burden, resulting in a tumor- 
informed mean AF. Points are colored based on mean AF of <0.1% (red) or >0.1% (blue). Only samples with >10 ng cfDNA input 
mass and with variants detected by the tumor tissue panel which overlap with regions of the lung TMB panel are included in 
this plot. (C) Impact of stage of disease on the correlation between tissue and plasma TMB. Only samples with >10 ng cfDNA 
input mass are included in this plot. (D) The effect of a combination of cfDNA input mass and stage of disease on PPA for 
TMB high calls in plasma based on a 16 mut/Mb cut- off in tTMB is shown on the Y- axis. The cell- free DNA input mass was 
categorized into >0, 10, 20, 30, 40, 50 ng and is shown on the X- axis. Stage of disease was categorized as I–IV, II–IV, III–IV, or IV 
and is represented by the color of the bars. The number of samples included in the analysis is listed above each bar. (E) Tissue 
TMB vs plasma TMB for stage IV samples with >20 ng cfDNA input mass (n=39). The linear relationship between the tissue and 
lung TMB panels is shown in blue, and TMB cutoffs corresponding to 16 mutations/Mb in the tissue panel are shown with red 
lines. PPA and PPV of plasma TMB high calls (as defined in figure 3B) are shown. AF, allele frequency; PPA, positive per cent 
agreement; PPV, positive predictive value; TMB, tumor mutational burden.
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in this study was 30%, it more than doubled to 63% when 
restricting to samples derived from patients with stage IV 
disease, demonstrating that setting thresholds for input 
mass and stage of disease improves bTMB PPA. Interest-
ingly, this PPA is similar to other molecular plasma- based 
methods such as the ddPCR test for EGFR detection.42 
Given the ease of access to peripheral blood versus tumor 
tissue, bTMB may be considered as the first test in clinical 
setting to assess TMB. With the current test performance, 
a bTMB- high result would be trustworthy; however, in 
case of a low bTMB result, physicians should subsequently 
consider a tissue- based TMB assessment. In this scenario, 
obtaining tumor tissue would not be necessary for patients 
with a bTMB- high result, thereby reducing the number of 
invasive procedures.

Since TMB is a continuous numeric variable rather 
than a discrete one, it is challenging to determine the 
optimal cut- off to predict ICI benefit. Several studies 
determined bTMB cutoffs based on comparisons with 

tTMB cutoffs, lacking a clinical perspective.11 23 24 36 
Recently, studies have identified bTMB cutoffs based on 
clinical improvement in terms of OS and PFS.22 40 43 To 
test the practicability of our panel in relation to clinical 
outcomes, an in- silico analysis was performed using previ-
ously published data.7 In this analysis, clinical outcome 
differentiation by our lung TMB panel was in line with 
WES data, suggesting that the methods described here 
have clinical potential.

A key limitation for integration of plasma- based TMB 
in daily clinical care is the high cost, caused by the neces-
sity of high depth of unique coverage to reliably detect 
low AF variants in plasma. Therefore, plasma panels are 
typically limited in breadth to ensure sequencing costs 
remain affordable. The traditional TMB sequencing 
panels cover at least 1 Mb of exonic regions to ensure 
accurate TMB assessment.19 23 44 45 Here, we demonstrated 
that accurate TMB calling can be achieved using smaller 
panels by targeting specifically recurrently mutated 

Figure 5 An NGS panel as small as 577 kilobases enables accurate plasma TMB calls. (A) Correlation metrics (R squared 
in red; Spearman’s rho in blue) between tissue TMB and plasma TMB using different lung TMB panel subsets. Only samples 
with >10 ng cfDNA input mass and at least one variant captured were included. In smaller sub- sized panels, less variants could 
be captured, resulting in exclusion of 4% of the samples in the 358kb panel and 2% in the 423 to 577 kb panels. (B) Tissue 
TMB vs plasma TMB with the 577 kb panel for all samples (n=143). The linear relationship between tissue and lung TMB panels 
is shown in blue, and TMB cutoffs corresponding to 16 mutations/Mb in the tissue panel are shown with red lines. (C) Tissue 
TMB vs plasma TMB with the 577 kb panel for stage IV samples with >20 ng cfDNA input (n=39). The linear relationship between 
tissue and lung TMB panels is shown in blue, and TMB cutoffs corresponding to 16 mutations/Mb in the tissue panel are shown 
with red lines. (D) Comparison of TMB by in- silico validation considering only variants in the 577 kb lung TMB panel subset from 
the Rizvi et al dataset which included patients with DCB (n=14) and NDB (n=16). (E) Kaplan- Meier curve showing progression- 
free survival for patients from the Rizvi et al cohort. The dataset is split by high vs low TMB, considering only variants in the 
577 kb lung TMB panel subset (TMB high: >20.8 mutations/Mb; TMB low: <20.8 mutations/Mb). DCB, durable clinical benefit; 
NDB, no durable benefit; TMB, tumor mutational burden.
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regions. A 577 kb plasma panel maintained 95% PPV for 
TMB calling, representing a potential 40% reduction 
in sequencing costs relative to a 1 Mb panel. Notably, 
approximately half of the 577 kb panel targets relevant 
driver and resistance mutations, implying if a panel were 
designed exclusively for TMB assessment, panel size and 
sequencing costs may be further reduced.

In conclusion, sufficient PPV for bTMB- H can be 
achieved with a novel cost- efficient and highly accurate 
TMB panel that is significantly smaller than the 1 Mb 
minimum previously established.46 As observed in other 
bTMB studies, PPA for blood based TMB assessment was 
lower than for matched tumor samples. This could be 
improved by setting criteria including amount of cfDNA, 
tumor- informed mean AF’s, or stage of disease informa-
tion. For patients with stage IV NSCLC in particular, bTMB 
assessment can be performed alongside somatic mutation 
detection in cfDNA with a single NGS assay. However, in 
case of bTMB low values, reflexing to a tissue- based TMB 
assessment may be prudent. These results warrant consid-
eration of bTMB as a predictive biomarker for patients 
with NSCLC eligible for ICI in the future.
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