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Protein accumulation in the endoplasmic reticulum
as a non-equilibrium phase transition
Zoe Budrikis1, Giulio Costantini2, Caterina A.M. La Porta3 & Stefano Zapperi1,2

Several neurological disorders are associated with the aggregation of aberrant proteins, often

localized in intracellular organelles such as the endoplasmic reticulum. Here we study protein

aggregation kinetics by mean-field reactions and three dimensional Monte carlo simulations

of diffusion-limited aggregation of linear polymers in a confined space, representing the

endoplasmic reticulum. By tuning the rates of protein production and degradation, we show

that the system undergoes a non-equilibrium phase transition from a physiological phase with

little or no polymer accumulation to a pathological phase characterized by persistent

polymerization. A combination of external factors accumulating during the lifetime of a

patient can thus slightly modify the phase transition control parameters, tipping the balance

from a long symptomless lag phase to an accelerated pathological development. The model

can be successfully used to interpret experimental data on amyloid-b clearance from the

central nervous system.
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A
number of neurological pathologies, including Alzhei-

mer’s disease (AD) and Parkinson’s disease, spongiform
encephalopathies and serpinopathies, are collectively

identified as conformational diseases because they are all
characterized by the aggregation and tissue deposition of aberrant
conformations of proteins. In recent years, a large effort has been
devoted to understanding the biological mechanisms underlying
the biochemical properties of these proteins and the associated
secretory pathways. While the key mechanisms triggering these
diseases are still largely unknown, recent evidence points towards
a pivotal role played by secretory pathways that is common to all
these pathologies.

Serpinopathies result from point mutations in a1-antitrypsin
and neuroserpin showing a delay in folding, with unstable
intermediates being cleared by endoplasmic reticulum (ER)-
associated degradation (ERAD)1–3. The remaining proteins are
either fully folded and secreted or retained as ordered polymers
within the ER of the cell of synthesis. Mutations in neuroserpin
result in the autosomal dominant inclusion body dementia
(Familial Encephalopathy with Neuroserpin Inclusion Bodies
(FENIB))4, and mutants of neuroserpin in FENIB patients show
accelerated rates of polymerization compared with wild type
protein both at the protein level5,6 and in cell models7,8. The
current picture of these diseases shows that accumulation of
misfolded proteins within the lumen of the ER activates ERAD
pathway. When ERAD fails to remove sufficient mutants, the
remaining proteins start to polymerize7,9,10.

In spongiform encephalopathies, recent evidence shows a new
pathway that contributes to prion propagation owing to
proteasomal dysfunction and ER stress, leading to an increase
of prion protein in the secretory pathways11. The classical
hystopathology of AD consists of extracellular plaques of the
amyloid-b peptide and intracellular neurofibrillary tangles of
hyperphoshorylated aggregates of microtubule-associated protein
tau. Ab-degrading proteases involve a number of subcellular
compartments, including lysosomes, endosomes and the ER12.
Recent results show an overproduction of aggregation-prone
amyloid b42, which might interest the ER13. This is confirmed by
the analysis of the brains of AD patients displaying ER
dysfunction14,15, particularly in the ERAD pathways16.
Synucleinopathies are a group of neurodegenerative disorders,
including Parkinson’s disease, that are associated with proteins
containing a-synuclein molecules. Experimental evidence
suggests that the deposition of a-synuclein in intracellular
inclusions together with ubiquitin lead to impaired functions in
the ubiquitin-dependent proteasome system17–21. Finally,
Huntington’s disease, an inherited autosomal dominant disease,
is caused by the expansion of CAG repeats within the HTT gene
encoding huntintin, which leads to a protein prone to aggregation
in the cytoplasm and alterations in the secretory pathways22.

The traditional theoretical framework to understand protein
polymerization involved in these neurological disorders is based
on either molecular dynamics simulations, which give an
understanding of how individual proteins interact23,24, or on
kinetic rate equations, which yield the growth of the polymers in a
mean-field approximation25–31. Theoretical results are then
usually compared with in vitro measurements of protein
aggregation by dynamic light scattering or single molecule
fluorescence under well defined conditions of temperature and
concentration30,32–34. The conditions are, however, not
physiological because in the cell proteins undergo a well
regulated cycle of synthesis by the ribosome and subsequent
degradation through secretory pathways.

In this paper, we demonstrate that taking correctly into
account the physiological conditions is important, because rates
of synthesis and secretion control a non-equilibrium phase

transition for the formation of protein aggregates in the ER. This
can be seen in two complementary models. The first is a set of
Monte Carlo simulations in a three dimensional (3D) confined
space representing the ER, with synthesis and degradation
explicitly accounted for. The second is a mean-field model of
the same scenario, which offers analytical estimates of long-time
protein aggregation. The results from these models illustrate that
small variations in control parameters, which could be induced by
a variety of biological factors, can lead to large variations in
outcomes. This opens a new common perspective on possible
diagnostics for these pathologies.

Results
Protein polymerization in vitro. We consider a 3D model of
linear polymer aggregation in a confined space simulating an
intracellular organelle like the ER, a set of channel-like structures
surrounding the cell nucleus (see Fig. 1 for an illustration of the
model and the Methods section for a detailed description).
To validate our model in a well-studied scenario, we first
consider the kinetics of a typical in vitro experiment and perform
3D numerical simulations of linear polymer diffusion and
aggregation at constant concentration and temperature (with
kout¼ kin¼ 0 and periodic boundary conditions as discussed
above). While the model is general for linear polymers, we focus
here on neuroserpin, which has been shown to undergo processes
of activation and latentization33,34.

We start the simulations from a fixed number Nm of inactive
monomers, randomly distributed in space, and then study the
effect of different concentrations, measured by the dimensionless
density r � NmL3

0=L3. We quantify the aggregation kinetics by
measuring the weighted polymer mass mw¼/i2S//iS, where i
is the number of monomers in each polymer and the average is
taken over different realizations of the process. This observable is
accessible experimentally through dynamic light scattering34.
Figure 2a shows that for kf¼ 0 the weighted mass kinetics
displays a crossover between a short-time regime growing as t2,
owing to activation and dimerization (Supplementary Fig. 1), and
a long-time regime growing as tb with bC0.5, owing to polymer–
polymer aggregation. The results are in agreement with
experiments34. We fit the curves obtained at different densities
to a crossover function (see Supplementary Information)
depending on a crossover time t scaling as r� g (see the inset
of Fig. 2b). The best fit yields g¼ 0.149±0.002 and allows
rescaling of all the curves onto a single master curve. This result
confirms that the concentration only sets the timescale of the
kinetics. In Fig. 2c, we study the effect of polymer fragmentation
showing that if kf40 the polymerization process is blocked after a
characteristic time that depends on kf. The role of latentization is
illustrated in Fig. 2d, which shows that the long-time growth is
not affected if kL40. Latentization induces a plateau in the
crossover region, a feature that is also observed in experiments
(see the inset of Fig. 2d and ref. 34). Mean-field theory can also be
used to study polymerization kinetics in vitro, and yields
qualitative agreement with the 3D model, albeit with
quantitative differences, as shown in Fig. 3. However, the two
models agree on essential features.

Polymerization in vivo displays a non-equilibrium phase
transition. To describe in vivo conditions, we introduce to our
models non-zero rates for protein synthesis (kin) and degradation
(kout). These effects are in competition: protein synthesis allows
greater polymer growth via a flux of monomers that combine into
larger polymers; however this growth can be balanced by polymer
degradation. To study this quantitatively, we turn first to the
mean-field model. Here we characterize polymer aggregation by
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the mean length mp of polymers of size iZ2, which is given by the
ratio of the mass and the number of polymers,

P
i�2 ini=

P
i�2 ni.

As discussed above, when protein synthesis and degradation are
turned off, as in experiments performed in vitro, the mean-field
model predicts a finite steady state mean polymer size26.
However, if protein synthesis is turned on, with rate kin, then if
kout is small, the mean polymer size increases as Ctb, with b¼ 0.5.
On the other hand, if kout is greater than a critical value kc

out,
which depends on the rates of aggregation and fragmentation, a
non-growing steady state is again obtained (Fig. 4a and
Supplementary Fig. 2 and 3). As shown in Fig. 4b, we find a
sharp transition between growing and stationary phases as
quantified by the prefactor of the square-root growth of the
mean polymer size C, which scales to zero as ðkout� kc

outÞ
y, with

y¼ 1/2, when the transition is approached.
Figure 5 shows the phase diagram estimated by the mean-field

model as a function of the rates kin, kout, kf and kp. The transition
region is governed by the products kinkp and koutkf. Intuitively,
kinkp controls the rate of polymer growth, by the introduction of
new monomers and their aggregation into larger polymers, while
koutkf controls the rate of polymer shortening by the removal of
material and fragmentation of large polymers. When kf is large
relative to kinkp, the dependence on parameters is further reduced
to a dependence on the ratio kinkp/koutkf. Indeed, in the limit
c¼ 1, it can be shown that if a steady state exists, the relationship
(kinkp)/(2koutkf)þ (kin/kout)(1/M0)¼ 1 must be satisfied, where
M0 ¼

P
i�1 ni. This relation determines the location of the critical

region as discussed in detail in the Supplementary Information.
We have confirmed the existence of a polymerization phase

transition controlled by protein production and degradation by
numerical simulations in a 3D system representing the ER, thus
mimicking more closely physiological conditions in the cell. As
shown in Fig. 4c, 3D simulations show growth curves analogous
to the one obtained in the mean-field model, namely mpBCt1/2

(Fig. 4a). In Fig. 4d, we report the prefactor C estimated from the

fits in Fig. 4c and observe transition curve similar to the one
observed in the mean-field curve (Fig. 4b), with a typical
broadening expected for finite size systems.

Polymerization in vivo displays critical-point fluctuations. To
confirm that we are in presence of a critical phase transition, we
study the temporal fluctuations of the average polymer length in
3D simulations. As shown in Fig. 6a for a single realization of the
process, the polymer length undergoes an intermittent dynamics
with bursty activity that is reminiscent of the crackling noise
observed in materials close to non-equilibrium phase transi-
tions35. We characterize the statistical properties of the signal by
measuring the distribution of pulse durations T and sizes s,
defined as the area under a pulse, for different values of kout.
Figure 6b shows that for kout4kc

out, bursts display a power law
distribution with a cutoff that diverges at the transition. In the
growing phase, the distribution develops a peak at large T typical
of system-wide spanning events. We fit all the subcritical
distributions simultaneously by the scaling function

PðT; koutÞ ¼ AT � a expð� cTðkout� kc
outÞ

dÞ; ð1Þ

obtaining a¼ 1.94±0.02, d¼ 2.6±0.2 and kc
out ¼ 1:82 � 0:02 as

best fit parameters. Using these values we can collapse the
distributions onto a universal scaling function as expected for
critical phenomena (see Fig. 6c). A similar analysis for the size
distribution yields a power law exponent k¼ 1.75±0.01, cutoff
exponent 1/s¼ 2.5±0.2 and kc

out ¼ 1:89 � 0:02 (see
Supplementary Fig. 4). We notice that these value differ
significantly from the predictions of mean-field theory, which
give a¼ 2, k¼ 3/2, d¼ 1 and 1/s¼ 2 (ref. 36).

Polymerization is system-size dependent. Three dimensional
simulations of protein aggregation display qualitative agreement
with mean-field theory in conditions that should apply to
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Figure 1 | Model of protein aggregation in the endoplasmic reticulum. (a) The ER is a set of channel-like structures surrounding the nucleus of the

cell. (b) We focus on a portion of the ER bounded by two square surfaces placed at distance H. Protein monomers are assigned to the nodes of a

3D square lattice. We report a typical configuration obtained from the simulations where polymers are coloured differently according to their length.

(c) Inside the ER, proteins can diffuse, aggregate and fragment. They can also enter and exit from the ER channel with given rates. (d) We also consider

the possibility that proteins can aggregate only after becoming active and to transform into a latent state where aggregation is prevented.
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experiments in vitro and in vivo. Quantitative differences between
the two models are mainly owing to the absence of geometrical
features in the mean-field model. Investigating the role of spatial
confinement is important because large local fluctuations can
drive polymerization in small systems. To this end, we use 3D
simulations to estimate the size-dependence of some effective
mean-field parameters such as the polymerization and degrada-
tion rates, as a function of kout and H. The effective degradation
rate �kout depends on the sample size H in three dimensions
because proteins can exit only through the boundaries, a feature
that is absent in the mean-field model (see Fig. 7). The effective
polymerization rate �kp displays a peak as a function of kout, in
correspondence with the phase transition (Fig. 8). Furthermore,
for smaller system sizes the polymerization rate is larger.

Comparison with experimental data on amyloid-b clearance
from the brain. Although quantitative experimental data for
protein aggregation in the ER are not yet available, the kinetic
mechanism we study is general and can be applied also to other
situations such as Ab aggregation and clearance in the brain12,
which has been subject to extensive experimental study37,38. In
particular, we use our mean-field model to simulate an amino
acid labelling experiment like those reported by Bateman et al.37.
In those experiments, labelled leucine, an amino acid composing
Ab, was injected into the bloodstream of healthy subjects37. After
a 9 h infusion, the concentration of labelled Ab in cerebral spinal
fluid was monitored for a further 27 h.

To understand experimental results, we simulate the scenario
using our mean-field model. We first obtain a steady state by
simulating protein aggregation in the steady phase for 50 years.
We then follow the labelling experiment of ref. 37 so that over
36 h a fraction of injected monomers are labelled. Labelled
monomers evolve following the same dynamics as unlabelled
monomers, with full mixing. We calculate the labelled/unlabelled
mass fraction in the cerebral spinal fluid, as reported in Fig. 8a.
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Figure 3 | Qualitative agreement between mean-field and 3D models.

(a) In a model with activation (kA¼ 1) and no polymer fragmentation or

latentization (kf¼ kL¼0), the weighted mean polymer size mw¼M2/M1

exhibits a transition from growth as t3 to linear scaling in t. Here we have

plotted against time rescaled by activation rate, kAt. (b) For fixed kA, time

series for different kP values can be collapsed by rescaling mw� 1 by kp.

(c) Allowing polymer fragmentation limits the growth of polymers. Here the

activation rate is kA¼ 1, the polymerization rate kp¼ 1, and there is no

latentization (kL¼0), and the growth in unweighted mean size of polymers

of length iZ2, mp has been plotted. (d) Latentization slows polymer growth,

as seen here for the weighted mean polymer size mw. Activation is not

incorporated here, and no fragmentation occurs (kf¼0), and kp¼ 1. We plot

against time rescaled by kp. When fragmentation is allowed, the system

always attains a steady state in which all mass consists of latent monomers.

Analogous plots for the 3D model are shown in Fig. 2.
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The curves show a crossover between two power laws and can be fitted as discussed in the main text. (b) All the curves from (a) can be collapsed into a

single master curve when variables are properly rescaled by the concentration. This implies that the crossover timescales as a power law of the concentration

as shown in the inset. (c) If we use a non-vanishing rate of polymer fragmentation (kf40), the growth is limited. (d) Latentization (kL40) leads to

slowing down of the growth, which at long times resumes as in the case kL¼0. This behaviour has been experimentally observed in vitro for neuroserpin,

as shown in the inset (data from ref. 34). Curves are obtained by averaging over 10 realizations obtained from statistically identical initial conditions.
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From this, we determine the fractional clearance rate (FCR) of
labelled proteins, as described in the Supplementary Methods (see
Supplementary Fig. 5).

Measured FCRs depend on many parameters (see
Supplementary Table 1) but here we focus on the role of protein
degradation, controlled by kout. A single FCR measurement does
not allow a determination of all parameters, but our results

indicate that a series of labelling experiments can reveal changes
in degradation rates over time and the approach to the
physiological–pathological phase transition. We take the steady-
state system and decrease kout slightly, and allow it to evolve a
further 3 years to attain a new steady state, after which we
perform another labelling test. As reported in Fig. 9b, a reduced
kout yields a reduction in FCR, as well as the maximum labelled/
unlabelled ratio. Further decreases in kout cause measured FCR to
continue to decrease, but as the critical point is approached the
lifetime of labelled proteins diverges and near the critical point no
clearance is observed in experimental timescales. Further
experiments by the same group indeed reveal that FCR decreases
for AD patients with mild symptoms38, in agreement with the
predictions of our model.

Discussion
Conformational diseases, such as Alzheimer’s and Parkinson’s
diseases, spongiform encephalopathies and serpinopathies, are all
associated to aberrant protein aggregation in which the secretory
activity of intracellular organelles plays a critical role. In this
paper, we have shown by 3D numerical simulations and mean-
field calculations that protein aggregation undergoes a non-
equilibrium phase transition controlled by the rates of protein
synthesis and degradation. Our theoretical analysis compares well
with experimental results both in vitro and in vivo. We can
describe with great accuracy the time-dependent polymerization
of neuroserpin in vitro34 and experimental measurements of Ab
clearance from the central nervous system in healthy subjects
(or with mild AD symptoms)37,38. We predict that Ab clearance
measured experimentally in AD patients should decrease as the
disease progresses and vanish as the non-equilibrium phase
transition is approached. At this point, protein polymerization
would not stop. We believe that combining quantitative clinical
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information with realistic theoretical modelling could be useful to
improve diagnostic tools for these pathologies.

In our model, the phase transition is associated with a
breakdown of homeostasis in intracellular organelles, controlled
by the rates kin and kout. This result naturally leads to two
fundamental questions: (i) which specific biological processes
tune these control parameters and (ii) what are the biological
consequences of the transition?

A possible answer to the first question might involve lipid
metabolism, which has been recently shown to play a role in all
these neurodegenerative diseases39–42. In particular, ref. 42 shows
that in FENIB the inhibition of HMGCoA reductase, the limiting
enzyme of the cholesterol biosynthetic pathway, has a critical role
in the clearance of mutant neuroserpin from the ER. Numerous
studies have also reported that the modification of cholesterol
content can affect amyloid precursor protein processing, which is
needed for neuronal activity40. Interestingly, a recent paper
shows that E693D (Osaka) mutation in amyloid precursor protein

promotes intracellular accumulation of Ab, reducing its
excretion43. This paper also shows the importance of Ab
trafficking for intracellular cholesterol transport and efflux and
that the Osaka mutation potentiates cholesterol-dependent
exacerbation of intracellular Ab toxicity by disturbing amyloid-
mediated cholesterol efflux from the cell43. These observations
can be translated in our model considering that the alteration of
lipid metabolism (that is, the level of cholesterol) should lead to a
reduction of the parameter kout eventually triggering the phase
transition.

As for the second question, our model allows the interpretation
of the emergence of conformational diseases in the framework of
phase transitions and critical phenomena. This implies that a
minimal change in the control parameters can lead to drastic
changes in the system when we cross the transition line leading to
the disease. The continuous nature of the transition implies,
however, that large fluctuations are expected as we approach it.
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In perspective this might provide the basis for early detection
strategies before the pathology has taken place.

It is important to remark that the phase transition we observe
does not occur when the concentration is held constant as usually
assumed in experiments in vitro. In this case, the response to the
variation of control parameters is smooth: small changes of the
rates correspond to small changes in the polymerization kinetics.
This might be one of the reason behind the difficulty in
extrapolating in vitro results to the in vivo situation. One
possibility to overcome this problem would be to use microfluidic
devices where the influx and outflux of proteins are externally
controlled44. Using a similar experimental device, it would
be possible to reproduce more faithfully protein aggregation in
the cell.

Methods
3D model. In the model, individual proteins are modelled as monomers sitting on
a 3D square lattice. Monomers diffuse with rate kD and attach to neighbouring
monomers or polymer endpoints with rate kH. Polymers move collectively by
reptation with a length-dependent rate kR/i2, where i is the number of monomers
in the polymer (see ref. 45 p. 89), and locally by end rotations with rate kE and kink
moves with rate kK (for a review of lattice polymer models see ref. 45). A polymer
can attach to another polymer with rate kH if their endpoints meet, and can
fragment by breaking an internal bond with rate kf (Fig. 1c). Inspired by experi-
mental results on neuroserpin polymerization34, we allow for polymerization after
at least one of the monomers has been activated with rate kA. Active monomers can
also become latent with rate kL and after that they do not aggregate (Fig. 1d).

We consider two types of boundary and initial conditions for the polymeriza-
tion kinetics. (i) To simulate experiments in vitro, we start with a constant number
of inactive monomers in a cubic system of size L¼ 60L0, where L0 is the typical
monomer diameter, with periodic boundary conditions in all directions. (ii) To
simulate polymerization in the ER, we consider a system of size (L� L�H) with
L¼ 100L0 and H¼ 25L0 with periodic boundary conditions along x and y and
closed boundary conditions along z. This choice is justified by the structure of the
ER in which a channel of small width (that is, H) is bounded by two extended
membrane sheets. Monomers enter the system from both closed boundaries with
rate kin and monomers and polymers can exit from the same boundaries with rate
kout/i3. The fact that the exit rate decreases with the polymer length is suggested by
experiments showing that proteasome degradation is slower for larger aggre-
gates46,47, although no specific measurements exist for the ER. We have checked
that different functional dependencies of the exit rate on the number of monomers
in the polymer yield similar results.

We perform numerical simulations using Gillespie Monte carlo algorithm48. In
case (i) we measure time in units of 1/kD, setting kH¼ kE¼ kR¼ kK¼ kA¼ kD and
varying r, kL and kf. In case (ii) we measure time in units of 1/kin and set
kH¼ kE¼ kR¼ kK¼ kA¼ kin, kL¼ 0, kD¼ 102, kf¼ 10� 3kin and vary kout.

Mean-field model. In the mean-field model, the evolution of the populations ni of
polymers of size i is described by a set of coupled nonlinear differential equations,
which are based on the assumption that polymer aggregation and fragmentation

have no spatial dependence. We have used the model introduced by Blatz and
Tobolsky26 in which polymers aggregate with rate controlled by parameter kp and
fragment with rate controlled by kf. We add two ingredients to this model. The first
is production of monomers, which enters as a term þ kin added to _ni , the rate of
change of monomer population. The second is polymer degradation, which occurs
at a rate that decreases with polymer size. This is described by a set of terms
� koutnii� 3. The population of polymers of size i, iZ1, is given by the differential
equation

_ni ¼
1
2

kp

Xi� 1

j¼1

njni� j� kpni

X1

j¼1

nj � kf niði� 1Þ

þ 2kf

X1

j¼iþ 1

nj � koutf ðiÞniþ kindi;1;

ð2Þ

where f(i)¼ i� 3 for irc and 0 otherwise. Rate equations for the moments of the
size distribution and equations for _ni , irc are solved numerically using standard
techniques. The cutoff c is introduced only for numerical convenience, because
otherwise it would be impossible to solve the equations in closed form, but we have
observed rapid convergence to a c independent solution when f(i) decreases faster
than i� 2. The limit c¼ 1 may have biological significance since it implies that only
monomers can exit the system, which implies that polymers have to be fragmented
before being degraded. A full discussion of these equations is given in the
Supplementary Methods.
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