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Abstract

RhoGDI proteins have been implicated in several human cancers; changes in their expres-

sion levels have shown pro- or anti-tumorigenic effects. Pancreatic Ductal Adenocarcinoma

(PDAC) is a complex pathology, with poor prognosis, and most patients die shortly after

diagnosis. Efforts have been focused on understanding the role of RhoGDI’s in PDAC, spe-

cially, RhoGDI1 and RhoGDI2. However, the role of RhoGDI3 has not been studied in rela-

tion to cancer or to PDAC. Here, we characterized the expression and functionality of

RhoGDI3 and its target GTPases, RhoG and RhoB in pancreatic cell lines from both normal

pancreatic tissue and tissue in late stages of PDAC, and compared them to human biopsies.

Through immunofluorescences, pulldown assays and subcellular fractionation, we found a

reduction in RhoGDI3 expression in the late stages of PDAC, and this reduction correlates

with tumor progression and aggressiveness. Despite the reduction in the expression of

RhoGDI3 in PDAC, we found that RhoB was underexpressed while RhoG was overex-

pressed, suggesting that cancerous cells preserve their capacity to activate this pathway,

thus these cells may be more eager to response to the stimuli needed to proliferate and

become invasive unlike normal cells. Surprisingly, we found nuclear localization of RhoGDI3

in non-cancerous pancreatic cell line and normal pancreatic tissue biopsies, which could

open the possibility of novel nuclear functions for this protein, impacting gene expression

regulation and cellular homeostasis.
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Introduction

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most lethal cancers worldwide, in

the USA, more than 48,960 new cases of PDAC occurred in 2015, with an estimated of 40,560

deaths: 19,850 female and 20,710 male [1]. The high number of cases could be due to the fact

that PDAC is usually diagnosed at late stages, once it has disseminated, leading to poor prog-

nosis and low survival rate. Many molecules have been implicated in the processes of dissemi-

nation, invasion and metastasis, including Rho GTPases, which are key components of the

actin cytoskeleton reorganization [2]. Rho GTPases act like molecular switches: they have an

inactive, GDP-bound stage and an active stage in which GDP is replaced with GTP. This cycle

is highly regulated by three different groups of proteins: GEFs (guanine nucleotide exchange

factors), GAPs (GTPase-activating proteins), and GDIs (guanine nucleotide dissociation

inhibitors) [3]. In addition to mutations, overexpression and downregulation of Rho GTPases

have been reported [4, 5], suggesting that this signaling pathway might be altered by molecules

that regulate Rho GTPases, i.e., RhoGDIs.

It has been more than 20 years since Ohga and Fukumoto reported a regulator molecule for

the RhoB GTPase that inhibits the GDP dissociation of this protein, known as a GDI [6, 7].

Currently, three different molecules have been described as belonging to the RhoGDI family:

RhoGDI1, RhoGDI2 and RhoGDI3. RhoGDI1 is found ubiquitously and can interact with sev-

eral GTPases [8]. The RhoGDI2 protein shares a 70.7% identity with RhoGDI1; at first,

RhoGDI2 was described as expressed specifically in lymphoid and myeloid tissues, predomi-

nantly in B and T lymphocytes [9, 10], however, it is now known to be expressed in other tis-

sues, including the brain, prostate and pancreas. RhoGDI3, the third protein in the RhoGDI

family, shares 62.1% and 70.7% identity with RhoGDI1and RhoGDI2 respectively. It was first

identified in murine cerebral tissue and was later found in human cerebral and pancreatic tis-

sue. Unlike the other two RhoGDIs, RhoGDI3 contains an LDXXEL motif that confers

anchorage into the membranes of Golgi vesicles [11–13].

Canonically, GDIs modulate the movement of Rho GTPases between the cytoplasm and

plasma membrane by sequestering them in the cytosol, thereby protecting them from degrada-

tion. Removing Rho GTPases from the membrane maintains their inactive state [14–16]. In

addition to its physiological functions, RhoGDI proteins have been implicated in several

human cancers such as breast [17, 18], ovarian [19], myeloid leukemia [20] and liver cancers

[21]. Changes in RhoGDI expression levels have shown pro- or anti-tumorigenic effects that

depend on the cell type and tissue. PDAC is a challenging pathology to address, since most of

the patients diagnosed die shortly after the diagnosis. Many researchers are focusing in under-

standing the possible role of RhoGDI proteins in PDAC. In 2009, it was reported that TrkBT1

sequesters RhoGDI1, leading to over-proliferation and increased metastatic potential through

the hyperactivity of RhoA GTPase [22]. During the same year, it was demonstrated that the

silencing of RhoGDI2 protein in pancreatic cancer cell lines caused the loss of the high capac-

ity for neural invasiveness [23]. The role of RhoGDI3 has been poorly understood. However,

in 2003, RhoGDI3 hyper-immunoreactivity was reported for normal breast tissue but not for

cancerous breast tissue. These findings correlated with the mRNA expression of RhoGDI3,

suggesting that this protein could be an important factor for clinical staging or use as a prog-

nostic marker [24]. The role of RhoGDI3 in PDAC remains elusive and has not been studied

in pancreatic cells. Considering that RhoGDI3 has tissue-specific expression, and that the reg-

ulation of GTPases by RhoG and RhoB, is involved in invasion, migration and tumor suppres-

sion, we decided to address its possible role in the progression of PDAC. Here we report the

pattern of expression and functionality of RhoGDI3, and its targets RhoG and RhoB proteins

in normal and cancerous pancreatic cells of different stages of the disease. Most importantly,
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we show that RhoGDI3 is located in the nuclei of normal pancreatic cell lines and human pan-

creatic tissue, suggesting a novel nuclear function for this protein, impact gene expression reg-

ulation and cellular homeostasis. Our results points to the importance of RhoGDI3 as a

marker of progression and/or aggressiveness of PDAC.

Materials and Methods

Ethics Statement

This work complies with the current health laws of Mexico and was approved by the Ethics

and Research Committees of the Hospital General Dr. Manuel Gea Gonzalez.

Cell Culture

The cells were cultured at 5% CO2 and 95% of Atmospheric air at 37˚C. The cell lines

hTERT-HPNE (ATCC1 CRL-4023™, Manassas, VA), BxPC3 (ATCC1 CRL-1687™, Manassas,

VA) and PANC-1 (ATCC1 CRL-1469™, Manassas, VA) were cultured in the conditions rec-

ommended by the supplier. All the cell lines were used between passages 2–14.

Antibodies

We used the following antisera: mouse mAbs against RhoGDI3 (H95, sc-367757, Santa Cruz,

CA), RhoGDI2 (sc-365663, Santa Cruz, CA), RhoGDI3 (E10, sc-365663, Santa Cruz, CA),

RhoG (1F B3 E5, sc-80015, Santa Cruz, CA) and RhoB (sc-8048, Santa Cruz, CA), 58K Golgi

protein (Ab27043, Cambridge, MA); rabbit pAbs against RhoGDIgamma (MBS710991, San

Diego, CA), Rac1 (Cytoskeleton GL07, Denver, CO), Histone H3 (Ab1791, Cambridge, MA),

Aldolase B (ab75751, Cambridge, MA). The secondary antibodies used were conjugated to

horseradish peroxidase (anti-rabbit, Invitrogen 626520; anti-mouse, 656120, Waltham, MA)

or to Alexa Fluor 488 (anti-rabbit and anti-mouse, Molecular probes A21057, A11034, Wal-

tham, MA) or Alexa Fluor 680 (anti-mouse, Molecular probes A21057, Waltham, MA).

Western Blotting

Western blots of protein samples were performed from monolayers of the cell lines

hTERT-HPNE, BxPC3, and PANC-1. The cells were lysed in RIPA buffer containing 1X pro-

tease inhibitor cocktail (Roche 11873580001, Indianapolis, IN) and 1X phosphatase inhibitor

cocktail (Roche 49068450001, Indianapolis, IN). Protein concentration was determined using

the Lowry assay (DC Protein assay, BioRad 500–0114, Hercules, CA), 20 μg of protein were

separated by 12% SDS-PAGE and transferred to PVDF membranes (Millipore IPVH00010,

Billerica, MA) at 200 mA for 2 hours at 4˚C. After blocking in 5% nonfat dry milk with TBS

and 0.1% Tween 20, the membranes were incubated overnight at 4˚C in the same buffer add-

ing primary antibodies: anti-RhoGDIgamma (1:1000), anti-RhoGDIbeta (1:500), anti-

RhoGDI3 (1:200), anti-RhoG (1:200), anti-RhoB (1:200), anti-Rac1 (1:500), anti-Histone H3

(1:15,000), or anti-Aldolase B (1:5000). Next, the membranes were washed 4 times with TBS-

0.1% Tween 20 and then incubated with HRP-conjugated secondary antibodies (anti-rabbit,

1:6000; anti-mouse, 1:1000) for 1 hour at 37˚C. Membranes were washed with TBS 3 times at

37˚C. Protein bands were visualized on a ChemiDoc™ MP Imaging System (Bio-Rad, Hercu-

les, CA) using SuperSignal™ West Pico Chemiluminescent Substrate (Thermo Scientific

34079, Waltham, MA).
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Immunofluorescence (IF) and Confocal Microscopy Imaging of

Pancreatic Cell Lines

hTERT-HPNE, BxPC3 and PANC-1 cells were grown on coverslips (Tedpela 26020, Redding,

CA) coated with poly-D-Lysine, washed twice with PBS, and then fixed with 4% PFA for

20 min. After a second wash, the cells were permeabilized with 0.1% Triton X-100 for 3 min-

utes at 37˚C. Nonspecific binding was prevented using blocking buffer containing PBS-BSA

1% (BSA was fraction V, IgG free, SIGMA, St. Louis, MO). Cells were incubated with primary

antibodies (anti-RhoGDIgamma (1:120), anti-RhoG (1:100), anti-RhoB (1:100), anti-58k

(1:500) overnight at 4˚C. The next day, the cells were washed twice with PBS-BSA 1% and then

incubated with appropriate secondary antibodies (anti-rabbit conjugated with Alexa Fluor

488 (1:500) and anti-mouse conjugated with Alexa Fluor 680 (1:300)). Nuclei were stained

with DAPI.

Immunofluorescence staining of cells stimulated with EGF was performed as described pre-

viously with some modifications [25]. Briefly, hTERT-HPNE, BxPC3 and PANC-1 cells were

plated on coverslips at a density of 1 × 104 cells per coverslip. After 24 h, cells were starved in

DMEM/0.5% bovine serum albumin (BSA) for 6 hours. The medium was replaced with

DMEM/0.5% BSA supplemented with recombinant human (rhEGF) (G502A, SIGMA,

St. Louis, MO) to a final concentration of 100 ng/ml for periods of 0, 2 and 10 min. Cells on

coverslips were treated as previously described. F-actin was labeled with rhodamine phalloidin

(Invitrogen R415, Carlsbad, CA) for 1 hour. Images were captured using an Olympus laser-

scanning confocal microscope FV-300 (Melville, NY) with 60X and 100X objectives. Overlap

index was calculated by Pearson’s coefficient of colocalization (PCC), using the software Fluo-

View 300 for Olympus laser-scanning confocal microscope FV-300 (Melville, NY). These cal-

culations allow us to discover whether different labeled structures were present in the same

region of the cell. PCC values range from 1 for two images whose fluorescence intensities were

perfectly, linearly related, to −1 for two images whose fluorescence intensities were perfectly,

but inversely, related to one another. Values near zero reflect distributions of probes that are

uncorrelated with one another [26].

Subcellular Fractionation

Separation of nuclear and cytosolic fractions of hTERT-HPNE, BxPC3 and PANC-1 cells was

performed according to the methods previously described [27]. Briefly, cells were treated with

rhEGF, followed by the addition of 500 μl of fractionation buffer (250 mM sucrose, 20 mM

HEPES pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 1 mM DTT, 1X protease inhibitor cocktail and

1X phosphatase inhibitor cocktail) to the monolayers. Cells were collected, homogenized by 10

passages through a 25 G needle, and incubated on ice for 30 min. The nuclear pellets were

extracted by centrifugation at 720 ×g for 5 min. The supernatants were resuspended in

Laemmli buffer, corresponding to the cytosolic fraction. The nuclear pellets were washed once

by adding 500 μl of fractionation buffer, dispersed with a pipette, passed through a 25 G needle

10 times, and centrifuged again at 720 ×g for 5 min. The wash buffer was removed, and the

nuclear pellets were sonicated briefly (3 s) on ice. Protein concentrations were determined

using the Lowry assay. Nuclear and cytosolic fractions were resuspended in 2X Laemmli

buffer. Then, cell lysates (20 μg) were separated by SDS-PAGE on 15% gels. Proteins were

transferred to PVDF membranes and analyzed via Western blotting. Anti-histone H3 antibody

was used as a nuclear marker and anti-Aldolase B antibody was used as a cytosol marker.
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RhoG and RhoB Activation Pulldown Assays

RhoG activity was evaluated using a pulldown assay with the protein ELMO1 expressed in

the E. coli strain DH5-α as a fusion protein with GST (plasmid kindly donated by Dr. Michael

Schnoor). Bacterial pellets were suspended in PBS and DTT and broken by sonication.

After centrifugation at 10,000 rpm for 15 minutes at 4˚C, the supernatants were resuspended

in Triton 10%. GST-ELMO1 protein was purified by incubation with glutathione beads (GE

Healthcare Bio-Sciences, Uppsala, Sweden) for 1 hour followed by 3 washes in cold lysis

buffer.

Once hTERT-HPNE, BxPC3 and PANC-1 cells were treated with rhEGF as previously

described for immunofluorescence staining, the cells were lysed with cold lysis buffer contain-

ing 1% Triton, 150 mM NaCl, 50 mM Tris pH 7.4, 1X Roche Complete protease inhibitor

and 1X Phostop cocktails in order to measure RhoB and RhoG activity. Lysates were clarified

by centrifugation at 10,000 x g and 4˚C for 1 min, after which they were collected and placed

on ice. Measurements of protein concentrations in the lysates were performed using Lowry

assay.

For nucleotide loading of endogenous RhoG and RhoB proteins, 400 μg of lysate were

incubated with 10 mM EDTA and 10 mM GTPγS for 15 min at 30˚C with gentle shaking. To

stop the reaction, MgCl2 was added to a final concentration of 60 mM. Reactions were incu-

bated with GST-ELMO beads (50 μg) and Rhotekin-RBD protein (Cystoskeleton RT02, Den-

ver Co) beads (50 μg) for 1 h at 4˚C on a rotator and then washed 3 times with lysis buffer.

The samples were eluted with 2X Laemmli buffer, separated by 15% SDS-PAGE, transferred

to PVDF membranes, and analyzed by Western blotting using anti-RhoG, anti-RhoB, anti-

Rac-1 and anti-GAPDH antibodies.

Immunofluorescence on Paraffin-Embedded Sections from Human

Pancreatic Biopsies

We analyzed the following paraffin-embedded samples: 3 biopsies from normal pancreas and

3 from PDAC, that were obtained from the pathology service of the Hospital General Dr.

Manuel Gea Gonzalez, Mexico City. This work complies with the current health laws of

Mexico and was approved by the Ethics and Research Committees of the Hospital General Dr.

Manuel Gea Gonzalez. The samples were processed as follows: 5 μm sections were obtained

and mounted on pre-charged slides (Am-Labs-1500, Boulder, CO) The slides were deparaffi-

nized and rehydrated: Xylene-ethanol 1:1 (3 min), 100% ethanol (3 min), 95% ethanol (3 min),

70% ethanol (3 min), 50% ethanol (3 min). Heat-induced epitope retrieval was performed

using sodium citrate (pH 6.0) and boiling in a pressure cooker for 5 minutes. The immunohis-

tochemical staining protocol was performed as described for IF confocal microscopy on pan-

creatic cell lines.

Results

RhoGDI3 Expression Pattern in Normal and Cancerous Human

Pancreatic Cells Lines

RhoGDI3 protein is the only member of the RhoGDI family known to be partially associated

to the Golgi apparatus in addition to its cytosolic localization [13]. We analyzed the subcellular

localization of RhoGDI3 in non-cancerous (hTERT-HPNE) and cancerous (BxPC3 and

PANC-1) human pancreatic cell lines by immunofluorescence and confocal imaging. BxPC3

represents an early stage of the disease and PANC-1 corresponds to a more aggressive stage of

this cancerous disease. We observed that RhoGDI3 co-localizes with the 58 kDa protein, a
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Golgi marker, in all three cell lines, showing a punctate pattern, that suggests its vesicular local-

ization (Fig 1). Notably, RhoGDI3 had a diffuse pattern of expression in hTERT-HPNE cells,

in contrast to BxPC3 and PANC-1 cells, where the protein was mostly located around the

nuclei, colocalizing with the 58k Golgi marker (Fig 1A).

There are many reports about the overexpression or downregulation of RhoGDI1 and

RhoGDI2 proteins in many types of cancers, with contrasting results [17, 20, 24, 28–31], but

there is a lack of information about the expression of RhoGDI3 in pancreatic cancer. Thus, to

complement the immunofluorescence analysis of RhoGDI3 expression in the pancreatic cell

lines, we carried out an immunoblot analysis of total protein extracts using anti-RhoGDI3

antibody, detecting a band of the expected molecular size of 25 kDa, this corresponds to the

predicted size for RhoGDI3 (Fig 1B). We found significantly lower RhoGDI3 expression levels

(about half of the level) in the extracts from BxPC3 and PANC-1 cell lines as compared to the

extracts of control non-cancerous cell line hTERT-HPNE (Fig 1C). Notably, in the BxPC3

extracts, we observed a second band at ~23 kDa detected with the antiserum to RhoGDI3.

Therefore, we investigated whether the anti-RhoGDI3 antibody might cross-react with

RhoGDI2 or whether it is a specific band of a potential isoform of RhoGDI3, or a processed

form of RhoGDI3. The same PVDF membrane was incubated with an anti-RhoGDI2 anti-

body, and we observed that RhoGDI2 antibody detects a 23 kDa band, and it does not cross-

react with RhoGDI3; furthermore, we found that RhoGDI2 is not expressed in PANC-1

extracts (Fig 1B). We could not discard that the 23 kDa band detected with anti-RhoGDI3

antibody in the BxPC3 extracts could be a product of protein processing.

Fig 1. Cancerous and non-cancerous pancreatic cell lines show different expression patterns of RhoGDI3 protein. (A)

Immunofluorescence microscopy analysis of RhoGDI3 protein (green); 58 kDa protein, Golgi apparatus marker (Red) and Nuclei (DAPI,

blue) was performed on hTERT-HPNE (upper panel), BxPC3 (middle panel) and PANC-1 (bottom panel) cells lines. (B) Representative

Immunoblot using antibodies anti-RhoGDI3, anti-RhoGDI2 and anti-GAPDH were used as loading control. Total lysates from

hTERT-HPNE, BxPC3 and PANC-1 cell lines were analyzed. (C) Densitometric analysis of the bands detected in the Western blots of

RhoGDI3 (n = 3) of protein extracts from all three cell lines, the data was normalized to GAPDH. Densitometric analysis was determined

with Image Lab software. Values are means ± SEM, **P<0.005 (Anova-test). Scale bar 20μm.

doi:10.1371/journal.pone.0166370.g001
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Altered Expression Levels of RhoG and RhoB in Cancerous Human

Pancreatic Cell Lines

To determine whether RhoG colocalized with RhoGDI3 in hTER-HPNE, BxPC3 and PANC-1

pancreatic cells grown in the standard medium, immunofluorescence and confocal micros-

copy studies were carried out. We observed RhoG protein expression in a punctate pattern in

all cell lines (Fig 2A), although the subcellular colocalization with RhoGDI3 was different

among the three cell lines. In hTERT-HPNE cells, the two proteins presented similar distribu-

tions, with each protein expressed throughout the whole cell in a diffuse pattern (Fig 2A upper

panel). In contrast, the two proteins were perinuclear localized (Fig 2A middle and bottom

panel) BxPC3 and PANC-1 cells, consistent with its previously reported localization [13].

Using immunoblot assays with antisera to RhoG, we detected a 21 kDa band, corresponding

to the molecular weight of RhoG (Fig 2C). This band was 3-fold overexpressed in PANC-1 but

not in BxPC3 extracts, as compared to control non-cancerous cells (hTERT-HPNE) (Fig 2E).

Fig 2. The expression of RhoG and RhoB proteins is altered in cancerous pancreatic cell lines. Immunofluorescence

microscopy analysis of RhoGDI3 protein (green); RhoG (A) and RhoB (B) (Red) and Nuclei (DAPI, blue) of hTERT-HPNE (upper

panel), BxPC3 (middle panel) and PANC-1 (bottom panel) cells lines. Representative Immunoblot using antibodies anti-RhoG (C), anti

RhoB (D), GAPDH was used as loading control. Total lysates from hTERT-HPNE, BxPC3 and PANC-1 cell lines were analyzed. Total

amount of RhoG (E) and RhoB (F) proteins was normalized to GAPDH (n = 3). Immunoblot densitometric analysis was performed with

Image Lab software. Values are means ± SEM, **P<0.005, *P<0.005 (Anova-test). Scale bar 10μm.

doi:10.1371/journal.pone.0166370.g002
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Although pull-down assays have shown that RhoB interacts with RhoGDI3 [12], this inter-

action has not been demonstrated in vivo. Using an immunofluorescence assay, we found colo-

calization of RhoB and RhoGDI3 in a diffuse pattern in hTERT-HPNE and BxPC3 cells (Fig

2B upper and middle panel). In contrast, PANC-1 cells exhibited a more polarized pattern in

which RhoGDI3 and RhoB were colocalized (Fig 2B bottom panel). Accordingly, RhoB expres-

sion was very low in BxPC3 and PANC-1 cells as compared to control non-cancerous cells

hTERT-HPNE (Fig 2D and 2F).

Functional Analysis of the Activation stage of RhoG GTPase in

hTERT-HPNE, BxPC3 and PANC-1 Human Pancreatic Cell Lines

Using immunelabeling with antiserum to RhoG and confocal microscopy imaging, we ana-

lyzed cell morphology and RhoG localization after rhEGF stimulation. To confirm the actin-

cytoskeleton rearrangement after treatment, the cells were stained with rhodamine phalloidin.

Stimulated hTERT-HPNE and PANC-1 cells showed two patterns: RhoG relocated to the

lamellipodial protrusions and to the cytosol (Fig 3A and 3C). While BxPC3 cells did not show

a clear relocalization of the protein at any time point studied (Fig 3C), it reminds in a diffuse

pattern of expression, regardless RhoG activation state. RhoG-GTP expression levels in

hTERT-HPNE, BxPC3 and PANC-1 cell lines at 0, 2 and 10 minutes (T0, T2, and T10) after

rhEGF exposure were evaluated by using a RhoG activation pull-down assay. We observed a

basal activation of RhoG in all three cell lines at T0, that raises over time, reaching a peak at T2

and decreasing at T10 (Fig 3D, 3E and 3F). However, the pancreatic cancerous cell lines

BxPC3 and PANC-1 showed a greater rise of RhoG activation at T2 as compared to

hTERT-HPNE cells (Fig 3F and 3G). We quantified the number of cells in which RhoG relo-

cated to the periphery or near the plasma membrane after rhEGF treatment. We observed that

localization to the plasma membrane is mostly present at T2 throughout T10 in hTERT-HPNE

and PANC-1, whereas this rearrangement is almost absent at T0, T2 and T10 in BxPC3cells

(Fig 3 boxes and arrowheads).

In 2003, Katoh et al. reported that RhoG-GTP activates Rac1 via ELMO/Dock180 [32];

therefore, we were able to use the same RhoG activation pulldown assay to investigate

Rac1-GTP. We found that Rac-1 is present at the three times tested (T0 to T10), with signifi-

cant expression at T2 and declining activation at T10 in all three cell lines, with particularly

higher expression in BxPC3 and PANC-1(Fig 3F and 3G).

Differential Activation of RhoB GTPase in PDAC Cell Lines

Although RhoB protein expression is almost absent in BxPC3 and PANC-1 cell lines, we

wanted to investigated whether the RhoB protein is activated in those cells. Due to the fact that

RhoB could be activate by stimulation with growth factors, we treated the cells with rhEGF at

0, 2 and 10 minutes (T0, T2, and T10) to evaluate the activation state of RhoB. Pull-down

assays of hTERT-HPNE cells showed the activation of RhoB at T0 and T2, with decreasing

activation at T10 (Fig 4A and 4D). However, BxPC3 cells showed no clear activation pattern

(Fig 4B and 4E) after treatment with rhEGF, and PANC-1 cells displayed activation at T0 and

T2 after treatment with rhEGF, similar to the normal cell line (hTERT-HPNE) (Fig 4C and

4F). We also quantified the numbers of cells in which RhoB was localized in the periphery or

near the plasma membrane after rhEGF treatment, and observed that in hTERT-HPNE and

PANC-1 cells, localization to the plasma membrane is present from T0 throughout T2 but

decreased at T10 in hTERT-HPNE (Fig 4 boxes and arrowheads). This observation is in agree-

ment with our results on the activation of RhoB.
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Fig 3. Activation of RhoG GTPase in hTERT-HPNE, BxPC3 and PANC-1 pancreatic cell lines. Cells were starved 6 hours and

confronted with rhEGF for the period of 0, 2 and 10 minutes (Marked as 0, 2 and 10). Fluorescence microscopic staining of RhoG

(green) was carried out in hTERT-HPNE (A), BxPC3 (B) and PANC-1 (C) cells lines. To show the cytoskeleton reorganization, F-Actin

was stained with rhodamine phalloidin. Measurement of RhoG activity was performed using RhoG pulldown assay. Immunoblots for

RhoG, Rac-1 and GAPDH proteins for hTERT-HPNE (D), BxPC3 (E) and PANC-1 (F) are shown. To quantify the amount of RhoG-GTP

and bound-Rac-1 through the temporal course, densitometric analysis was performed using Image Lab software, hTERT-HPNE (G),

BxPC3 (H) and PANC-1 (I). For comparison of RhoG activity, the total amount of RhoG in cell lysates was normalized to total RhoG.

GAPDH was used as a protein loading control. ELMO1-GST beads coomassie are shown as beads loading control. Arrowheads denote

the localization of RhoG into the peripheral membrane; boxes with number represent the number of cells with this phenotype. Scale bar

100 μm.

doi:10.1371/journal.pone.0166370.g003
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Fig 4. GTPase RhoB shows differential activation in PDAC cell lines. Cells were starved for 6 hours and treated with rhEGF for a

period of 0, 2 and 10 minutes (Marked as 0, 2 and 10 min). An immunofluorescence microscopy analysis of RhoB (green) was carried out

on hTERT-HPNE (A), BxPC3 (B) and PANC-1 (C) cells lines. To show the cytoskeleton reorganization, F-Actin was stained with

rhodamine phalloidin. Measurement of RhoB activity was performed using RhoB pulldown assay. Immunoblots for RhoB and GAPDH, as

loading control for hTERT-HPNE (D), BxPC3 (E) and PANC-1 (F) cell lines are shown. To quantify the amount of RhoB-GTP,

densitometric analysis (n = 3) was performed using Image Lab software for samples of hTERT-HPNE (G), BxPC3 (H) and PANC-1 (I) cell

lines. For comparison of RhoB activity, GTP-RhoB was normalized to total RhoB. GAPDH was used as a protein loading control.

Coomassie of RBD-GST beads are shown as beads loading control. Arrowheads denote the localization of RhoB into the peripheral

membrane; boxes with number represent the quantity of cells per field with this phenotype. Scale bar = 100 μm.

doi:10.1371/journal.pone.0166370.g004
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Dynamic Role of RhoGDI3 in Pancreatic Cell Lines

We next investigated the dynamics of the colocalization of RhoGDI3 and Rho GTPase proteins

under rhEGF treatment. To that end, we carried out immunofluorescence and confocal

microscopy imaging at the same 3 time points, T0, T2 and T10 min, using the anti- RhoGDI3,

anti-RhoG and anti-RhoB antisera. The pattern of expression varies among the three cell lines

analyzed. In hTERT-HPNE and PANC-1 cells, RhoGDI3 showed a relocalization from the

perinuclear zone to the plasma membrane, specifically to lamellipodial protrusions, and this

relocalization was more evident at T10 (Fig 5A and 5B, arrowheads, S6 Fig). Whereas, BxPC3

cells did not show a characteristic phenotype, the signal was diffuse. Next we investigated the

possibility of colocalization with RhoG and RhoB, and found colocalization of these proteins

in particular at the cellular protrusions (Fig 5C and 5D). One of the most remarkable findings

was the enrichment of RhoGDI3 in the nucleus of hTERT-HPNE non-cancerous cells, but not

in the nuclei of cancerous cells, despite comparable the cytosolic and nuclear distribution of

RhoG in all three cell lines.

Fig 5. The dynamic role of RhoGDI3 in the pancreatic cell lines. Cells were starved for 6 hours and activated with rhEGF for the

period of 0, 2 and 10 minutes (marked above the images as 0, 2 and 10 min). An immunofluorescence microscopy analysis of RhoGDI3

(green), RhoG (A) and RhoB (B) (red, not shown) was carried out on hTERT-HPNE (upper panel), BxPC3 (middle panel) and PANC-1

(bottom panel) cells lines, at the time point of 10 min it is shown the detail of RhoGDI3 staining to highlight the signal at the lamellipodial

protrusions evident only in the cell lines hTERT-HPNE and PANC-1 (white arrowheads). The colocalization index was determined using

the confocal Olympus software FluoView 300 for RhoGDI3 with RhoG and RhoB. Overlap index is shown in Fig 5C and 5D, respectively,

index 1 corresponds to maximum overlap and cero corresponds to negative overlap. Scale bar 10 μm.

doi:10.1371/journal.pone.0166370.g005
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Nuclear Targeting of RhoGDI3 in hTERT-HPNE Cells after rhEGF

Treatment

To confirm our immunofluorescent finding of the nuclear localization of RhoGDI3 in

hTERT-HPNE cells at T0, T2 and T10, we performed subcellular fractionation to obtain

nuclear and cytosolic fraction and analyzed them by Western blotting. Cells were treated with

rhEGF using the same conditions as for the immunocytochemistry experiments. The purity of

the nuclear extracts was confirmed with an anti-histone H3 antibody, and no signal was

detected with this antibody in the cytoplasmic fractions. As a marker for the cytoplasmic

extracts we used an anti-Aldolase B antibody, and no signal was detected with this antibody in

the nuclear fractions (Fig 6). Notably, we confirmed that RhoGDI3 was present in the nuclear

fraction in hTERT-HPNE cells (Fig 6A) but not in the cancerous cell lines (PANC-1 and

BxPC3), in which RhoGDI3 expression is limited to the cytosolic fraction. We also confirmed

that RhoG is present in both, the nuclear and cytoplasmic fractions from all three cell lines.

However, we founf that RhoB was not observed in the nuclei of any of the three pancreatic cell

lines studied, which contradict reports from other cellular systems [33]. Furthermore, we

observed a nuclear and cytosolic localization of RhoGDI2 in hTERT-HPNE, while the localiza-

tion in BXPC3 was purely cytosolic. Finally, we confirmed that RhoGDI2 is absent in the

PANC-1 even though the cytosolic protein was concentrated.

Nuclear Localization of RhoGDI3 in Normal Human Pancreatic Tissue

The experiments described above demonstrate the presence of RhoGDI3 in the nuclei of

hTERT-HPNE cells, a normal human pancreatic cell line Next we investigated whether

RhoGDI3 is localized in the nuclei of cells from normal and cancerous human pancreatic biop-

sies. To this end, we carried out immunofluorescence microscopy on paraffin-embedded sam-

ples from human pancreatic biopsies, as described in the materials and methods. We observed

that RhoGDI3 and RhoG proteins were primarily present in the cytoplasm in normal pancre-

atic tissue, with evident nuclear localization (Fig 7). However, we did not observe colocaliza-

tion of RhoGDI3 and RhoG in normal pancreatic tissue, unlike our findings on pancreatic cell

lines (Fig 1). Interestingly, although we did observe the presence of RhoGDI3 and RhoG in the

Fig 6. Nuclear localization of RhoGDI3 in rhEGF treated hTERT-HPNE cells. Subcellular fractionation was performed after cells

were treated with rhEGF (marked above the images as 0, 2 and 10 rhEGF Min). Nuclear (N) and cytosolic (C) fractions from

hTERT-HPNE (A), BxPC3 (B) and PANC-1 (C) cell lines were obtained and analyzed by immunoblotting, using anti-RhoGDI3, anti-

RhoG, anti-RhoB antibodies. Anti-histone H3 antibody was used as a nuclear control and anti-Aldolase B antibody was used as a cytosol

control. 20 μg of cell lysates were loaded.

doi:10.1371/journal.pone.0166370.g006
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nuclei (Fig 7A) of the normal human pancreatic tissue samples, RhoG protein expression was

almost absent in the human PDAC tissue samples, with only minimal staining in the cyto-

plasm (Fig 7C). Interestingly, while in cancerous pancreatic cell linesRhoGDI3 protein expres-

sion is lost from the nuclei and it is only present in the cytosolic fractions; in non-cancerous

cell lines, RhoGDI3 protein expression is present in both, cytoplasmic and nuclear fractions

Furthermore, in normal pancreatic tissue, RhoGDI3 and RhoG where expressed in both cyto-

sol and nuclei, however, these two proteins didn’t show any colocalization.

Fig 7. Nuclear localization of RhoGDI3 in normal pancreatic tissue. Immunofluorescence microscopy staining of RhoGDI3 (green)

and RhoG (red) was carried out on human pancreatic normal (A) and moderate (aggressiveness) PDAC biopsies (C). (B) Magnification

and lateral view of the immunofluorescence of RhoGDI3 and RhoG, to evidence nuclear localization in human pancreatic normal tissue.

Arrowheads denote the localization of RhoGDI3 and RhoG into the nuclei. Scale bar 10 = μm.

doi:10.1371/journal.pone.0166370.g007
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Discussion

For the first time, we reported the different subcellular expression patterns and activation state

of RhoGDI3 protein as well as the expression of two Rho GTPases, RhoG and RhoB, docu-

mented as target molecules for this negative regulator, in normal and cancerous human pan-

creatic cancer cell lines and human pancreatic tissue. Our findings could be useful to propose

new markers of tumor progression and aggressiveness in PDAC. Canonically, RhoGDI pro-

teins function in the cytosol, where they act like chaperones to solubilize Rho proteins and are

mediators, monitoring the exchange of Rho proteins from protein complexes to cell mem-

branes and vice versa. It was thought that they could have redundant functions, but their dis-

tinct expression patterns in different tissues and cell lines have suggested that they are not

redundant; RhoGDI1 knockout mice, described by Towaga et al., is characterized by the devel-

opment of kidney failure and infertility [34], whereas RhoGDI2 knockout mice showed a mild

alteration in the oxidative state in phagocytic cells [35]. Due to the emerging role of RhoGDI’s

proteins, RhoGDI1 and RhoGDI2, in many types of cancers [17, 20, 21, 36–38] and given the

frequency with which those molecules expression is regulated in cancer, it is comprehensible

that RhoGDI’s proteins have crucial roles in the carcinogenic process.

Similarly, to the findings of Jiang et al. in breast cancer, [24], we observed reduced expres-

sion of RhoGDI3 in both cancerous pancreatic cell lines BxPC3 and PANC-1, which correlates

with the reduced expression of RhoGDI3 in breast cancer cells. Moreover, we analyzed the tar-

get small GTPases, RhoG and RhoB, and we found a clear reduction of RhoB in pancreatic

cancerous cell lines, but not in non-cancerous pancreatic cells, that correlates with the fact that

RhoB protein deletion promoted tumor formation [39]. Contrary to RhoB, RhoG protein was

overexpressed only in PANC-1, a cell line that corresponds to the late stage of PDAC; whereas,

the levels of RhoG in BxPC3 (cell line that corresponds to the early stages of PDAC) where no

different from its levels in hTERT-HPNE (non-cancerous cell line). PANC-1 cells are

described as a highly metastatic cell line, since they were isolated from adenocarcinoma in the

head of pancreas, which invaded the duodenal wall and had generated metastases in one peri-

pancreatic lymph node [40]. In order to metastasize, it is possible to speculate that a cell must

overexpress molecules that control the movement such as RhoG, that might facilitate the dis-

placement of the cell to other microenvironments. This statement correlates with the cell phe-

notype of BxPC3 cell line, a cell line obtained from a tumor circumscribed to the body of the

pancreas in which no evidence of metastasis was found [41]. And, according to our results,

RhoG expression is very low in this cell line. Despite the different levels of RhoG and RhoB in

the three different cell lines, we found a similar but unequal activation state of these molecules,

since the RhoG raises its activation at time 2 minutes and maintains its activations until time

10 minutes. This observation is supported by Rac-1 increased expression at time 2 min, due to

the fact that when RhoG is activated by Trio-GEF in Golgi apparatus, this protein is driven to

the cell periphery and once there, activated RhoG is able to induce the translocation of the

ELMODock180 complex to the plasma membrane. This gives the possibility of multicomplex

formation, which in turn, could activate Rac-1 and lead to formation of lamellipodia at the cell

periphery [32]. When RhoGDI3 is transiently expressed in MDCK cells the activation of RhoG

is hardly seen, suggesting the inhibitory dissociation activity [42]. Our findings revealed that

the decreased expression of RhoGDI3 and the increased expression of RhoG proteins in

PANC-1 cell line could not counteract the activation of RhoG, suggesting that the levels of

RhoGDI3 where not enough to block the activation of RhoG. It has also been shown that the

RhoGDI1 protein is an inhibitor of GEF proteins, which overlap the binding site GDI [43].

Moreover, the fast activation of RhoG in PANC-1 cell line in response to rhEGF at time 2 min-

utes, could be due to the overexpression of Epidermal Growth Factor Receptor (EGFR), which
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is characteristic in PANC-1 but not in BxPC3 cell lines [44]. Nevertheless, if this were the case,

we should have seen a continuous activation of RhoG at time 10 minutes, but we observed a

clear saturation of the system, in which the activation state was turned down, which could

reinforce the idea that there are not enough inhibitory molecules that can keep inactivated the

RhoG GTPase in the cytoplasm, giving place to the migration event through Rac-1 activated

RhoG-dependent that could promote metastasis.

The RhoB is one of the downregulated GTPases in breast cancer [24] and invasive carcino-

mas of the head and neck [45]; accordingly, we found a decreased RhoB protein expression in

the pancreatic cancer cell lines BxPC3 and PANC-1, as compared to non-cancerous pancreatic

cell line hTERT-HPNE. Due to the role of RhoB as a tumor suppressor, that inhibits growth,

cell migration, invasion and maintenance of mesenchymal morphology, functioning as a nega-

tive modifier in cancer, thus it is evident that a reduction in its level of expression could favor

cancer progression [46] 2016; [47]. The subcellular localization of RhoB in hTERT-HPNE

non-cancerous cell line diverges from the other two cancerous cell lines. In hTERT-HPNE it

has a mostly homogeneous distribution; which could be due to the coexistence of two modified

forms of RhoB: geranylgeranylated RhoB (RhoB-GG) and farnesylated RhoB (RhoB-F) [48],

which are respectively localized in late endosomes and near cell membrane. RhoB GTPase is

an unstable protein that is rapidly and transiently induced by a variety of stimuli, such as EGF

[49, 50]. Our findings revealed a clear activation of RhoB at time 0 and 2 min in hTERT-HPNE

and PANC-1 but not in BxPC3, coinciding with the presence of RhoB at the cell periphery,

where it controls EGFR recycling [51], the gain of RhoB-GG postraslational modification,

makes more efficiently this recycling event to the plasma membrane [48]. At time 10 minutes,

we observed a clear redistribution of RhoB along the cytoplasm surrounding the nuclei, where

it is proposed that activated Akt exhibits increased accumulation upon survival stimuli [33].

Our important finding on the activation of RhoB in PANC-1 cell line, could reflect a different

cellular process that occurs in aggressive cancerous cells, PANC-1 metastatic, in which RhoB

affects a basic pathway required for Rac-driven lamellipodium extension-stability [52]. Thus,

RhoB might modulate the high migration rate in response to rhEGF treatment; nevertheless,

more research is needed to elucidate this mechanism in cells where the expression of RhoB is

apparently lost but could be induced under very specific stimuli, switching on signaling path-

ways involved in tumor progression.

Adra et al. reported the non-canonical nuclear localization sequence (NLS) found in

RhoGDI3, suggesting that this protein might be targeted to the nuclei in a passive way [12].

We observed for the first time, the presence of RhoGDI3 in the nuclei of normal human pan-

creatic cell line hTERT-HPNE and normal human pancreatic tissue. This finding is supported

by the fact that after RhoGDI2 has been cleaved by caspase 3, it is relocated to the nucleus, dur-

ing apoptosis [53]. In accordance with this fact, we observed a clear localization of RhoGDI3

in the nuclei and the cytoplasm from hTERT-HPNE. Using RNAi methodology Lu et al. dem-

onstrated that the loss of RhoGDI3 in neural cells induced changes in cell morphology, that

were consistent with decreased transcription of genes like RhoA, Cdc42, Limk2, and

N-WASP, molecules that impact the reorganization of the actin cytoskeleton [54]. Hence, this

discovery could be related to homeostasis in normal but not in cancerous cells, at least in pan-

creatic cells, nevertheless, it is necessary to inquire what could be the functional role of nuclear

RhoGDI3 in normal pancreatic cell.

We could not leave behind that RhoG GTPase was found in the nucleus off all three cell

lines and normal pancreatic tissue, thus we investigated whether the RhoG GTPase has a NLS

that could explain its nuclear localization. Using the cNLS [55] two predicted monopartite sig-

nals were found at 179 and 182 residues with 2 and 2.5 score respectively, both at the N-amino

terminal. Until now, there is no previous evidence of a nuclear RhoG. Nevertheless, it is
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possible that RhoG is relocated into the nuclei after a starvation state, where it probably could

play a role in the regulation of transcription factors. Currently it has been documented that

RhoG promotes the transcriptional activation of Stat3 in murine fibroblasts and human cells

equally as was reported for RhoA [56] and other GTPases [57]. Therefore, our finding of

nuclear localization of RhoG could pave the road for a better understanding of alternative new

functions of this protein that may contribute to carcinogenesis.

Our results suggest that the levels of RhoG and RhoB GTPases and their negative regulator

RhoGDI3 might be linked to the aggressiveness of the pancreatic cancerous cell lines. It is pos-

sible that RhoGDI3 could induce the downregulation of RhoG and RhoB. In this respect, one

of the canonical functions of RhoGDI’s is to protect the free prenylated cytosolic Rho GTPases

against the degradation by the proteasome. We propose that these three proteins can be con-

sidered markers of aggressiveness in PDAC, however more research is warranted, in order to

elucidate their possible implications in normal, inflammatory, and cancerous human samples.

Supporting Information

S1 Fig. RhoGDI3 recruits RhoG in the three pancreatic cell lines. Lysates from the three cell

lines were immunoprecipitated (IP) with anti-RhoGDI3 and unrelated antibody, (A) Coomas-

sie blue staining of hTERT-HPNE, BxPC3 and PANC-1 total proteins separated by 12%

SDS-PAGE. Left to right; Input, elutes of the three cell lines using antibody anti-RhoGDI3;

elutes of the three cell lines using an unrelated antibody. (B) The immunoprecipitates were

then subjected to Western blotting of immunoprecipitated RhoGDI3 protein on protein G

showing a specific band in the input and in the immunoprecipitation, nor in unrelated anti-

body. (C) The membrane was stripped and confronted with antibody anti-RhoG. The cells

were lysed in buffer containing 50 mM Tris (pH 6.8), NaCl 2M and Triton X-100 1%.

(TIFF)

S2 Fig. RhoB recruits RhoGDI3 in hTERT-HPNE pancreatic cell line. Lysates of

hTERT-HPNE cell line was immunoprecipitated (IP) with anti-RhoB and unrelated antibody,

(A) Coomassie blue staining of hTERT-HPNE total protein separated by 12% SDS-PAGE. Left

to right; MW, Input, elutes of the cell line using antibody unrelated and anti-RhoB antibodies;

unbinding unrelated protein and unbinding anti-RhoB protein; wash unrelated and anti-

RhoB beads. (B) The immunoprecipitates were then subjected to Western blotting of immuno-

precipitated RhoB protein on protein G showing a specific band in the input and in the immu-

noprecipitation, nor in unrelated antibody. (C) The membrane was stripped and confronted

with antibody anti-RhoGDI3. The cells were lysed in buffer containing 50 mM Tris (pH 6.8),

NaCl 2M and Triton X-100 1%.

(TIFF)

S3 Fig. Phase contrast micrographs of BxPC3, to show the patch growth of this cell line.

BxPC3 is a cell line derived from PDAC with no evidence of metastasis. It is evident the growth

of this cell line in clusters.

(TIFF)

S4 Fig. The normal pancreatic tissue samples showed a strong RhoGDI3 immunoreactivity

in the different type of cells: pancreatic islets (arrowheads) and ducts (arrows) (A), whilst,

RhoG, showed an immunoreactivity pattern very low or absent, pancreatic islets (arrow-

heads) and ducts (arrows) (B). Scale bar 100 μm.

(TIFF)
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S5 Fig. RhoGDI3 is not localized neither in the nuclei of BxPC3 nor in the nuclei of

PANC-1 cell lines. After cells were treated with rhEGF (depicted above the images as 0, 2 and

10 rhEGF Min) nuclear (N) and cytosolic (c) fractions from BxPC3 (A) and PANC-1 (B), cells

were obtained and analyzed by immunoblotting, using anti-RhoGDI3, anti-RhoG, anti-RhoB

antibodies. Anti-histone H3 antibody was used as a nuclear control and anti-Aldolase B anti-

body as a cytosol control. 20 μg of cell lysates were loaded. Membranes were overexposed for 1

min to evidence all the bands.

(TIFF)

S6 Fig. The localization of RhoGDI3 in hTERT-HPNE and PANC-1 pancreatic cell lines.

Cells were starved 6 hours and confronted with rhEGF for the period of 0, 2 and 10 minutes

(Marked as 0, 2 and 10 rhEGF min). A) To show the cytoskeleton reorganization, F-Actin was

stained with rhodamine phalloidin (red), and (B) fluorescence microscopic staining of

RhoGDI3 (green) were carried out in hTERT-HPNE (left column), and PANC-1 (right col-

umn). The time point of 2 min and 10 min show the detail of RhoGDI3 staining to highlight

the signal at the lamellipodial protrusions evident only in the cell lines hTERT-HPNE and

PANC-1 (white arrowheads), not in BxPC3 cells (Data not shown). Scale bar 100 μm for panel

A and 10 μm for panel B.

(TIF)

Acknowledgments
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